
Malaya Journal of Matematik, Vol. 6, No. 1, 41-48, 2018

https://doi.org/10.26637/MJM0601/0006

Oscillation theorems for certain delay difference
inequalities
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Abstract
Our aim in this paper is to give some new results on the oscillatory behavior of all solutions of the delay difference
inequalities

x(n)
{

Lmx(n)+a(n)x(n)+(q(n)+ p j(n))x[n−mτ]
}
≤ 0 for m odd

and

x(n)
{

Lmx(n)−a(n)x(n)− (q(n)+ p j(n))x[n−mτ]
}
≥ 0 for m even

under the condition
∞

∑
1

ai(s)
= ∞, i = 1,2, · · · ,m−1. Further the result can be extended to more general equations.
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1. Introduction
Recently there has an increasing interest in studying the os-
cillatory and asymptotic behavior of difference equations of
various types, for examples see [2–9, 13, 15, 18, 19] Our
main goal in this paper is to give first some new results on the
oscillatory behavior of all solutions of the delay difference
inequalities

x(n)
{

Lmx(n)+a(n)x(n)

+(q(n)+ p j(n))x[n−mτ]
}
≤ 0, for m odd (1.1)

and

x(n)
{

Lmx(n)−a(n)x(n)

−(q(n)+ p j(n))x[n−mτ]
}
≥ 0, for m even (1.2)

and then extent there results to equations of the form

Lmx(n)+(−1)m+1
m

∑
i=0

fi(n,x[n−mτi]) = 0, (α)

and

Lmx(n)+(−1)m+1
[
a(n)x(n)+ f

(
n,x[n−mτ1],

· · · ,x[n−mτm]
)]

= 0, (β )

where

L0x(n) = x(n)

Lkx(n) = ak(n)∆(Lk−1x(n)), k = 1,2, · · · ,m
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and n ∈ N0 = {n0,n0 +1, · · ·}, a0(n) = am(n) = 1,
∆x(n) = x(n+1)− x(n).

We assume that the following conditions without further
mention

(C1) {ai(n)}, {p(n)} and {q(n)} are positive sequences for
n≥ n0

(C2) f : [n0,∞)×Rm→ R and fr : [n0,∞)×R→ R,
r = 0,1, · · · ,m are continuous

(C3)

∞

∑
1

ai(s)
= ∞, i = 1,2, · · · ,m−1 (1.3)

(C4) τ and τr are positive integers r = 1,2, · · · ,m

(C5)

lim
n→∞

1
αi(n)

k

∑
i=0

ciαi(n)> 0, α0(n) = 1 (1.4)

for every choice of the constants ci with ck > 0,
k = 1,2, · · · ,m−1.

In what follows, we restrict our attention only to solutions
x(n) of (1.1) or (1.2) which are defined for n ≥ nx. The os-
cillatory character is considered in the usual sense. That is a
real-valued sequence y(n) defined for n≥ ny is called oscilla-
tory if it has no last zero, otherwise it is called non-oscillatory.

For the sake of brevity, Si will denote the set of all solution
of the difference inequality (i), i= 1,2 and ASi, BSi are subsets
of Si defined as follows:

ASi is the set of all solutions x(n) satisfying lim
n→∞

x(n)
αi(n)

= 0

where αi(n) =
n−1
∑
c

1
ai(s)

, n≥ c > 0.

BSi is the set of bounded solutions, clearly BSi ⊂ ASi ⊂ Si,

i = 1,2 where αk(n) =
n−1
∑
c

1
a1(s1)

s1−1
∑
c
· · ·

sk−1−1
∑
c

1
ak(sk)

,

k = 1,2, · · · ,m−1, c > 0

α1(n) =
n−1

∑
c

1
a1(s1)

α2(n) =
n−1

∑
c

1
a1(s1)

s1−1

∑
c

1
a2(s2)

.

In Section 2, we establish results for (1.1) and (1.2), which
extend and improve some of the results given in the literature.
Extensions of results of Section 2 for equations (α) and (β )
are included in Section 3.

