Results on uniqueness of meromorphic functions of differential polynomial

Harina P. Waghamore ${ }^{1 *}$ and Naveenkumar S. H. ${ }^{2}$

Abstract

In this paper, we study the problem concerning meromorphic functions sharing a small function with weight $l \geq 0$ and present one theorem which extends a results due to Zhang and Lü [19], S.S. Bhoosnurmath and Kabbur [5], Banerjee and Majumder [3], K. S. Charak and Banarsi Lal [7].
Keywords
Uniqueness, Meromorphic function, Sharing values, Differential Polynomial, Weighted sharing.
AMS Subject Classification
Primary 30D35.
1,2 Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bengaluru-560056, India.
*Corresponding author: ${ }^{1}$ harinapw@gmail.com; ${ }^{2}$ naveenkumarsh.220@gmail.com
Article History: Received 12 September 2017; Accepted 21 December 2017

Contents

1 Introduction and main results 14
2 Lemmas 16
3 Proof of the Theorem 18
References 19

1. Introduction and main results

In this paper, a meromorphic function always mean a function which is meromorphic in the whole complex plane \mathbb{C}. We adopt the standard notations of the Nevanlinna theory of meromorphic functions as explained in [9]. Let $f(z)$ and $g(z)$ be nonconstant meromorphic functions, $a \in \mathbb{C} \cup\{\infty\}$. We say that f and g share the value a CM if $f-a$ and $g-a$ have the same zeros with the same multiplicities.

We denote by $N_{k}\left(r, \frac{1}{f-a}\right)$ the counting function for zeros of $f-a$ with multiplicity $\leq k$, and by $\bar{N}_{k)}\left(r, \frac{1}{f-a}\right)$ the corresponding one for which multiplicity is not counted. Let $N_{(k}\left(r, \frac{1}{f-a}\right)$ be the counting function for zeros of $f-a$ with multiplicity at least k and $\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$ the corresponding one
for which multiplicity is not counted. Set

$$
\begin{aligned}
N_{k}\left(r, \frac{1}{f-a}\right) & =\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\ldots \\
& +\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)
\end{aligned}
$$

For two positive integers n, p we define $\mu_{p}=\min \{n, p\}$ and $\mu_{p}^{*}=p+1-\mu_{p}$.
Then it is clear that

$$
\begin{equation*}
N_{p}\left(r, \frac{1}{f^{n}}\right) \leq \mu_{p} N_{\mu_{p}^{*}}\left(r, \frac{1}{f}\right) \tag{1.1}
\end{equation*}
$$

For notational purposes, let f and g share 1 IM . Let z_{0} be a 1-point of f of order p, a 1-point of g of order q. We denote by $N_{11}\left(r, \frac{1}{f-1}\right)$ the counting function of those 1points of f and g where $p=q=1$. By $N_{E}^{(2}\left(r, \frac{1}{f-1}\right)$ we denote the counting function of those 1-points of f and g where $p=q \geq 2$. Also, $\bar{N}_{L}\left(r, \frac{1}{f-1}\right)$ denotes the counting function of those 1-points of both f and g where $p>q$.

Let k be a non-negative integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_{0} is an a-point of f with multiplicity $m(\leq k)$ if and only if it is an a-point of g with multiplicity $m(\leq k)$ and z_{0} is an a-point of f with multiplicity $m(>k)$ if and only if it is an a-point of g with multiplicity $n(>k)$, where m is not necessarily equal to n.

We write " f, g share (a, k) " to mean that $" f, g$ share the value a with weight k ". Clearly if f, g share (a, k) then f, g share (a, p) for any integer $p, 0 \leq p<k$. Also we note that f, g share a value $a \mathrm{IM}$ or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

For any constant a, we define

$$
\begin{aligned}
& \Theta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)}, \\
& \delta_{k}(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N_{k}\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
\end{aligned}
$$

Clearly,
$0 \leq \boldsymbol{\delta}(a, f) \leq \delta_{k}(a, f) \leq \delta_{k-1}(a, f) \ldots \leq \delta_{1}(a, f)=\Theta(a, f)$.

Definition. Let $n_{0 j}, n_{1 j}, \ldots, n_{k j}$ be nonnegative integers.
The expression $M_{j}[f]=(f)^{n_{0 j}}\left(f^{(1)}\right)^{n_{1 j}} \ldots\left(f^{(k)}\right)^{n_{k j}}$ is called a differential monomial generated by f of degree $d_{M_{j}}=$ $d\left(M_{j}\right)=\sum_{i=0}^{k} n_{i j}$ and weight $\Gamma_{M_{j}}=\sum_{i=0}^{k}(i+1) n_{i j}$.

