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Abstract

In this paper some new sufficient conditions for the oscillatory behavior of second order nonlinear neutral
type difference equation of the form

∆
(
an∆(xn + pnxn−k)

)
+ qnf(xσ(n+1)) = 0

where {an}, {pn} and {qn} are real sequences, {σ(n)} is a sequence of integers, k is a positive integer and
f : R → R is continuous with uf(u) > 0 for u 6= 0 are established. Examples are provided to illustrate the
main results.
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1 Introduction

In this paper we study the oscillatory behavior of second order neutral type difference equation of the form

∆
(
an∆(xn + pnxn−k)

)
+ qnf(xσ(n+1)) = 0, n ∈ N(n0) (1.1)

where k is a positive integer, {an}, {pn}, {qn} are real sequences defined on N(n0) and σ(n + 1) is a sequence
of integers. We assume the following conditions without further mention:

(H1) {an} is a positive real sequence with
∞∑

n=n0

1
an

<∞;

(H2) {pn} is a real sequence with pn ≥ 1 for all n ∈ N(n0);
(H3) {qn} is a positive real sequence for all n ∈ N(n0);
(H4) {σ(n)} is an increasing sequence of integers such that σ(n) ≤ n and σ(n)→∞ as n →∞;
(H5) f : R → R is a continuous function and there exists a constant L > 0 such that f(u)

uα ≥ L for all u 6= 0,
where α is a ratio of odd positive integers.

Let θ = max
{

k, minn∈N(n0)σ(n)
}

. By a solution of equation (1.1), we mean a nontrivial real sequence {xn}
defined for all n ≥ n0 − θ, and satisfying the equation (1.1) for all n ∈ N(n0). A solution of equation (1.1) is
said to be oscillatory if it is neither eventually positive nor eventually negative, and nonoscillatory otherwise.

In recent years, there has been much research concerning the oscillation of delay and neutral type difference
equations. In most of the papers, the authors considered the case

∑∞
n=n0

1
an

=∞ and either −1 < p ≤ pn ≤ 0
or 0 ≤ pn ≤ p < 1, see for example [3-6, 9, 10, 13-16]. In [7, 8, 11, 12] the authors considered equation
(1.1) under the assumptions

∑∞
n=n0

1
an

< ∞ and 0 ≤ pn ≤ p < 1 and established sufficient conditions for the
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oscillation of all solutions of equation (1.1).
Motivated by this observation in this paper we present some sufficient conditions for the oscillation of all

solutions of equation (1.1) under the conditions
∑∞

n=n0

1
an

<∞ and pn ≥ 1 for all n ∈ N(n0). In Section 2, we
present some preliminary lemmas, and in Section 3 we obtain some sufficient conditions for the oscillation of
all solutions of equation (1.1). In Section 4, we provide some examples to illustrate the main results.

2 Some preliminary lemmas

Throughout this paper we use the following notation without further mention:

zn = xn + pnxn−k ,

A(n) = aσ(n)

n∑
s=n0

1
aσ(s)

, R(n) =
n−1∑
s=n0

1
as

,

B(n) =
1

pn+k

(
1− R(n + 2k)

R(n + k)pn+2k

)
> 0 ,

C(n) =
1

pn+k

(
1− 1

pn+2k

)
, and E(n) =

∞∑
s=τ(n)

1
as

,

where {τ(n)} is defined later. Note that from the assumptions it is enough to state and prove the lemmas and
theorems for the case {xn} is eventually positive since the opposite case is proved similarly. To prove our main
results we need the following lemmas.

Lemma 2.1. Let {xn} be an eventually positive solution of equation (1.1). Then one of the following two cases
holds for all sufficiently large n:

(I) zn > 0, an∆zn > 0, ∆(an∆zn) ≤ 0;

(II) zn > 0, an∆zn < 0, ∆(an∆zn) ≤ 0.

Proof. The proof of the lemma can be found in [11].