In 1995, Thandapani E and Pandian S. [16] obtained suffi-
cient conditions for the oscillatory and asymptotic behavior
of solutions of the higher order nonlinear difference equations
of the form

(Dmy)(n)+q(n) f (y(n− τn)) = 0, n = 0,1, · · · (E1)

where m is an arbitrary positive integer, (D0y)(n) = y(n) and
(Diy)(n) = ai(n)∆(Di−1)(n), i = 1,2, · · · ,m and under the

condition
∞

∑
1

ai(n)
=∞, i = 1,2, · · · ,m−1.

Z.C.Wang and R.Y. Zhang in 2000 [17] consider the first
order difference inequality

xn+1− xn +
m

∑
i=1

pi(n)xn−ki(n) ≤ 0. (E2)

They obtained a sufficient condition generality the non exis-
tence of eventually positive solutions for the equation (E2)
with the help of the new method.

Pon. Sundaram and E. Thandapani in 2000 [10] studied
the oscillatory behavior of the solutions of the second order
neutral difference equation

∆(Lα
1 x(n))+ f (n,x(g(n))) = 0, (E3)

where L1x(n) = a(n) |∆L0(x(n))|α and under the condition
∞

∑
n=n0

1
(a(n))1/α

= ∞. They obtained the necessary and suffi-

cient conditions for oscillation of almost all solutions.
Pon. Sundar and B. Kishokkumar, in 2013 [12] studied of

(E3) the extra neutral delay difference equation

∆
[
r(n)

(
∆

m−1(x(n)+ p(n)x(τ(n))
)]

+q(n) f (x(σ(n))) = 0, (E4)

under the condition ∑
1

r(n)
= ∞ and ∑

1
r(n)

< ∞ and obtained

sufficient condition for the oscillation of both bounded and
unbounded solution of equation (E4).

Pon.Sundar and K. Revathi in 2017 [14] consider the fun-
tional difference inequality of the form

(−1)z
∆

mx(n)sgnx(n)≥ p(n)
k

∏
i=1
|x(gi(n))|αi (E5)

and studied the oscillations of solution of inequality (E5)
generated by general derivating arguments gi.

In the sequel we need the following lemmas:

Lemma 1.1. [1] Let condition (1.3) holds of x(n) is a solution
of equation (1.1) which is of constant sign for n ≥ n0 then
there exists an even integer l,0 ≤ l ≤ m− 1 and an integer
n1,n1 ≥ n0 such that for n≥ n1,

x(n)L jx(n)> 0, for 0≤ j ≤ l
and

(−1) j−lx(n)L jx(n)> 0, for l +1≤ j ≤ n.

(1.5)

Remark 1.2. The above lemma generalizes a well-known
lemma of Kiguradze and can be proved similarly.

Lemma 1.3. Let conditions (i)-(v) hold. If x(n) is a nontrivial
solution of (1.1) or (1.2) such that

x(n)≥ 0 and
x(n)
αi(n)

→ 0 as n→ ∞,
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then for n≥ n0

(−1)kLkx(n)> 0, k = 2,3 · · · ,m−1

and

Lkx(n)→ 0 montonically as n→ ∞,k = 2,3, · · ·m−1.(1.6)

Proof. Our proof is an adaption of the similar argument de-
veloped by Kim in discrete sequence. Put ∆ky(n) = Lk−1x(n)
that is

∆y(n) = x(n),

∆(∆y(n)) =
∆2y(n)
a1(n)

,

...

