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Abstract
In this paper, we study the problem concerning meromorphic functions sharing a small function with weight l ≥ 0
and present one theorem which extends a results due to Zhang and Lü [19], S.S. Bhoosnurmath and Kabbur [5],
Banerjee and Majumder [3], K. S. Charak and Banarsi Lal [7].
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1. Introduction and main results

In this paper, a meromorphic function always mean a
function which is meromorphic in the whole complex plane C.
We adopt the standard notations of the Nevanlinna theory of
meromorphic functions as explained in [9]. Let f (z) and g(z)
be nonconstant meromorphic functions, a ∈ C∪{∞}. We say
that f and g share the value a CM if f −a and g−a have the
same zeros with the same multiplicities.

We denote by Nk)

(
r, 1

f−a

)
the counting function for ze-

ros of f − a with multiplicity ≤ k, and by Nk)

(
r, 1

f−a

)
the

corresponding one for which multiplicity is not counted. Let
N(k

(
r, 1

f−a

)
be the counting function for zeros of f −a with

multiplicity at least k and N(k

(
r, 1

f−a

)
the corresponding one

for which multiplicity is not counted. Set

Nk

(
r,

1
f −a

)
= N

(
r,

1
f −a

)
+N(2

(
r,

1
f −a

)
+ ...

+N(k

(
r,

1
f −a

)
.

For two positive integers n, p we define µp = min{n, p}
and µ∗p = p+1−µp.
Then it is clear that

Np

(
r,

1
f n

)
≤ µpNµ∗p

(
r,

1
f

)
. (1.1)

For notational purposes, let f and g share 1 IM. Let z0
be a 1-point of f of order p, a 1-point of g of order q. We

denote by N11

(
r,

1
f −1

)
the counting function of those 1-

points of f and g where p = q = 1. By N(2
E

(
r,

1
f −1

)
we

denote the counting function of those 1-points of f and g

where p = q≥ 2. Also, NL

(
r,

1
f −1

)
denotes the counting

function of those 1-points of both f and g where p > q.

Let k be a non-negative integer or infinity. For a∈C∪{∞}
we denote by Ek(a; f ) the set of all a-points of f , where an
a-point of multiplicity m is counted m times if m≤ k and k+1
times if m > k. If Ek(a; f ) = Ek(a;g), we say that f ,g share
the value a with weight k.
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The definition implies that if f ,g share a value a with
weight k then z0 is an a-point of f with multiplicity m(≤ k) if
and only if it is an a-point of g with multiplicity m(≤ k) and
z0 is an a-point of f with multiplicity m(> k) if and only if
it is an a-point of g with multiplicity n(> k), where m is not
necessarily equal to n.

We write ” f ,g share (a,k) ” to mean that ” f ,g share the
value a with weight k”. Clearly if f ,g share (a,k) then f ,g
share (a, p) for any integer p, 0 ≤ p < k. Also we note that
f ,g share a value a IM or CM if and only if f ,g share (a,0)
or (a,∞) respectively.
For any constant a, we define

Θ(a, f ) = 1− limsup
r→∞

N(r, 1
f−a )

T (r, f )
,

δk(a, f ) = 1− limsup
r→∞

Nk(r, 1
f−a )

T (r, f )
.

Clearly,

0≤ δ (a, f )≤ δk(a, f )≤ δk−1(a, f )...≤ δ1(a, f ) = Θ(a, f ).

Definition. Let n0 j,n1 j, ...,nk j be nonnegative integers.

The expression M j[ f ] = ( f )n0 j( f (1))n1 j ...( f (k))nk j is called
a differential monomial generated by f of degree dM j =

d(M j) = ∑
k
i=0 ni j and weight ΓM j = ∑

k
i=0(i+1)ni j.

The sum H[ f ] =∑
t
j=1 b jM j[ f ] is called a differential poly-

nomial generated by f of degree

d(H) = max
{

d(M j) : 1≤ j ≤ t
}

and weight

ΓH = max
{

ΓM j : 1≤ j ≤ t
}
,

where T (r,b j) = S(r, f ) for j = 1,2, .., t.
The numbers d(H) = min

{
d(M j) : 1≤ j ≤ t

}
and k (the

highest erder of the derivative of f in H[ f ]) are called respec-
tively the lower degree and order of H[ f ].