The sum $H[f]=\sum_{j=1}^{t} b_{j} M_{j}[f]$ is called a differential polynomial generated by f of degree

$$
\bar{d}(H)=\max \left\{d\left(M_{j}\right): 1 \leq j \leq t\right\}
$$

and weight

$$
\Gamma_{H}=\max \left\{\Gamma_{M_{j}}: 1 \leq j \leq t\right\},
$$

where $T\left(r, b_{j}\right)=S(r, f)$ for $j=1,2, . ., t$.
The numbers $\underline{d}(H)=\min \left\{d\left(M_{j}\right): 1 \leq j \leq t\right\}$ and k (the highest erder of the derivative of f in $H[f]$) are called respectively the lower degree and order of $H[f]$.
$H[f]$ is said to be homogeneous if $\bar{d}(H)=\underline{d}(H)$
$H[f]$ is called a linear differential polynomial generated by f if $\bar{d}(H)=1$. Otherwise $H[f]$ is called a non-linear differential polynomial.

We denote by $Q=\max \left\{\Gamma_{M_{j}}-d\left(M_{j}\right): 1 \leq j \leq t\right\}=$ $\max \left\{n_{1 j}+2 n_{2 j}+\ldots+k n_{k j}: 1 \leq j \leq t\right\}$.

In 2008, Zhang and Lü ([19]) obtained the following result.
Theorem A. Let k, n be the positive integers, f be a nonconstant meromorphic function, and $a(\not \equiv 0, \infty)$ be a meromorphic function satisfying $T(r, a)=o(T(r, f))$ as $r \rightarrow \infty$. If f^{n} and $f^{(k)}$ share a IM and

$$
(2 k+6) \Theta(\infty, f)+4 \Theta(0, f)+2 \delta_{2+k}(0, f)>2 k+12-n,
$$

or f^{n} and $f^{(k)}$ share a CM and

$$
(k+3) \Theta(\infty, f)+2 \Theta(0, f)+\delta_{2+k}(0, f)>k+6-n,
$$

then $f^{n}=f^{(k)}$.
In the same paper, T. Zhang and W. Lü asked the following question:

Question 1. What will happen if f^{n} and $\left(f^{(k)}\right)^{m}$ share a meromorphic function $a(\not \equiv 0, \infty)$ satisfying $T(r, a)=o(T(r, f))$ as $r \rightarrow \infty$?
S.S.Bhoosnurmath and Kabbur ([5]) proved:

Theorem B. Let f be a non-constant meromorphic function and $a(\not \equiv 0, \infty)$ be a meromorphic function satisfying $T(r, a)=$ $o(T(r, f))$ as $r \rightarrow \infty$. Let $P[f]$ be a non-constant differential polynomial in f. If f and $P[f]$ share a IM and

$$
(2 Q+6) \Theta(\infty, f)+(2+3 \underline{d}(P)) \delta(0, f)>2 Q+2 \underline{d}(P)+\bar{d}(P)
$$

$$
+7
$$

or if f and $P[f]$ share $a \mathrm{CM}$ and

$$
3 \Theta(\infty, f)+(\underline{d}(P)+1) \delta(0, f)>4
$$

then $f \equiv P[f]$.
Banerjee and Majumder ([3]) considered the weighted sharing of f^{n} and $\left(f^{m}\right)^{(k)}$ and proved the following result:
Theorem C. Let f be a non-constant meromorphic function, $k, n, m \in N$ and l be a non negative integer. Suppose $a(\not \equiv 0, \infty)$ be a meromorphic function satisfying $T(r, a)=o(T(r, f))$ as $r \rightarrow \infty$ such that f^{n} and $\left(f^{m}\right)^{(k)}$ share (a, l). If $l \geq 2$ and

$$
(k+3) \Theta(\infty, f)+(k+4) \Theta(0, f)>2 k+7-n,
$$

or $l=1$ and

$$
\left(k+\frac{7}{2}\right) \Theta(\infty, f)+\left(k+\frac{9}{2}\right) \Theta(0, f)>2 k+8-n,
$$

or $l=0$ and

$$
(2 k+6) \Theta(\infty, f)+(2 k+7) \Theta(0, f)>4 k+13-n,
$$

then $f \equiv\left(f^{m}\right)^{(k)}$.
In 2015, Kuldeep S. Charak and Banarasi Lal ([7]) proved the following result:

Theorem D. Let f be a non-constant meromorphic function, n be a positive integer and $a(\not \equiv 0, \infty)$ be a meromorphic function satisfying $T(r, a)=o(T(r, f))$ as $r \rightarrow \infty$. Let $P[f]$ be a nonconstant differential polynomial in f. Suppose f^{n} and $P[f]$ share (a, l) such that any one of the following holds:
(i) when $l \geq 2$ and

$$
\begin{aligned}
(Q+3) \Theta(\infty, f) & +2 \Theta(0, f)+\bar{d}(P) \delta(0, f)>Q+5 \\
& +2 \bar{d}(P)-\underline{d}(P)-n,
\end{aligned}
$$