∆(∆m−1y(n)) =
∆my(n)
am−1

and let b be an arbitrary point n≥ n0. Then x(n) satisfies the
following system

∆y(n) = ∆y(n)+
n−1

∑
b

∆2y(s)
a1(s)

∆
2y(n) = ∆

2y(n)+
n−1

∑
b

∆3y(s)
a2(s)

∆
my(n) = ∆

m−1y(n)+
n−1

∑
b

∆my(s)
am−1(s)

∆
my(n) = ∆

my(n)

−
n−1

∑
b

{
a(n)x(n)+(q(n)+ p j(n))x[n−mτ]

}
Suppose x(n) = ∆y(n) is a solution of (1.1). Then

n−1

∑
b

{
a(n)x(n)+(q(n)+ p j(n))x[n−mτ]

}
is nondecreasing nonnegative sequence of n and clearly is
positive on n≥C for some C > b. We claim that ∆my(n)> 0.
To prove this, assume the contrary, that ∆my(n) ≤ 0. Then
∆my(n) is non-positive, nonincreasing on n≥ b and

∆
my(n) = ∆

my(n)

−
n−1

∑
b

{
a(n)x(n)+(q(n)+ p j(n))x[n−mτ]

}
< 0

∆
my(n)≤ ∆

my(c)< 0, for n >C (or)

∆(∆m−1y(n))≤ 1
am−1

∆
my(c).

Summing the above inequality from b to n−1, we obtain

∆
m−1y(n)≤ ∆

m−1y(b)

+∆
my(c)

n−1

∑
b

1
am−1(s)

→−∞ as n→ ∞.

This is turn implies that ∆m−1y(n)→−∞ as n→ ∞ and suc-
cessively ∆ky(n)→ −∞ as n→ ∞ regardless of the values
∆ky(n), k = 1,2, · · · ,m−1. In particular, ∆y(n) = x(n)→−∞

as n→ ∞, contrary to the hypothesis that x(n)≥ 0 for n≥ n0.
This contradiction proves that ∆my(n)> 0.
Since b is arbitrary we conclude that ∆my(n)> 0 for n≥ n0.
It is now easy to see that ∆my(n)→ 0 as n→ ∞ for m > 2. If
this were not the case, there would exist a constant C > 0 such
that

∆
my(n)>C for n≥C1 for some C1 ≥ 0

this implies, however, that

x(n) = ∆y(n)>
m−2

∑
i=0

∆
i+1y(c)αi+1(n)+Cαm−1(n),

α0(n) = 1. If we divide the above inequality by α2(n) and
take the least as n→∞, we get, in view of (1.4) with k =m−1,

a contraction to the fact that
x(n)

α2(n)
→ 0 as n→ ∞.

Next we shall prove that ∆m−1y(n)< 0 if m> 2 of ∆m−1y(n)
≥ 0 then ∆m−1y(n)≥ 0 for n≥ b and there would exist con-
stants C1 > 0 and d > b such that

∆
m−1y(n)>C1 for n≥ d.

This would imply

x(n) = ∆y(n)>
m−2

∑
i=0

∆
i+1y(d)αi+1(n)+Cαm−2(n),

which would again lead to a contradiction. Thus ∆m−1y(n)< 0
and hence ∆m−1y(n)< 0, since b is arbitrary. Moreover, we
must have ∆m−1y(n)→ 0 as n→ ∞, for otherwise we would
again be led to the contradiction that x(n)→−∞ as n→ ∞.

In this way, we can successively establish the inequalities,
∆my(n) > 0, ∆m−1y(n) < 0, · · · , ∆4y(n) > 0, ∆3y(n) < 0,
for n≥ n0 with the property that ∆ky(n)→ 0 as n→ ∞, k =
3,4, · · · ,m. Continuing this process, we deduce ∆2y(n) >
0 and ∆y(n) ≥ 0 for n ≥ n0. This process the theorem for
equation (1.1). The proof for equation (1.2) is similar. In this
case we first prove that ∆my(n)< 0 and ∆my(n)→ 0 as n→∞,
and continue as in the case of equation (1.1).