H[ f ] is said to be homogeneous if d(H) = d(H)

H[ f ] is called a linear differential polynomial generated
by f if d(H) = 1. Otherwise H[ f ] is called a non-linear dif-
ferential polynomial.

We denote by Q = max
{

ΓM j −d(M j) : 1≤ j ≤ t
}
=

max
{

n1 j +2n2 j + ...+ knk j : 1≤ j ≤ t
}
.

In 2008, Zhang and Lü ([19]) obtained the following re-
sult.
Theorem A. Let k,n be the positive integers, f be a non-
constant meromorphic function, and a(6≡ 0,∞) be a meromor-
phic function satisfying T (r,a) = o(T (r, f )) as r→ ∞. If f n

and f (k) share a IM and

(2k+6)Θ(∞, f )+4Θ(0, f )+2δ2+k(0, f )> 2k+12−n,

or f n and f (k) share a CM and

(k+3)Θ(∞, f )+2Θ(0, f )+δ2+k(0, f )> k+6−n,

then f n = f (k).

In the same paper, T. Zhang and W. Lü asked the following
question:

Question 1. What will happen if f n and ( f (k))m share a
meromorphic function a(6≡ 0,∞) satisfying T (r,a)= o(T (r, f ))
as r→ ∞?

S.S.Bhoosnurmath and Kabbur ([5]) proved:
Theorem B. Let f be a non-constant meromorphic function
and a(6≡ 0,∞) be a meromorphic function satisfying T (r,a) =
o(T (r, f )) as r→ ∞. Let P[ f ] be a non-constant differential
polynomial in f . If f and P[ f ] share a IM and

(2Q+6)Θ(∞, f )+(2+3d(P))δ (0, f )> 2Q+2d(P)+d(P)

+7,

or if f and P[ f ] share a CM and

3Θ(∞, f )+(d(P)+1)δ (0, f )> 4,

then f ≡ P[ f ].

Banerjee and Majumder ([3]) considered the weighted
sharing of f n and ( f m)(k) and proved the following result:
Theorem C. Let f be a non-constant meromorphic function,
k,n,m ∈ N and l be a non negative integer. Suppose a(6≡ 0,∞)
be a meromorphic function satisfying T (r,a) = o(T (r, f )) as
r→ ∞ such that f n and ( f m)(k) share (a, l). If l ≥ 2 and

(k+3)Θ(∞, f )+(k+4)Θ(0, f )> 2k+7−n,

or l = 1 and

(k+
7
2
)Θ(∞, f )+(k+

9
2
)Θ(0, f )> 2k+8−n,

or l = 0 and

(2k+6)Θ(∞, f )+(2k+7)Θ(0, f )> 4k+13−n,

then f ≡ ( f m)(k).

In 2015, Kuldeep S. Charak and Banarasi Lal ([7]) proved
the following result:
Theorem D. Let f be a non-constant meromorphic function, n
be a positive integer and a(6≡ 0,∞) be a meromorphic function
satisfying T (r,a) = o(T (r, f )) as r→ ∞. Let P[ f ] be a non-
constant differential polynomial in f . Suppose f n and P[ f ]
share (a, l) such that any one of the following holds:
(i) when l ≥ 2 and

(Q+3)Θ(∞, f )+2Θ(0, f )+d(P)δ (0, f )> Q+5

+2d(P)−d(P)−n,

15
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(ii) when l = 1 and

(Q+
7
2
)Θ(∞, f )+

5
2

Θ(0, f )+d(P)δ (0, f )> Q+6

+2d(P)−d(P)−n,

(iii) when l = 0 and

(2Q+6)Θ(∞, f )+4Θ(0, f )+2d(P)δ (0, f )> 2Q

+10+4d(P)−2d(P)−n.