(ii) when $l=1$ and

$$
\begin{aligned}
\left(Q+\frac{7}{2}\right) \Theta(\infty, f)+ & \frac{5}{2} \Theta(0, f)+\bar{d}(P) \delta(0, f)>Q+6 \\
& +2 \bar{d}(P)-\underline{d}(P)-n
\end{aligned}
$$

(iii) when $l=0$ and

$$
\begin{aligned}
(2 Q+6) \Theta(\infty, f) & +4 \Theta(0, f)+2 \bar{d}(P) \delta(0, f)>2 Q \\
& +10+4 \bar{d}(P)-2 \underline{d}(P)-n .
\end{aligned}
$$

Then $f^{n} \equiv P[f]$.
Through the paper we shall assume the following notations. Let

$$
\begin{aligned}
\mathscr{P}(\omega) & =a_{m+n} \omega^{m+n}+\ldots+a_{n} \omega^{n}+\ldots+a_{0} \\
& =a_{n+m} \prod_{i=1}^{s}\left(\omega-\omega_{p_{i}}\right)^{p_{i}}
\end{aligned}
$$

where $a_{j}(j=0,1,2, \ldots, n+m-1), a_{n+m} \neq 0$ and $\omega_{p_{i}}(i=$ $1,2, \ldots, s)$ are distinct finite complex numbers and $2 \leq s \leq n+$ m and $p_{1}, p_{2}, \ldots, p_{s}, s \geq 2, n, m$ and k are all positive integers with $\sum_{i=1}^{s} p_{i}=n+m$. Also let $p>\max _{p \neq p_{i}, i=1, \ldots, r}\left\{p_{i}\right\}, r=$ $s-1$, where s and r are two positive integers.

Let

$$
\begin{aligned}
P\left(\omega_{1}\right) & =a_{n+m} \prod_{i=1}^{s-1}\left(\omega_{1}+\omega_{p}-\omega_{p_{i}}\right)^{p_{i}} \\
& =b_{q} \omega_{1}^{q}+b_{q-1} \omega_{1}^{q-1}+\ldots+b_{0}
\end{aligned}
$$

where $a_{n+m}=b_{q}, \omega_{1}=\omega-\omega_{p}, q=n+m-p$. Therefore, $\mathscr{P}(\omega)=\omega_{1}^{p} P\left(\omega_{1}\right)$.
Next we assume

$$
P\left(\omega_{1}\right)=b_{q} \prod_{i=1}^{r}\left(\omega_{1}-\alpha_{i}\right)^{p_{i}}
$$

where $\alpha_{i}=\omega_{p_{i}}-\omega_{p},(i=1,2, \ldots, r)$, be distinct zeros of $P\left(\omega_{1}\right)$.

In this paper, we extend the above mentioned theorems $(A-D)$ by investigating the uniqueness of meromorphic functions of the form $f_{1}^{p} P\left(f_{1}\right)-a$ and $H[f]-a$ and obtain the following result.
Theorem 1. Let $k(\geq 1), n(\geq 1), p(\geq 1)$ and $m(\geq 0)$ be integers and f and $f_{1}=f-\omega_{p}$ be two nonconstant meromorphic functions and $H[f]$ be a nonconstant differential polynomial generated by f. Let $\mathscr{P}(z)=a_{m+n} z^{m+n}+\ldots+a_{n} z^{n}+\ldots+a_{0}$, $a_{m+n} \neq 0$, be a polynomial in z of degree $\mathrm{m}+\mathrm{n}$ such that $\mathscr{P}(f)=f_{1}^{p} P\left(f_{1}\right)$. Also let $a(z)(\not \equiv 0, \infty)$ be a small function with respect to f. Suppose $\mathscr{P}(f)-a$ and $H[f]-a$ share $(0, l)$. If $l \geq 2$ and

$$
\begin{gather*}
(Q+3) \Theta(\infty, f)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\bar{d}(H) \delta_{k+2}(0, f)> \\
Q+3+\mu_{2}+\bar{d}(H)-p \tag{1.2}
\end{gather*}
$$

or $l=1$ and

$$
\begin{align*}
& \left(Q+\frac{7}{2}\right) \Theta(\infty, f)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\bar{d}(H) \delta_{k+2}\left(r, \frac{1}{f}\right) \\
& +\frac{1}{2} \Theta\left(w_{p}, f\right)>Q+4+\mu_{2}+\bar{d}(H)+\frac{m+n-3 p}{2} \tag{1.3}
\end{align*}
$$

or $l=0$ and

$$
\begin{align*}
& (2 Q+6) \Theta(\infty, f)+2 \Theta\left(w_{p}, f\right)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+ \\
& \bar{d}(H) \delta_{k+2}(0, f)+\bar{d}(H) \delta_{k+1}(0, f) \\
& >2 Q+8+\mu_{2}+2 \bar{d}(H)+2(m+n)-3 p \tag{1.4}
\end{align*}
$$

then $\mathscr{P}(f) \equiv H[f]$.
Following example shows that the conditions in (1.2) (1.4) in Theorem 1 can not be removed.