Lemma 1.4. Consider the delay difference inequalities

∆y(n)+a(n)y(n)+ p(n)y(n− τ)≤ 0 (β1)
∆y(n)+a(n)y(n)+ p(n)y(n− τ)≥ 0 (β2)

and the delay difference equation

∆y(n)+a(n)y(n)+ p(n)y(n− τ) = 0, (β3)

where τ is a positive integer, {a(n)} and {p(n)} are positive
sequences. Assume that

liminf
n→∞

n−1

∑
n−τ

p(s)>
1
e

e
− liminf

n→∞

n−1
∑

n−2τ

a(s)
(1.7)
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and

liminf
n→∞

n−1

∑
n−τ

p(s)> 0. (1.8)

Then

(b1) Inequality (β1) has no eventually positive solutions.

(b2) Inequality (β2) has no eventually negative solutions
and

(b3) Equation (β3) has only oscillatory solutions.

Proof. We will prove that the existence of eventually positive
solution leads to a contradiction.

To this end suppose that y(n) is a solution of (β1) such
that for no sufficiently large

y(n)> 0 for n > n0

Then y(n−2τ)> 0 for n≥ n0 +2τ and from (β1), ∆y(n)< 0
for n≥ n1 ≥ n0. Hence y(n)< y(n−2τ) for n > n2 ≥ n1. Set

w(n) =
y(n−2τ)

y(n)
, for n > n2. (1.9)

Then w(n) ≥ 1 and dividing both sides of (β1) by y(n) for
n≥ n2. We obtain

∆y(n)
y(n)

+a(n)+ p(n)w(n)≤ 0 for n≥ n2 (1.10)

We can easily show that

logw(n)≥

(
n−1

∑
n−2τ

p(s)w(s)

)
+

n−1

∑
n−2τ

a(s), n > n3.(1.11)

Now, summing (β1) from n−2τ to n−1 and using the fact
that y(n) is decreasing, we find

y(n)− y(n−2τ)+ y(n)
n−1

∑
n−2τ

a(s)

+y(n− τ)
n−1

∑
n−2τ

p(s)≤ 0, n≥ n4.

Dividing the last inequality first by y(n) and then by y(n− τ),
we obtain respectively

1− y(n−2τ)

y(n)
+

n−1

∑
n−2τ

a(s)+
y(n−2τ)

y(n)

n−1

∑
n−τ

p(s)≤ 0

(1.12)

and

y(n)
y(n− τ)

−1+
y(n)

y(n− τ)

n−1

∑
n−τ

a(s)

+
y(n−2τ)

y(n− τ)

n−1

∑
n−2τ

p(s)≤ 0. (1.13)

Let liminf
n→∞

W (n) = l. Then l ≥ 1 and is finite or infinite. We
consider the producing two possible cases.

Case 1: l is finite. Taking limit inf on both sides of (1.10),
we obtain

log l ≥ liminf
n→∞

n−1

∑
n−2τ

a(s)+(l− s) liminf
n→∞

n−1

∑
n−2τ

p(s)

where ε is sufficiently small and so

log l− l liminf
n→∞

n−1

∑
n−2τ

p(s)≥ liminf
n→∞

n−1

∑
n−2τ

a(s).

Using the fact that

max
l≥1

{
log l− l liminf

n→∞

n−1

∑
n−2τ

p(s)

}

=− log

(
liminf

n→∞

n−1

∑
n−2τ

p(s)

)
−1.

The last inequality implies

log

(
liminf

n→∞

n−1

∑
n−2τ

p(s)

)
≤−1− liminf

n→∞

n−1
∑

n−2τ

a(s)

liminf
n→∞

n−1

∑
n−2τ

p(s) ≤ 1
e

exp
(

liminf
n→∞

n−1
∑

n−2τ

a(s)
)

which contradicts the hypotheses (1.7).
Case 2: l is infinite. That is,

lim
n→∞

y(n−2τ)

y(n)
= +∞.

In view of (1.8) and the fact that a(n)≥ 0, inequality (1.12)
implies

lim
n→∞

y(n− τ)

y(n)
= +∞

and therefore lim
n→∞

y(n−2τ)

y(n− τ)
= +∞ which contradicts (1.13).

Since in both cases, we are lead to a contradiction. Then
the proof of part (b1) is complete.