Then f n ≡ P[ f ].
Through the paper we shall assume the following notations.
Let

P(ω) = am+nω
m+n + ...+anω

n + ...+a0

= an+m

s

∏
i=1

(ω−ωpi)
pi

where a j( j = 0,1,2, ...,n + m− 1),an+m 6= 0 and ωpi(i =
1,2, ...,s) are distinct finite complex numbers and 2≤ s≤ n+
m and p1, p2, ..., ps,s≥ 2,n,m and k are all positive integers
with ∑

s
i=1 pi = n+m. Also let p > maxp6=pi,i=1,...,r{pi},r =

s−1, where s and r are two positive integers.
Let

P(ω1) = an+m

s−1

∏
i=1

(ω1 +ωp−ωpi)
pi

= bqω
q
1 +bq−1ω

q−1
1 + ...+b0,

where an+m = bq,ω1 = ω −ωp,q = n+m− p. Therefore,
P(ω) = ω

p
1 P(ω1).

Next we assume

P(ω1) = bq

r

∏
i=1

(ω1−αi)
pi ,

where αi =ωpi−ωp,(i= 1,2, ...,r), be distinct zeros of P(ω1).

In this paper, we extend the above mentioned theorems(A−D)
by investigating the uniqueness of meromorphic functions of
the form f p

1 P( f1)−a and H[ f ]−a and obtain the following
result.
Theorem 1. Let k(≥ 1), n(≥ 1), p(≥ 1) and m(≥ 0) be inte-
gers and f and f1 = f −ωp be two nonconstant meromorphic
functions and H[ f ] be a nonconstant differential polynomial
generated by f . Let P(z) = am+nzm+n + ...+anzn + ...+a0,
am+n 6= 0, be a polynomial in z of degree m+n such that
P( f ) = f p

1 P( f1). Also let a(z)(6≡ 0,∞) be a small function
with respect to f . Suppose P( f )−a and H[ f ]−a share (0, l).
If l ≥ 2 and

(Q+3)Θ(∞, f )+µ2δµ∗2
(wp, f )+d(H)δk+2(0, f )>

Q+3+µ2 +d(H)− p, (1.2)

or l = 1 and(
Q+

7
2

)
Θ(∞, f )+µ2δµ∗2

(wp, f )+d(H)δk+2

(
r,

1
f

)
+

1
2

Θ(wp, f )> Q+4+µ2 +d(H)+
m+n−3p

2
,

(1.3)

or l = 0 and

(2Q+6)Θ(∞, f )+2Θ(wp, f )+µ2δµ∗2
(wp, f )+

d(H)δk+2 (0, f )+d(H)δk+1 (0, f )

> 2Q+8+µ2 +2d(H)+2(m+n)−3p, (1.4)

then P( f )≡ H[ f ].

Following example shows that the conditions in (1.2) -
(1.4) in Theorem 1 can not be removed .

Example 1. Let f (z) = cos(αz)+a− a
α8d ,d ∈ N; where

α 6= 0,α8d 6= 1 and a ∈ C−{0}. Let P( f ) = f and H[ f ] =
f (iv) share (1, l)(l ≥ 0) but none of the inequalities (1.2),
(1.3) and (1.4) of Theorem 1 is satisfied, and P( f ) 6≡ H[ f ].
Remark 1. Theorem 1 extends Theorem A−D.

2. Lemmas
Let F and G be two non-constant meromorphic functions
defined in C. We denote by ψ the function as follows:

ψ =

(
F ′′

F ′
− 2F ′

F−1

)
−
(

G′′

G′
− 2G′

G−1

)
. (2.1)

Lemma 2.1. [11] Let f be a nonconstant meromorphic func-
tion, and p,k be positive integers. Then

Np

(
r,

1
f (k)

)
≤ Np+k

(
r,

1
f

)
+ kN(r, f )+S(r, f ).

Lemma 2.2. [4] For any two nonconstant meromorphic func-
tions f1 and f2,

Np(r, f1 f2)≤ Np(r, f1)+Np(r, f2).