Lemma 2.2. Let {xn} be an eventually positive solution of equation (1.1) and suppose case (I) of Lemma 2.1
holds. Then there exists N ∈ N(n0) such that

xn ≥ B(n)zn, for all n ≥ N. (2.1)

Proof. From the definition of zn, we have
zn+k

pn+k
=

xn+k

pn+k
+ xn

or
xn =

1
pn+k

(zn+k − xn+k). (2.2)

On the other hand

zn = zn0 +
n−1∑
s=n0

as∆zs

as
≥ anR(n)∆zn

or
R(n)∆zn − zn∆R(n) ≤ 0.

or
R(n)∆zn − zn∆R(n)

R(n)R(n + 1)
≤ 0.

or
∆

( zn

R(n)

)
≤ 0.

Thus zn is increasing and zn

R(n) is nonincreasing. Further

xn+k ≤
1

pn+2k
R(n + 2k)

zn+2k

R(n + 2k)
≤ R(n + 2k)

pn+2k

( zn+k

R(n + k)

)
. (2.3)

From (2.2) and (2.3) we obtain (2.1). This completes the proof.
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Lemma 2.3. Let {xn} be an eventually positive solution of equation (1.1) and suppose case (II) of Lemma 2.1
holds. Then there exists N ∈ N(n0) such that

xn ≥ C(n)zn+k, for all n ≥ N. (2.4)

Proof. From the proof of Lemma 2.2, we have (2.2). From ∆zn < 0 we have

xn+k ≤
zn+2k

pn+2k
≤ zn+k

pn+2k
. (2.5)

Using (2.5) in (2.2), we obtain (2.4). This completes the proof.

Lemma 2.4. Let {xn} be an eventually positive solution of equation (1.1) and suppose case (I) of Lemma 2.1
holds. Then there exists N ∈ N(n0) such that

zσ(n+1) ≥ A(n)∆zσ(n), forall n ≥ N. (2.6)

Proof. Since ∆(an∆zn) ≤ 0 and ∆σ(n) > 0, we see that

zσ(n+1) = zσ(N) +
n∑

s=N

∆zσ(s) ≥ aσ(n)∆zσ(n)

n∑
s=N

1
aσ(s)

.

The proof is now complete.

3 Oscillation results

In this section we obtain some new sufficient conditions for the oscillation of all solutions of equation (1.1).

Theorem 3.1. Assume that α ≥ 1, and there exists a sequence of integers {τ(n)} such that τ(n) ≥ n,
∆τ(n) > 0 and σ(n) ≤ τ(n) − k. If there exists a positive increasing real sequence {ρn} such that for all
constants M > 0 and D > 0 one has

∞∑
n=N

[
LρnqnBα(σ(n + 1))− 1

4αMα−1

(∆ρn)2aσ(n)

ρn

]
=∞ (3.1)

and
∞∑

n=N

[
LqnEα(n + 1)Cα(σ(n + 1))− α

Dα−1E(n)aτ(n)

]
=∞ (3.2)

then every solution of equation (1.1) is oscillatory.

Proof. Assume to the contrary that there exists a nonoscillatory solution {xn} of equation (1.1). Without loss
of generality we may assume that xn−θ > 0 for all n ≥ N ∈ N(n0), where N is chosen so that one of the cases
of Lemma 2.1 hold for all n ≥ N . We shall show that in each case we are led to a contradiction.
Case(I). From Lemma 2.2 and equation (1.1), we have

∆(an∆zn) + LqnBα(σ(n + 1))zα
σ(n+1) ≤ 0, n ≥ N. (3.3)

Define
wn = ρn

an∆zn

zα
σ(n)

, n ≥ N ,

we have

∆wn =
ρn∆(an∆zn)

zα
σ(n+1)

+ ∆ρnan+1∆zn+1
zα

σ(n+1)

− ρn
an∆zn

zα
σ(n+1)z

α
σ(n)

∆zα
σ(n) − LρnqnBα(σ(n + 1)) +

∆ρn

ρn+1
wn+1

− ρn

ρn+1
wn+1

∆zα
σ(n)

zα
σ(n)

(3.4)

for n ≥ N . By Mean value theorem
∆zα

σ(n) = αtα−1∆zσ(n),
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where zσ(n) < t < zσ(n+1). Since α ≥ 1, we have