The result (b2) follows immediately from the observation
that of y(n) is a solution of (β2) then −y(n) is a solution of
(β1).

From the above results, if follows that the delay difference
equation (β3) has no eventually positive or eventually negative
solutions and therefore we are lead to the conclusion that (β3)
has oscillatory solutions only.
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2. Main Results
In this section, we begin with the following theorem.

Theorem 2.1. Let conditions (1.3), (1.7) and (1.8) hold, and
in addition, suppose

1
am−l(n− iτ)

−
(

p(n− τ)

p(n)

)(i−1)

≥ (i−1)p(n)≥ 0,(2.1)

i = 1,2, · · · ,m, then every solution of (1.1) is oscillatory.

Proof. Assume that there exists a solution x(n) of (1.1) such
that for n0 sufficiently large

x(n)> 0 for n≥ n0.

Then x(n−mτ)> 0 for n > n0 +mτ . Hence (1.1) becomes

Lmx(n)+a(n)x(n)+(q(n)+ p j(n))x(n−mτ)≤ 0,
(1.1’)

n is odd. By Lemma 1.1, there exists an even integer l,
0≤ l ≤ m such that for n > n0 +mτ

L jx(n)> 0 0≤ j ≤ l (2.2)

and

(−1) j−lL jx(n)> 0 l +1≤ j ≤ m.

We claim that l = 0, that is, for n > n0 +mτ

(−1) jL jx(n)> 0 for j = 0,1, · · · ,m. (2.3)

To prove it, assume that l > 0. Then by the generalized dis-
crete Taylor’s formula

Llx(n) = Llx(n1)+

(
n−1

∑
n2

1
al+1(sl+1)

)
Ll+1x(n)

+

(
n−1

∑
n1

1
al+2(sl+2)

sl−2

∑
n1

1
al+1(sl+1)

)
Ll+2x(n)

+(−1)m−l+1
n−1

∑
n1

[
sn−1

∑
n1

1
(am−1sm−1)

sn−2

∑
n1

· · ·
sl+2

∑
n1

1
al+1

(sl+1)

]
×Lmx(sm−τ)

for every n≥ n1 with n1 sufficiently large. Using (1.1), (2.2)
and the fact that the integer m+ l is odd and x(n) and p(n) are
nondecreasing sequence we have

Llx(n)≤ Llx(n1)− p j(n1)x(n1−mτ)

×
n−1

∑
n1

[
sm−1

∑
n1

1
am−1(sm−1)

sm−2

∑
n1

· · ·
sl+2

∑
n1

1
al+1(sl+1)

]
.

By (1.3), Llx(n)→−∞ as n→ ∞, that is, Llx(n) < 0 for all
large n, which contradicts (2.2) and proves (2.3). Set

y(n) = Lm−1x(n)− p(n)Lm−2x(n− τ)

+p(2)(n)Lm−3x(n−2τ)

+ · · ·+ p( j−1)(n)x(n− (m−1)τ).

Then in view of (2.3),

y(n)> 0. (2.4)

Observe that

∆y(n)+ p(n)y(n− τ) =

Lmx(n)+ p( j−1)(n− τ)p(n)x(n−mτ)

+( j−1)p( j−2)(n)x(n− (m−1)τ)

+p(m−1)(n)

[[
1

a1(n− (m−1)τ)
−
(

p(n− τ)

p(n)

)( j−2)
]

×L1x(n− (m−1)τ)

− ( j−2)
p2(n)

L1x(n− (m−2)τ)

]
...

−p(3)(n)

[[
1

am−3(n−3τ)
−
(

p(n− τ)

p(n)

)(2)
]

×Lm−3x(n−3τ)

− 2
p2(n)

Lm−3x(n−4τ)

]

+p(2)(n)

[[
1

am−2(n−2τ)
−
(

p(n− τ)

p(n)

)]
×Lm−2x(n−2τ)

− 1
p2(n)

Lm−2x(n−3τ)

]

−p(n)
[

1
am−1(n− τ)

−1
]

Lm−1x(n− τ).