Lemma 2.3. [5] Let f be a nonconstant meromorphic func-
tion and H[ f ] be a differential polynomial of f . Then

m
(

r,
H[ f ]

f d(H)

)
≤ (d(H)−d(H))m

(
r,

1
f

)
+S(r, f ),

(2.2)

N
(

r,
H[ f ]

f d(H)

)
≤ (d(H)−d(H))N

(
r,

1
f

)
+Q

[
N(r, f )+N(r,

1
f
)

]
+S(r, f ), (2.3)

16
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N
(

r,
1

H[ f ]

)
≤ QN(r, f )+(d(H)−d(H))m

(
r,

1
f

)
+N

(
r,

1

f d(H)

)
+S(r, f ), (2.4)

where Q = max1≤i≤m {ni0 +ni1 +2ni2 + ...+ knik} .
Lemma 2.4. [13] Let ψ be defined as in (2.1). If F and G
share 1 IM and ψ 6≡ 0, then

N11

(
r,

1
F−1

)
≤ N(r,H)+S(r,F)+S(r,G).

Lemma 2.5. [2] Let F and G share (1, l) and N(r,F) =
N(r,G) and ψ 6≡ 0, then

N(r,ψ)≤ N(r,F)+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+NL

(
r,

1
F−1

)
+NL

(
r,

1
G−1

)
+S(r, f ).

Lemma 2.6. [4] Let f be a non-constant meromorphic func-

tion and a(z) be a small function of f . Let F = P( f )
a =

f p
1 P( f1)

a

and G = H[ f ]
a such that F and G shares (1,∞). Then one of

the following cases hold:

1.T (r)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)

+NL(r,F)+NL(r,G)+S(r),

2.F ≡ G

3.FG≡ 1

where T (r) = max{T (r,F),T (r,G)} and S(r) = o(T (r)), r ∈
I, I is a set of infinite linear measure of r ∈ {0,∞}.
Lemma 2.7. For the differential polynomial H[ f ],

Np

(
r,

1
H[ f ]

)
≤ d(H)Np+k

(
r,

1
f

)
+QN(r, f )+S(r, f ).

Proof. Clearly for any non-constant meromorphic function
f , Np(r, f )≤ Nq(r, f ) if p≤ q and b1 = b2 = ...= bt = 1.
Now by using the above fact and Lemma 2.1, Lemma 2.2, we
get

Np

(
r,

1
H[ f ]

)
≤

t

∑
j=1

Np

(
r,

1
M j[ f ]

)
+S(r, f )

= Np

(
r,

1
M1[ f ]

)
+Np

(
r,

1
M2[ f ]

)
+ ...

+Np

(
r,

1
Mt [ f ]

)
+S(r, f )

= Np

(
r,

1
( f )n01( f (1))n11 ...( f (k))nk1

)
+Np

(
r,

1
( f )n02( f (1))n12 ...( f (k))nk2

)
+ ...

+Np

(
r,

1
( f )n0t ( f (1))n1t ...( f (k))nkt

)
+S(r, f )

= Np

(
r,

1

∏
k
i=0( f (i))ni1

)
+Np

(
r,

1

∏
k
i=0( f (i))ni2

)
+ ...+Np

(
r,

1

∏
k
i=0( f (i))nit

)
+S(r, f )

=
k

∑
i=0

ni1Np

(
r,

1
f (i)

)
+

k

∑
i=0

ni2Np

(
r,

1
f (i)

)
+ ...+

k

∑
i=0

nitNp

(
r,

1
f (i)

)
+S(r, f )

=
k

∑
i=0

[
(ni1 +ni2 +ni3 + ...+nit)Np

(
r,

1
f (i)

)]
+S(r, f )

≤
k

∑
i=0

[
(ni1 +ni2 +ni3 + ...+nit)

{
Np+i

(
r,

1
f

)
+ iN(r, f )

}]
+S(r, f )

≤ max1≤ j≤t

{
k

∑
i=0

ni jNp+k

(
r,

1
f

)}

+max1≤ j≤t

{
k

∑
i=0

(ni1 +ni2 +ni3 + ...+nit) iN(r, f )

}
+S(r, f )

≤ d(H)Np+k

(
r,

1
f

)
+QN(r, f )+S(r, f ).

Hence the proof.

Lemma 2.8. Let f be a non-constant meromorphic function
and a(z) be a small function of f . Let us define F = P( f )

a =
f p
1 P( f1)

a and G = H[ f ]
a . Then FG 6≡ 1.

Proof. On contrary suppose FG≡ 1, i.e.,

f p
1 P( f1)H[ f ] = a2.