∆zα
σ(n) ≥ αzα−1

σ(n)∆zσ(n). (3.5)

Using (3.5) in (3.3) we obtain for n ≥ N

∆wn ≤ −LρnqnBα(σ(n + 1)) +
∆ρn

ρn+1
wn+1 −

αρn

ρn+1
wn+1

zα−1
σ(n)∆zσ(n)

zα
σ(n)

. (3.6)

Since zn increasing and an∆zn is nonincreasing we have from (3.6)

∆wn ≤ −LρnqnBα(σ(n + 1)) +
∆ρn

ρn+1
wn+1 −

αρn

ρ2
n+1

Mα−1

aσ(n)
w2

n+1 (3.7)

where M = zσ(N). Summing the last inequality from N to n− 1 and using completing the square we have

0 < wn ≤ wN −
n−1∑
s=N

[
LρsqsB

α(σ(s + 1))− 1
4αMα−1

(∆ρs)2aσ(s)

ρs

]
.

Letting n →∞ in the last inequality, we obtain a contradiction to (3.1).
Case(II). Define

vn =
an∆zn

zα
σ(n)

, n ≥ N. (3.8)

Then vn < 0 for n ≥ N . Since {an∆zn} is nonincreasing, we have

∆zs ≤
an∆zn

as
, s ≥ n.

Summing the last inequality from τ(n) to ∞, we obtain

z∞ ≤ zτ(n) + an∆zn

∞∑
s=τ(n)

1
as

.

Since zn > 0 for all sufficiently large n we have

0 ≤ z∞ ≤ zτ(n) + an∆znE(n) , n ≥ N,

or
an∆znE(n)

zτ(n)
≥ −1 , n ≥ N.

Thus

− an∆zn(−an∆zn)α−1

zα
τ(n)

Eα(n) ≤ 1.

So, by ∆(−an∆zn) > 0 and (3.8), we have

− 1
Dα−1

≤ vnEα(n) ≤ 0 , n ≥ N, (3.9)

where D = −aN∆zN . From (3.8), we have

∆vn =
∆(an∆zn)

zα
τ(n+1)

− an∆zn

zα
τ(n)z

α
τ(n+1)

∆zα
τ(n).

By Mean Value Theorem,
∆zα

τ(n) = αtα−1∆zτ(n)

where zτ(n+1) < t < zτ(n). Since α ≥ 1 and ∆zτ(n) < 0, we have

∆zα
τ(n) ≤ αzα−1

τ(n+1)∆zτ(n).
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Therefore

∆vn ≤ −
Lqnxα

σ(n+1)

zα
τ(n+1)

− αan∆zn

zα
τ(n)zτ(n+1)

∆zτ(n). (3.10)

From (2.4) and by σ(n) ≤ τ(n)− k, we have

xα
σ(n+1)

zα
τ(n+1)

≥ Cα(σ(n + 1)). (3.11)

From (3.10) and (3.11), we obtain

∆vn + LqnCα(σ(n + 1)) ≤ 0, n ≥ N. (3.12)

Multiplying (3.12) by Eα(n + 1) and then summing it from N to n− 1, we have

n−1∑
s=N

Eα(s + 1)∆vs +
n−1∑
s=N

LEα(s + 1)qsC
α(σ(s + 1)) ≤ 0.

Summation by parts formula yields

n−1∑
s=N

Eα(s + 1)∆vs = Eα(n)vn − Eα(N)vN −
n−1∑
s=N

vs∆Eα(s).

Using Mean Value Theorem, we obtain

∆Eα(s) ≥ −αEα−1(s)
aτ(s)

.

Since vn < 0, we have

n−1∑
s=N

Eα(s + 1)∆vs ≥ Eα(n)vn − Eα(N)vN +
n−1∑
s=N

αvsE
α−1(s)

aτ(s)
,

or

Eα(n)vn − Eα(N)vN +
n−1∑
s=N

αvsE
α−1(s)

aτ(s)
+

n−1∑
s=N

LqsE
α(s + 1)Cα(σ(s + 1)) ≤ 0. (3.13)

Therefore, from (3.9) and (3.13), we obtain

− 1
Dα−1

≤ Eα(n)vn ≤ Eα(N)vN −
n−1∑
s=N

[
LqsE

α(s + 1)Cα(σ(s + 1))− α

Dα−1E(s)aτ(s)

]
.