Example 1. Let $f(z)=\cos (\alpha z)+a-\frac{a}{\alpha^{8 d}}, d \in N$; where $\alpha \neq 0, \alpha^{8 d} \neq 1$ and $a \in \mathbb{C}-\{0\}$. Let $\mathscr{P}(f)=f$ and $H[f]=$ $f^{(i v)}$ share $(1, l)(l \geq 0)$ but none of the inequalities (1.2), (1.3) and (1.4) of Theorem 1 is satisfied, and $\mathscr{P}(f) \not \equiv H[f]$.

Remark 1. Theorem 1 extends Theorem $A-D$.

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in \mathbb{C}. We denote by ψ the function as follows:

$$
\begin{equation*}
\psi=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{2.1}
\end{equation*}
$$

Lemma 2.1. [11] Let f be a nonconstant meromorphic function, and p, k be positive integers. Then

$$
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq N_{p+k}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

Lemma 2.2. [4] For any two nonconstant meromorphic functions f_{1} and f_{2},

$$
N_{p}\left(r, f_{1} f_{2}\right) \leq N_{p}\left(r, f_{1}\right)+N_{p}\left(r, f_{2}\right)
$$

Lemma 2.3. [5] Let f be a nonconstant meromorphic function and $H[f]$ be a differential polynomial of f. Then

$$
\begin{align*}
m\left(r, \frac{H[f]}{f^{\bar{d}(H)}}\right) & \leq(\bar{d}(H)-\underline{d}(H)) m\left(r, \frac{1}{f}\right)+S(r, f) \tag{2.2}\\
N\left(r, \frac{H[f]}{f^{\bar{d}}(H)}\right) & \leq(\bar{d}(H)-\underline{d}(H)) N\left(r, \frac{1}{f}\right) \\
& +Q\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+S(r, f), \tag{2.3}
\end{align*}
$$

$$
\begin{align*}
N\left(r, \frac{1}{H[f]}\right) & \leq Q \bar{N}(r, f)+(\bar{d}(H)-\underline{d}(H)) m\left(r, \frac{1}{f}\right) \\
& +N\left(r, \frac{1}{f^{\bar{d}(H)}}\right)+S(r, f) \tag{2.4}
\end{align*}
$$

where $Q=\max _{1 \leq i \leq m}\left\{n_{i 0}+n_{i 1}+2 n_{i 2}+\ldots+k n_{i k}\right\}$.
Lemma 2.4. [13] Let ψ be defined as in (2.1). If F and G share 1 IM and $\psi \not \equiv 0$, then

$$
N_{11}\left(r, \frac{1}{F-1}\right) \leq N(r, H)+S(r, F)+S(r, G)
$$

Lemma 2.5. [2] Let F and G share $(1, l)$ and $\bar{N}(r, F)=$ $\bar{N}(r, G)$ and $\psi \not \equiv 0$, then

$$
\begin{aligned}
N(r, \psi) & \leq \bar{N}(r, F)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right) \\
& +\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& +S(r, f) .
\end{aligned}
$$

Lemma 2.6. [4] Let f be a non-constant meromorphic function and $a(z)$ be a small function of f. Let $F=\frac{\mathscr{P}(f)}{a}=\frac{f_{1}^{p} P\left(f_{1}\right)}{a}$ and $G=\frac{H[f]}{a}$ such that F and G shares $(1, \infty)$. Then one of the following cases hold:

$$
\begin{aligned}
& 1 . T(r) \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+\bar{N}(r, G) \\
& +\bar{N}_{L}(r, F)+\bar{N}_{L}(r, G)+S(r) \\
& 2 . F \equiv G \\
& \text { 3.FG} \equiv 1
\end{aligned}
$$

where $T(r)=\max \{T(r, F), T(r, G)\}$ and $S(r)=o(T(r)), r \in$ I, I is a set of infinite linear measure of $r \in\{0, \infty\}$.
Lemma 2.7. For the differential polynomial $H[f]$,

$$
N_{p}\left(r, \frac{1}{H[f]}\right) \leq \bar{d}(H) N_{p+k}\left(r, \frac{1}{f}\right)+Q \bar{N}(r, f)+S(r, f)
$$