Using the monotonicity of Lk, k = 0,1, · · · ,m and the condi-
tion (2.1) we have

∆y(n)+ p(n)y(n− τ)≤−a(n)x(n)−q(n)x(n−mτ)

−p( j)(n)

[
1−
(

p(n− τ)

p(n)

)( j−1)

− (m−1)
1

p2(n)

]
×x(n−mτ)

+p( j−1)(n)

[
1

a1(n− (m−1)τ)
−

(
p(n− τ)

p(n)

)( j−2)

−(m−2)
1

p2(n)

]
L1x(n− (m−1)τ)+

· · ·

+p(2)(n)
[

1
am−2(n−2τ)

− p(n− τ)

p(n)
− 1

p2(n)

]
×Lm−2x(n−2τ)

−p(n)
[

1
am−1(n− τ)

−1
]

Lm−1x(n− τ).

Since by Lemma 1.4(b1), the above inequality has no even-
tually positive solutions, we get a contradiction to (2.4). The
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case x(n)< 0 for n≥ n0 is similar and thus the proof is omit-
ted.

Theorem 2.2. Let conditions (1.3), (1.4), (1.7), (1.8) and
(2.1) hold, then every solution x(n) of (1.2) with the property

that
x(n)
αi(n)

→ 0 as n→ ∞ is oscillatory.

Proof. Assume that there exists a solution of equation (1.2)
such that

x(n)> 0, lim
n→∞

x(n)
αi(n)

= 0, n≥ n0.

Then x(n−mτ)> 0 for n > n1 +mτ and from (1.2),
Lmx(n)> 0 for n > n0 +mτ . By Lemma 1.3,

(−1)kLkx(n)> 0, k = 0,1, · · · ,m. (2.5)

Set

y(n) = Lm−1x(n)− p(n)Lm−2x(n− τ)

+p(2)(n)Lm−3x(n−2τ)

· · ·− p( j−1)(n)x(n− (m−1)τ) (2.6)

which for sufficiently large n such that y(n) < 0. Taking
differences on both sides of (2.6), we obtain

∆y(n)+ p(n)y(n− τ)

= Lmx(n)− p( j−1)(n− τ)p(n)x(n−mτ)

−(n−1)p( j−2)x(n− (m−1)τ)

−p( j−1)(n)

[[
1

a1(n− (m−1)τ)

−
(

p(n− τ)

p(n)

)( j−2)
]

L1x(n− (m−1)τ)

+( j−2)
1

p2(n)
L1x(n− (m−2)τ)

]
×L1x(n− (m−1)τ)+

· · ·

+p(2)(n)

[[
1

am−2(n−2τ)
− p(n− τ)

p(n)

]
Lm−2x(n−2τ)

− 1
p2(n)

Lm−2x(n−3τ)

]

−p(n)
[

1
am−1(n− τ)

−1
]

Lm−1x(n− τ).

Now using the monotonicity of Lk, k = 0,1, · · ·m and the

condition (2.1), we have

∆y(n)+ p(n)y(n− τ)

≥ a(n)x(n)−q(n)x(n−mτ)

+p( j)(n)

[
1−
(

p(n− τ)

p(n)

)( j−1)

− ( j−1)
1

p2(n)

]
×x(n−mτ)

+p( j−1)(n)

[
1

a1(n− (m−1)τ)
−

(
p(n− τ)

p(n)

)( j−2)

−( j−2)
1

p2(n)

]
L1x(n− (m−1)τ)+

· · ·

+p(2)(n)
[

1
am−2(n−2τ)

− p(n− τ)

p(n)
− 1

p2(n)

]
×Lm−2x(n−2τ)

−p(n)
[

1
am−1(n− τ)

−1
]

Lm−1x(n− τ)≥ 0.

The above inequality has no eventually negative solutions in
view of Lemma 1.4(b2). This contradicts the fact that y(n) is
negative.