Letting n →∞ in the last inequality, we obtain a contradiction to (3.2). This completes the proof.

Theorem 3.2. Assume that α ≥ 1 and there exists a sequence {τ(n)} of integers such that τ(n) ≥ n, ∆τ(n) > 0
and τ(n) ≤ σ(n) − k. If there exists a positive increasing real sequence {ρn} such that for every constants
M > 0,and D > 0, (3.1) holds, and

∞∑
n=N

[
qnEα+1(n + 1)Cα(σ(n + 1))− α + 1

Dα−1aτ(n)

]
=∞, (3.14)

then every solution of equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we see that Lemma 2.1 holds for n ≥ N ∈ N(n0).
Case(I). Proceeding as in the proof of Theorem 3.1(Case(I)) we obtain a contradiction to (3.1).
Case(II). Proceeding as in the proof of Theorem 3.1(Case(II)) we obtain (3.9) and (3.12). Multiplying (3.12)
by Eα+1(n + 1) and then summing it from N to n− 1 we have

n−1∑
s=N

Eα+1(s + 1)∆vs +
n−1∑
s=N

LqsE
α+1(s + 1)Cα(σ(s + 1)) ≤ 0.
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Using the summation by parts formula in the first term of the last inequality and then rearranging, we obtain

Eα+1(n)vn − Eα+1(N)vN +
n−1∑
s=N

(α + 1)vsE
α(s)

aτ(s)
+

n−1∑
s=N

LqsE
α+1(s + 1)Cα(σ(s + 1)) ≤ 0. (3.15)

In view of (3.9), we have −vnEα+1(n) ≤ 1
Dα−1 E(n) <∞ as n →∞, and

n−1∑
s=N

LqsE
α+1(s + 1)Cα(σ(s + 1)) ≤ Eα+1(N)vN − Eα+1(n)vn +

(α + 1)
Dα−1

n−1∑
s=N

1
aτ(s)

.

Letting n →∞ in the last inequality, we obtain a contradiction to (3.14). This completes the proof.

Theorem 3.3. Assume that α ≥ 1, and there exists a sequence {τ(n)} of integers such that τ(n) ≥ n, ∆τ(n) >

0 and σ(n) ≤ τ(n) − k. If there exists a positive increasing real sequence {ρn} such that for every constant
M > 0, (3.1) holds, and

∞∑
n=N

1
an

n−1∑
s=N

qsE
α(s + 1)Cα(σ(s + 1)) = ∞, (3.16)

then every solution of equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we see that Lemma 2.1 holds and Case(I) is eliminated by
the condition (3.1).
Case(II) Proceeding as in the proof of Theorem 3.1(Case(II)), we have

zτ(n) ≥ −an∆znE(n) ≥ −aN∆zNE(n) = dE(n)

where d = −aN∆zN . From equation (1.1), we have

∆(−an∆zn) ≥ Lqnxα
σ(n+1),

and
xσ(n+1)

zτ(n+1)
≥ C(σ(n + 1)).

Hence
∆(−an∆zn) ≥ dαLqnCα(σ(n + 1))Eα(n + 1).

Summing the last inequality from N to n− 1, we obtain

−an∆zn ≥ −aN∆zN + dαL
n−1∑
s=N

qsC
α(σ(s + 1))Eα(s + 1)

≥ Ldα
n−1∑
s=N

qsC
α(σ(s + 1))Eα(s + 1).

Again summing the last inequality from N to n− 1, we have

zN ≥ zN − zn ≥ Ldα
n−1∑
s=N

1
as

s−1∑
t=N

qtC
α(σ(t + 1))Eα(t + 1).

Letting n →∞ in the above inequality, we obtain

Ldα
∞∑

n=N

1
an

n−1∑
t=N

qtC
α(σ(t + 1))Eα(t + 1) ≤ zN

a contradiction to (3.16). This completes the proof.