From above it is clear that the function f can’t have any

zero and poles. Therefore N
(

r,
1
f

)
= S(r, f ) = N(r, f ). So

by the First Fundamental Theorem and Lemma 2.3, we have

(m+n+d(H))T (r, f ) = T

(
r,

a2

f p
1 P( f1) f d(H)

)
+S(r, f )

≤ T
(

r,
H[ f ]

f d(H)

)
+S(r, f )

≤ m
(

r,
H[ f ]

f d(H)

)
+N

(
r,

H[ f ]

f d(H)

)
+S(r, f )

≤ (d(H)−d(H))T (r, f )

+Q
[

N(r, f )+N(r,
1
f
)

]
+S(r, f )

≤ (d(H)−d(H))T (r, f )+S(r, f ).

Thus

(m+n+d(H)))T (r, f )≤ S(r, f ),

17
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which is a contradiction.

3. Proof of the Theorem
Proof of Theorem 1.

Let F =
P( f )

a
=

f p
1 P( f1)

a
and G =

H[ f ]
a

.

Since P( f )− a and H[ f ]− a share (0, l), F , G share (1, l)
except the zeros and poles of a(z). Also note that N(r,F) =
N(r, f ) + S(r, f ) and N(r,G) = N(r, f ) + S(r, f ). Let ψ be
defined as in (2.1).
We consider the following cases.

Case 1. Suppose ψ 6≡ 0. By the second fundamental theorem
of Nevanlinna, we have

T (r,F)+T (r,G)

≤ N(r,F)+N(r,G)+N
(

r,
1
F

)
+N

(
r,

1
G

)
+N

(
r,

1
F−1

)
+N

(
r,

1
G−1

)
−N0

(
r,

1
F ′

)
−N0

(
r,

1
G′

)
+S(r,F)+S(r,G), (3.1)

where N0

(
r,

1
F ′

)
denotes the reduced counting function of

the zeros of F ′ which are not the zeros of F(F−1).
Since F and G share 1 IM, it is easy to verify that

N
(

r,
1

F−1

)
= N11

(
r,

1
F−1

)
+NL

(
r,

1
F−1

)
+NL

(
r,

1
G−1

)
+N(2

E

(
r,

1
G−1

)
= N

(
r,

1
G−1

)
. (3.2)

Using Lemmas 2.4, 2.5, and (3.1), (3.2), we get

T (r,F)+T (r,G)≤ 3N(r,F)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N11

(
r,

1
F−1

)
+2N(2

E

(
r,

1
G−1

)
+3NL

(
r,

1
F−1

)
+3NL

(
r,

1
G−1

)
+S(r,F)+S(r,G). (3.3)

Subcase 1.1. Let l ≥ 2.
Obviously,

N11

(
r,

1
F−1

)
+2N(2

E

(
r,

1
G−1

)
+3NL

(
r,

1
F−1

)
+3NL

(
r,

1
G−1

)
≤ N

(
r,

1
G−1

)
+S(r,F)

≤ T (r,G)+S(r,F)+S(r,G). (3.4)

Using (3.3) and (3.4), we get

T (r,F)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+3N(r,F)+S(r,F). .

(3.5)

Using Lemmas 2.1, 2.7, and (1.1), (3.5), we get

(n+m)T (r, f )≤ 3N(r, f )+N2

(
r,

1
f p
1 P( f1)

)
+N2

(
r,

1
H[ f ]

)
+S(r, f )

≤ 3N(r, f )+µ2Nµ∗2

(
r,

1
f −wp

)
+(n+m− p)T (r, f )+d(H)Nk+2

(
r,

1
f

)
+QN(r, f )+S(r, f )

≤ (Q+3)N(r, f )+µ2Nµ∗2

(
r,

1
f −wp

)
+(n+m− p)T (r, f )+d(H)Nk+2

(
r,

1
f

)
+S(r, f ).