Proof. Clearly for any non-constant meromorphic function $f, N_{p}(r, f) \leq N_{q}(r, f)$ if $p \leq q$ and $b_{1}=b_{2}=\ldots=b_{t}=1$.
Now by using the above fact and Lemma 2.1, Lemma 2.2, we get

$$
\begin{aligned}
& N_{p}\left(r, \frac{1}{H[f]}\right) \leq \sum_{j=1}^{t} N_{p}\left(r, \frac{1}{M_{j}[f]}\right)+S(r, f) \\
& =N_{p}\left(r, \frac{1}{M_{1}[f]}\right)+N_{p}\left(r, \frac{1}{M_{2}[f]}\right)+\ldots \\
& +N_{p}\left(r, \frac{1}{M_{t}[f]}\right)+S(r, f) \\
& =N_{p}\left(r, \frac{1}{(f)^{n_{01}}\left(f^{(1)}\right)^{n_{11}} \ldots\left(f^{(k)}\right)^{n_{k 1}}}\right) \\
& +N_{p}\left(r, \frac{1}{(f)^{n_{02}}\left(f^{(1)}\right)^{n_{12}} \ldots\left(f^{(k)}\right)^{n_{k 2}}}\right)+\ldots \\
& +N_{p}\left(r, \frac{1}{(f)^{n_{0 t}}\left(f^{(1)}\right)^{n_{1 t}} \ldots\left(f^{(k)}\right)^{n_{k t}}}\right)+S(r, f)
\end{aligned}
$$

$$
\begin{aligned}
& =N_{p}\left(r, \frac{1}{\prod_{i=0}^{k}\left(f^{(i)}\right)^{n_{i 1}}}\right)+N_{p}\left(r, \frac{1}{\prod_{i=0}^{k}\left(f^{(i)}\right)^{n_{i 2}}}\right) \\
& +\ldots+N_{p}\left(r, \frac{1}{\prod_{i=0}^{k}\left(f^{(i)}\right)^{n_{i t}}}\right)+S(r, f) \\
& =\sum_{i=0}^{k} n_{i 1} N_{p}\left(r, \frac{1}{f^{(i)}}\right)+\sum_{i=0}^{k} n_{i 2} N_{p}\left(r, \frac{1}{f^{(i)}}\right) \\
& +\ldots+\sum_{i=0}^{k} n_{i t} N_{p}\left(r, \frac{1}{f^{(i)}}\right)+S(r, f) \\
& =\sum_{i=0}^{k}\left[\left(n_{i 1}+n_{i 2}+n_{i 3}+\ldots+n_{i t}\right) N_{p}\left(r, \frac{1}{f^{(i)}}\right)\right]+S(r, f) \\
& \leq \sum_{i=0}^{k}\left[\left(n_{i 1}+n_{i 2}+n_{i 3}+\ldots+n_{i t}\right)\left\{N_{p+i}\left(r, \frac{1}{f}\right)+i \bar{N}(r, f)\right\}\right] \\
& +S(r, f) \\
& \leq \max _{1 \leq j \leq t}\left\{\sum_{i=0}^{k} n_{i j} N_{p+k}\left(r, \frac{1}{f}\right)\right\} \\
& +\max _{1 \leq j \leq t}\left\{\sum_{i=0}^{k}\left(n_{i 1}+n_{i 2}+n_{i 3}+\ldots+n_{i t}\right) i \bar{N}(r, f)\right\} \\
& +S(r, f) \\
& \leq \bar{d}(H) N_{p+k}\left(r, \frac{1}{f}\right)+Q \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

Hence the proof.
Lemma 2.8. Let f be a non-constant meromorphic function and $a(z)$ be a small function of f. Let us define $F=\frac{\mathscr{P}(f)}{a}=$ $\frac{f_{1}^{p} P\left(f_{1}\right)}{a}$ and $G=\frac{H[f]}{a}$. Then $F G \not \equiv 1$.
Proof. On contrary suppose $F G \equiv 1$, i.e.,

$$
f_{1}^{p} P\left(f_{1}\right) H[f]=a^{2}
$$

From above it is clear that the function f can't have any zero and poles. Therefore $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)=\bar{N}(r, f)$. So by the First Fundamental Theorem and Lemma 2.3, we have

$$
\begin{aligned}
(m+n+\bar{d}(H)) T(r, f) & =T\left(r, \frac{a^{2}}{f_{1}^{p} P\left(f_{1}\right) f^{\bar{d}(H)}}\right)+S(r, f) \\
& \leq T\left(r, \frac{H[f]}{f^{\bar{d}(H)}}\right)+S(r, f) \\
& \leq m\left(r, \frac{H[f]}{f^{\bar{d}(H)}}\right)+N\left(r, \frac{H[f]}{f^{\bar{d}(H)}}\right) \\
& +S(r, f) \\
& \leq(\bar{d}(H)-\underline{d}(H)) T(r, f) \\
& +Q\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+S(r, f) \\
& \leq(\bar{d}(H)-\underline{d}(H)) T(r, f)+S(r, f)
\end{aligned}
$$

Thus
$(m+n+\underline{d}(H))) T(r, f) \leq S(r, f)$,
which is a contradiction.