Next, we obtain sufficient conditions for the oscillation of all solutions of equation (1.1) when 0 < α ≤ 1.
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Theorem 3.4. Assume that 0 < α ≤ 1, and there exist a real sequence {τ(n)} of integers such that τ(n) ≥
n, ∆τ(n) > 0 and σ(n) ≤ τ(n) − k. If there exists a positive nondecreasing sequence {ρn} such that for all
constants M1 > 0 and M2 > 0, one has

∞∑
n=N

[
LρnqnBα(σ(n + 1))−M1−α

1

∆ρnaα
σ(n)

Aα(n)

]
=∞ (3.17)

and
∞∑

n=N

[
LMα−1

2 qnE(n + 1)Cα(σ(n + 1))− 1
4aτ(n)E(n + 1)

]
=∞, (3.18)

then every solution of equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we see that Lemma 2.1 holds for all n ≥ N ∈ N(n0).
Case(I). Define

wn = ρn
an∆zn

zα
σ(n)

, n ≥ N.

Then wn > 0 and from equation (1.1) and from (2.1), we have

∆wn ≤ −LρnqnBα(σ(n + 1)) + ∆ρn

aσ(n)∆zσ(n)

zα
σ(n+1)

, n ≥ N.

Using (2.6) in the last inequality, we obtain

∆wn ≤ −LρnqnBα(σ(n + 1)) +
∆ρnaα

σ(n)

Aα(n)
(aσ(n)∆zσ(n))1−α, n ≥ N.

From the monotonicity of {an∆zn} and 0 < α ≤ 1, we have from the last inequality

∆wn ≤ −LρnqnBα(σ(n + 1)) +
∆ρnaα

σ(n)

Aα(n)
M1−α

1 , n ≥ N, (3.19)

where M1 = aσ(N)∆zσ(N). Summing the inequality (3.19) from N to n− 1, we obtain

0 < wn ≤ wN −
n−1∑
s=N

(
LρsqsB

α(σ(s + 1))−
M1−α

1 aα
σ(s)∆ρs

Aα(s)

)
. (3.20)

Letting n →∞ in (3.20), we obtain a contradiction to (3.17).
Case(II). Define

vn =
an∆zn

zτ(n)
, n ≥ N. (3.21)

Then vn < 0 for n ≥ N . Further, we have

as∆zs ≤ an∆zn, s ≥ n.

Dividing the last inequality by as and then summing it from τ(n) to `, we obtain

z`+1 − zτ(n) ≤ an∆zn

∑̀
s=τ(n)

1
as

.

Letting `→∞, we obtain
0 ≤ zτ(n) + an∆znE(n)

or
−1 ≤ vnE(n), n ≥ N. (3.22)

From (3.21) and equation (1.1), we have

∆vn ≤ −
Lqnxα

σ(n+1)

zτ(n+1)
−

an∆zn∆zτ(n)

zτ(n)zτ(n+1)
.
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Since τ(n) ≥ n and an∆zn is negative and decreasing, we have

aτ(n)∆zτ(n) ≤ an∆zn.

Therefore

∆vn ≤ −Lqn

xα
σ(n+1)

zτ(n+1)
− (an∆zn)2

aτ(n)zτ(n)zτ(n+1)
, n ≥ N.

Since zn is positive and decreasing, we have zτ(n+1) ≤ zτ(n) for n ≥ N . Combining the last two inequalities,
we obtain

∆vn ≤ −Lqn

xα
σ(n+1)

zτ(n+1)
− v2

n

aτ(n)
, n ≥ N. (3.23)

Now using (3.11) in (3.23), we have

∆vn ≤ −Lqn
Cα(σ(n + 1))

M1−α
2

− v2
n

aτ(n)

for some constant M2 = zτ(N+1) > 0. That is,

∆vn + LMα−1
2 qnCα(σ(n + 1)) +

v2
n

aτ(n)
≤ 0, n ≥ N. (3.24)