So, (Q+3)Θ(∞, f )+µ2δµ∗2
(wp, f )+d(H)δk+2(0, f )

≤ Q+3+µ2 +d(H)− p,

which violates (1.2).
Subcase 1.2. Let l = 1.
It is easy to verify that

N11

(
r,

1
F−1

)
+2N(2

E

(
r,

1
G−1

)
+2NL

(
r,

1
F−1

)
+3NL

(
r,

1
G−1

)
≤ N

(
r,

1
G−1

)
+S(r,F)

≤ T (r,G)+S(r,F)+S(r,G). (3.6)

NL

(
r,

1
F−1

)
≤ 1

2
N
(

r,
F
F ′

)
≤ 1

2
N
(

r,
F ′

F

)
+S(r,F)

≤ 1
2

(
N
(

r,
1
F

)
+N(r,F)

)
+S(r,F).

(3.7)

Using (3.3), (3.6) and (3.7), we get

T (r,F)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+

7
2

N(r,F)

+
1
2

N
(

r,
1
F

)
+S(r,F). (3.8)
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Using Lemmas 2.1, 2.7 and (1.1), (3.8), we get

(n+m)T (r, f )

≤
(

Q+
7
2

)
N(r, f )+µ2Nµ∗2

(
r,

1
f −wp

)
+d(H)δk+2

(
r,

1
f

)
+

1
2

N
(

r,
1

f −wp

)
+

3
2
(n+m− p)T (r, f )+S(r, f ).

So,
(

Q+
7
2

)
Θ(∞, f )+µ2δµ∗2

(wp, f )

+d(H)δk+2

(
r,

1
f

)
+

1
2

Θ(wp, f )

≤ Q+4+µ2 +d(H)+
m+n−3p

2
,

which violates (1.3).

Subcase 1.3. Let l = 0.
It is easy to verify that

N11

(
r,

1
F−1

)
+2N(2

E

(
r,

1
G−1

)
+NL

(
r,

1
F−1

)
+2NL

(
r,

1
G−1

)
≤ N

(
r,

1
G−1

)
+S(r,F)

≤ T (r,G)+S(r,F)+S(r,G). (3.9)

NL

(
r,

1
F−1

)
≤ N

(
r,

1
F−1

)
−N

(
r,

1
F−1

)
≤ N

(
r,

F
F ′

)
≤ N

(
r,

F ′

F

)
+S(r,F)

≤ N
(

r,
1
F

)
+N(r,F)+S(r,F).

(3.10)

Using (3.3), (3.9) and (3.10), we get

T (r,F)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+6N(r,F)

+2N
(

r,
1
F

)
+N1

(
r,

1
G

)
+S(r,F). (3.11)

Using Lemmas 2.1, 2.7 and (1.1), (3.11), we get

(n+m)T (r, f )≤ N2

(
r,

1
f p
1 P( f1)

)
+N2

(
r,

1
H[ f ]

)
+6N(r, f )+2N

(
r,

1
f p
1 P( f1)

)
+N1

(
r,

1
H[ f ]

)
+S(r, f ).

So,

(2Q+6)Θ(∞, f )+2Θ(wp, f )+µ2δµ∗2
(wp, f )

+d(H)δk+2 (0, f )+d(H)δk+1 (0, f )

≤ 2Q+8+µ2 +2d(H)+2(m+n)−3p,

which violates (1.4).

Case 2. Let ψ ≡ 0.
On Integration we get

1
G−1

≡ A
F−1

+B,

where A(6= 0),B are complex constants.
It is clear that F and G share (1,∞). Also by construction of
F and G we see that F and G share (∞,0) also.

So using Lemma 2.7, (1.1) and condition (1.2), we obtain

N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)+NL(r,F)

+NL(r,G)+S(r)

≤ (Q+3)N(r, f )+µ2Nµ∗2

(
r,

1
f −wp

)
+(n+m− p)T (r, f )

+d(H)Nk+2

(
r,

1
f

)
+S(r)

≤
{

Q+3+µ2 +n+m− p+d(H)
}

T (r, f )

−
{
(Q+3)Θ(∞, f )+µ2δµ∗2

(wp, f )+d(H)δk+2(0, f )
}

T (r, f )+S(r)

< T (r,F)+S(r).

Hence inequality (1) of Lemma 2.6, does not hold. Again in
view of Lemma 2.8, we get FG 6≡ 1. Therefore F ≡ G i.e.,
P( f )≡ H[ f ].
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