3. Proof of the Theorem

Proof of Theorem 1.

Let $F=\frac{\mathscr{P}(f)}{a}=\frac{f_{1}^{p} P\left(f_{1}\right)}{a}$ and $G=\frac{H[f]}{a}$.
Since $\mathscr{P}(f)-a$ and $H[f]-a$ share $(0, l), F, G$ share $(1, l)$ except the zeros and poles of $a(z)$. Also note that $\bar{N}(r, F)=$ $\bar{N}(r, f)+S(r, f)$ and $\bar{N}(r, G)=\bar{N}(r, f)+S(r, f)$. Let ψ be defined as in (2.1).
We consider the following cases.
Case 1. Suppose $\psi \not \equiv 0$. By the second fundamental theorem of Nevanlinna, we have

$$
\begin{align*}
& T(r, F)+T(r, G) \\
& \leq \bar{N}(r, F)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right) \\
& +\bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right) \\
& -\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, F)+S(r, G), \tag{3.1}
\end{align*}
$$

where $\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)$ denotes the reduced counting function of the zeros of F^{\prime} which are not the zeros of $F(F-1)$.
Since F and G share 1 IM , it is easy to verify that

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F-1}\right) & =N_{11}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+N_{E}^{(2}\left(r, \frac{1}{G-1}\right) \\
& =\bar{N}\left(r, \frac{1}{G-1}\right) . \tag{3.2}
\end{align*}
$$

Using Lemmas 2.4, 2.5, and (3.1), (3.2), we get

$$
\begin{align*}
T(r, F)+T(r, G) & \leq 3 \bar{N}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right) \\
& +N_{11}\left(r, \frac{1}{F-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right) \\
& +3 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+3 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& +S(r, F)+S(r, G) \tag{3.3}
\end{align*}
$$

Subcase 1.1. Let $l \geq 2$.
Obviously,

$$
\begin{align*}
& N_{11}\left(r, \frac{1}{F-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right)+3 \bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +3 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right)+S(r, F) \\
& \leq T(r, G)+S(r, F)+S(r, G) \tag{3.4}
\end{align*}
$$

Using (3.3) and (3.4), we get

$$
\begin{equation*}
T(r, F) \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+3 \bar{N}(r, F)+S(r, F) \tag{3.5}
\end{equation*}
$$

Using Lemmas 2.1, 2.7, and (1.1), (3.5), we get

$$
\begin{aligned}
(n+m) T(r, f) & \leq 3 \bar{N}(r, f)+N_{2}\left(r, \frac{1}{f_{1}^{p} P\left(f_{1}\right)}\right) \\
& +N_{2}\left(r, \frac{1}{H[f]}\right)+S(r, f) \\
& \leq 3 \bar{N}(r, f)+\mu_{2} N_{\mu_{2}^{*}}\left(r, \frac{1}{f-w_{p}}\right) \\
& +(n+m-p) T(r, f)+\bar{d}(H) N_{k+2}\left(r, \frac{1}{f}\right) \\
& +Q \bar{N}(r, f)+S(r, f) \\
& \leq(Q+3) \bar{N}(r, f)+\mu_{2} N_{\mu_{2}^{*}}\left(r, \frac{1}{f-w_{p}}\right) \\
& +(n+m-p) T(r, f)+\bar{d}(H) N_{k+2}\left(r, \frac{1}{f}\right) \\
& +S(r, f) .
\end{aligned}
$$

So, $(Q+3) \Theta(\infty, f)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\bar{d}(H) \delta_{k+2}(0, f)$

$$
\leq Q+3+\mu_{2}+\bar{d}(H)-p
$$

which violates (1.2).
Subcase 1.2. Let $l=1$.
It is easy to verify that

$$
\begin{align*}
N_{11}\left(r, \frac{1}{F-1}\right) & +2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +3 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right)+S(r, F) \\
& \leq T(r, G)+S(r, F)+S(r, G) \tag{3.6}\\
\bar{N}_{L}\left(r, \frac{1}{F-1}\right) & \leq \frac{1}{2} N\left(r, \frac{F}{F^{\prime}}\right) \\
& \leq \frac{1}{2} N\left(r, \frac{F^{\prime}}{F}\right)+S(r, F) \\
& \leq \frac{1}{2}\left(\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)\right)+S(r, F) . \tag{3.7}
\end{align*}
$$