Multiplying (3.23) by E(n + 1), and then summing it from N to n− 1, we have

n−1∑
s=N

E(s + 1)∆vs +
n−1∑
s=N

LMα−1
2 qsE(s + 1)Cα(σ(s + 1)) +

n−1∑
s=N

E(s + 1)v2
s

aτ(s)
≤ 0. (3.25)

Using the summation by parts formula in the first term of (3.25) and then rearranging, we obtain

E(n)vn − E(N)vN +
n−1∑
s=N

LMα−1
2 qsE(s + 1)Cα(σ(s + 1)) +

n−1∑
s=N

( vs

aτ(s)
+

v2
sE(s + 1)

aτ(s)

)
≤ 0.

Using completing the square in the last term of the above inequality, we obtain

E(n)vn − E(N)vN +
n−1∑
s=N

LMα−1
2 qsE(s + 1)Cα(σ(s + 1))

+
n−1∑
s=N

E(s + 1)
aτ(s)

(
vs +

1
2E(s + 1)

)2

−
n−1∑
s=N

1
4aτ(s)E(s + 1)

≤ 0

or

E(n)vn ≤ E(N)vN −
n−1∑
s=N

(
LMα−1

2 qsE(s + 1)Cα(σ(s + 1))− 1
4aτ(s)E(s + 1)

)
.

Letting n → ∞ in the last inequality and using (3.22), we obtain a contradiction to (3.18). The proof is now
complete.

4 Examples

In this section, we present some examples to illustrate the main results.
Example 4.1. Consider the neutral difference equation

∆
(
2n+1∆(xn + 2xn−2)

)
+ 9× 2n+2xn−1 = 0, n ∈ N(0). (4.1)

Here an = 2n+1, pn = 2, k = 2, σ(n + 1) = n − 1, α = 1, qn = 36(2n) and τ(n) = n + 2. Then
R(n) = 2n−1

2n , E(n) = 1
2n+2 , C(n) = 1

4 and B(n) = 1
16

(
4 (2n+2)−7

2n+2−1

)
. By taking ρn = 1, we see that

all conditions of Theorem 3.1 are satisfied and hence every solution of equation (4.1) is oscillatory. In fact
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{xn} = {(−1)n} is one such oscillatory solution of equation (4.1) since it satisfies the given equation.

Example 4.2. Consider the neutral difference equation

∆
(
2n+1∆(xn + 2xn−3)

)
+ 1905× 25(n−3)x3

n−2 = 0, n ∈ N(0). (4.2)

Here an = 2n+1, pn = 2, k = 3, σ(n + 1) = n − 2, α = 3, qn =
(

1905
32768

)
25n, L = 1 and τ(n) = n + 2.

Then R(n) = 2n−1
2n , E(n) = 1

2n+2 , C(n) = 1
4 and B(n) = 1

32

(
16 − 2n+6−1

2n+1−1

)
. By taking ρn = 1, we see that

all conditions of Theorem 3.2 are satisfied and hence every solution of equation (4.2) is oscillatory. In fact
{xn} = { (−1)n

4n } is one such oscillatory solution of equation (4.2) since it satisfies the given equation.

Example 4.3. Consider the neutral difference equation

∆
(
(n + 1)(n + 2)∆(xn + 3xn−1)

)
+ 8(n + 2)2x1/3

n−2 = 0, n ∈ N(1). (4.3)

Here an = (n + 1)(n + 2), pn = 3, k = 1, σ(n + 1) = n − 2, α = 1
3 , qn = 8(n + 2)2 and τ(n) = n.

Then R(n) = n−1
2(n+1) , E(n) = 1

(n+1) , C(n) = 2
9 and B(n) = 2

9

(
n2+3n−1
n(n+3)

)
. By taking ρn = 1, we see that

all conditions of Theorem 3.4 are satisfied and hence every solution of equation (4.3) is oscillatory. In fact
{xn} = {(−1)3n} is one such oscillatory solution of equation (4.3) since it satisfies the given equation.
We conclude this paper with the following remark.

Remark 4.1. The results obtained in this paper are new and complement to that of in [8, 11, 12].
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