Using (3.3), (3.6) and (3.7), we get

$$
\begin{align*}
T(r, F) & \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+\frac{7}{2} \bar{N}(r, F) \\
& +\frac{1}{2} \bar{N}\left(r, \frac{1}{F}\right)+S(r, F) \tag{3.8}
\end{align*}
$$

Using Lemmas 2.1, 2.7 and (1.1), (3.8), we get

$$
\begin{aligned}
& (n+m) T(r, f) \\
& \leq\left(Q+\frac{7}{2}\right) \bar{N}(r, f)+\mu_{2} N_{\mu_{2}^{*}}\left(r, \frac{1}{f-w_{p}}\right) \\
& +\bar{d}(H) \delta_{k+2}\left(r, \frac{1}{f}\right)+\frac{1}{2} \bar{N}\left(r, \frac{1}{f-w_{p}}\right) \\
& +\frac{3}{2}(n+m-p) T(r, f)+S(r, f)
\end{aligned}
$$

$$
\text { So, }\left(Q+\frac{7}{2}\right) \Theta(\infty, f)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)
$$

$$
+\bar{d}(H) \delta_{k+2}\left(r, \frac{1}{f}\right)+\frac{1}{2} \Theta\left(w_{p}, f\right)
$$

$$
\leq Q+4+\mu_{2}+\bar{d}(H)+\frac{m+n-3 p}{2}
$$

which violates (1.3).
Subcase 1.3. Let $l=0$.
It is easy to verify that

$$
\begin{align*}
N_{11}\left(r, \frac{1}{F-1}\right) & +2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right) \\
& +2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right)+S(r, F) \\
& \leq T(r, G)+S(r, F)+S(r, G) \tag{3.9}\\
\bar{N}_{L}\left(r, \frac{1}{F-1}\right) & \leq N\left(r, \frac{1}{F-1}\right)-\bar{N}\left(r, \frac{1}{F-1}\right) \\
& \leq N\left(r, \frac{F}{F^{\prime}}\right) \leq N\left(r, \frac{F^{\prime}}{F}\right)+S(r, F) \\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+S(r, F) \tag{3.10}
\end{align*}
$$

Using (3.3), (3.9) and (3.10), we get

$$
\begin{align*}
T(r, F) & \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+6 \bar{N}(r, F) \\
& +2 \bar{N}\left(r, \frac{1}{F}\right)+N_{1}\left(r, \frac{1}{G}\right)+S(r, F) \tag{3.11}
\end{align*}
$$

Using Lemmas 2.1, 2.7 and (1.1), (3.11), we get

$$
\begin{aligned}
(n+m) T(r, f) & \leq N_{2}\left(r, \frac{1}{f_{1}^{p} P\left(f_{1}\right)}\right)+N_{2}\left(r, \frac{1}{H[f]}\right) \\
& +6 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{f_{1}^{p} P\left(f_{1}\right)}\right) \\
& +N_{1}\left(r, \frac{1}{H[f]}\right)+S(r, f) .
\end{aligned}
$$

So,

$$
\begin{aligned}
& (2 Q+6) \Theta(\infty, f)+2 \Theta\left(w_{p}, f\right)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right) \\
& +\bar{d}(H) \delta_{k+2}(0, f)+\bar{d}(H) \delta_{k+1}(0, f) \\
& \leq 2 Q+8+\mu_{2}+2 \bar{d}(H)+2(m+n)-3 p
\end{aligned}
$$

which violates (1.4).
Case 2. Let $\psi \equiv 0$.
On Integration we get

$$
\frac{1}{G-1} \equiv \frac{A}{F-1}+B
$$

where $A(\neq 0), B$ are complex constants.
It is clear that F and G share $(1, \infty)$. Also by construction of F and G we see that F and G share $(\infty, 0)$ also.

So using Lemma 2.7, (1.1) and condition (1.2), we obtain

$$
\begin{aligned}
& N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+\bar{N}(r, G)+\bar{N}_{L}(r, F) \\
& +\bar{N}_{L}(r, G)+S(r) \\
& \leq(Q+3) \bar{N}(r, f)+\mu_{2} N_{\mu_{2}^{*}}\left(r, \frac{1}{f-w_{p}}\right)+(n+m-p) T(r, f) \\
& +\bar{d}(H) N_{k+2}\left(r, \frac{1}{f}\right)+S(r) \\
& \leq\left\{Q+3+\mu_{2}+n+m-p+\bar{d}(H)\right\} T(r, f) \\
& -\left\{(Q+3) \Theta(\infty, f)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\bar{d}(H) \delta_{k+2}(0, f)\right\} \\
& T(r, f)+S(r) \\
& <T(r, F)+S(r)
\end{aligned}
$$

Hence inequality (1) of Lemma 2.6, does not hold. Again in view of Lemma 2.8, we get $F G \not \equiv 1$. Therefore $F \equiv G$ i.e., $\mathscr{P}(f) \equiv H[f]$.

References

${ }^{[1]}$ Banerjee, Abhijit. Meromorphic functions sharing one value. Int. J. Math. Math. Sci. 2005, no. 22, 3587-3598.
${ }^{[2]}$ Banerjee, Abhijit; Majumder, Sujoy. On the uniqueness of a power of a meromorphic function sharing a small function with the power of its derivative. Comment. Math. Univ. Carolin. 51 (2010), no. 4, 565-576.
${ }^{\text {[3] }}$ Banerjee, Abhijit; Majumder, Sujoy. Some uniqueness results related to meromorphic function that share a small function with its derivative. Math. Rep. (Bucur.) 16(66) (2014), no. 1, 95-111.
${ }^{\text {[4] }}$ Banerjee, Abhijit; Chakraborty, Bikash. Further investigations on a question of Zhang and Lü. Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015), 105-119.
${ }^{[5]}$ Bhoosnurmath, Subhas S.; Kabbur, Smita R. On entire and meromorphic functions that share one small function with their differential polynomial. Int. J. Anal. 2013, Art. ID 926340, 8 pp .
${ }^{\text {[6] }}$ Bhoosnurmath, S. S.; Patil, Anupama J. On the growth and value distribution of meromorphic functions and their differential polynomials. J. Indian Math. Soc. (N.S.) 74 (2007), no. 3-4, 167-184 (2008).
${ }^{[7]}$ Kuldeep Singh Charak; Banarsi Lal. Uniqueness of f^{n} and $P[f]$, arXiv:1501.05092v1.[math.CV]21 Jan 2015.
${ }^{[8]}$ Harina P. Waghamore.; Rajeshwari S. Weighted value sharing and uniqueness of entire and meromorphic functions. Malaya Journal of Matematik. 5(3)(2017), 540-549.
${ }^{[9]}$ Hayman, W. K. Meromorphic functions. Oxford Mathematical Monographs Clarendon Press, Oxford 1964 xiv+191 pp.
${ }^{\text {[10] }}$ Huang, Hui; Huang, Bin. Uniqueness of meromorphic functions concerning differential monomials. Appl. Math. (Irvine) 2 (2011), no. 2, 230-235.
[11] Lahiri, Indrajit; Sarkar, Arindam. Uniqueness of a meromorphic function and its derivative. JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 1, Article 20, 9 pp. (electronic).
${ }^{[12]} \mathrm{Li}$, Nan; Yang, Lian-Zhong. Meromorphic function that shares one small function with its differential polynomial. Kyungpook Math. J. 50 (2010), no. 3, 447-454.
[13] Li, Jin-Dong; Huang, Guang-Xin. On meromorphic functions that share one small function with their derivatives. Palest. J. Math. 4 (2015), no. 1, 91-96.
${ }^{[14]}$ Mues, Erwin; Steinmetz, Norbert. Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen. (German) Manuscripta Math. 29 (1979), no. 2-4, 195-206.
${ }^{[15]}$ Yang, Chung-Chun; Yi, Hong-Xun. Uniqueness theory of meromorphic functions. Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003. viii+569 pp. ISBN: 1-4020-1448-1.
[16] Yi, Hong Xun. Uniqueness of meromorphic functions and a question of C. C. Yang. Complex Var. Theory and Appl. 14 (1990), no. 1-4, 169-176.
[17] Yi, Hong-Xun. Uniqueness theorems for meromorphic functions whose nth derivatives share the same 1-points. Complex Var. Theory and Appl. 34 (1997), no. 4, 421436.
[18] Zhang, Qing Cai. The uniqueness of meromorphic functions with their derivatives. Kodai Math. J. 21 (1998), no. 2, 179-184.
${ }^{[19]}$ Zhang, Tongdui; Lü, Weiran. Notes on a meromorphic function sharing one small function with its derivative. Complex Var. Elliptic Equ. 53 (2008), no. 9, 857-867.
${ }^{[20]}$ Q.C.Zhang. Meromorphic function that shares one small function with its derivative. J.Inequal.Pure.Appl.Math.,6(2015),1-13.

ISSN(P):2319-3786
Malaya Journal of Matematik
ISSN(O):2321-5666