The proof of theorem x(n) < 0 is similar and hence is
omitted.

Example 2.3. The third order inequality

x(n)
{

∆

(
e

1+ e

(
∆

(
e

e+1
∆x(n)

)))}
+x(n)+

e2

e5 x(n−3)≤ 0, n > 3, (E6)

has an oscillatory solution x(n) = (−1)ne−n and the second
order inequality

x(n)
{

∆

(
1

e+1
∆x(n)

)}
− x(n)− ce(2)x(n−2)≥ 0, n > 2 (E7)

has an oscillatory solution x(n) = (−1)nen. Only condition
(2.1) is not satisfied.

In the following theorem we discuss the case when p(n)
in (1.1) and (1.2) is not a monotone nondecreasing sequence.
We replace the sequence q(n)+ p(m)(n) by p(n) and assume
that p(n) satisfies (1.7) and (1.8).

Theorem 2.4. Let condition (2.1) in Theorems 2.1 and 2.2 be
replaced by

1
am−1(n− iτ)

≥ p(n), i = 1,2, · · ·m, (2.1′)

then the conclusions of Theorems 2.1 and 2.2 hold.

Proof. The proof of Theorem 2.4 is similar to the proofs of
Theorem 2.1 and 2.2 except that in Theorem 2.1 we replace
y(n) by

y(n) = Lm−1x(n)−Lm−2x(n− τ)+ · · ·+ x(n− (m−1)τ)
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and in Theorem 2.2 we replace y(n) by

y(n) = Lm−1x(n)−Lm−2x(n− τ)−·· ·− x(n− (m−1)τ).

Example 2.5. Consider the inequality

x(n)
{

∆
2x(n)+4x(n−3)

}
≤ 0, n > 3. (E7)

It is easy to check that the hypothesis of Theorem 2.4 are
satisfied while Theorems 2.1 and 2.2 are not applicable. This
equation (E7) has an oscillatory solution x(n) = (−1)nen.

Remark 2.6. In (1.1) and (1.2) if we let a(n) = 0 and c(n) =
q(n)+ p( j)(n), then the equation Lmx(n)+(−1)n+1c(n)x(n−
τ) = 0 is positive for the conclusions of Theorems 2.1 and 2.2.
For the sake of completeness we state the result.

Theorem 2.7. If

n−1

∑
n−τ

1
a1(sn−1)

n−1

∑
sn−1

· · ·
n−1

∑
s1

c(s)> 1

then the conclusions of Theorems 2.1 and 2.2 hold for the
inequalities

x(n)
{

Lmx(n)+(−1)m+1c(n)x(n− τ)
}
≤ 0, n is odd

and

x(n)
{

Lmx(n)+(−1)m+1c(n)x(n− τ)
}
≥ 0, n is even

respectively.

Remark 2.8. If we let ai = 1, i = 1,2,3, · · · ,m− 1, p(n) is
a positive constant, and a(n) = 0, the conditions (1.4) and
(2.1) are trivially satisfied. Moreover α1(n) = n for a1(n) = 1.
Then the cases of sequences x(n) satisfying the property that

lim
n→∞

x(n)
n

= 0 includes all bounded sequences.

3. Some Extensions
In this section we are interested in extending our results of
section 2 to more general equations namely (α) which takes
the form

Lmx(n)+
k

∑
i=0

fi(n,x[n−mτi]) = 0, n is odd (3.1)

and

Lmx(n)−
k

∑
i=0

fi(n,x[n−mτi]) = 0, n is even (3.2)

where Lm is defined as above.
We assume that for each i, 0≤ i≤ k, fi ∈C[[n0,∞)×R,R],

fi(n,x)
x
≥ qi(n)≥ 0, f or x 6= 0 (3.3)

where qi ∈ C[[n0,∞), [0,∞)], τ0 = 0, 1 ≤ i ≤ k are positive
constants, and τ = min{τ1,τ2, · · · ,τk}.

It follows as in the proofs of Theorems 2.1 and 2.2 that if
x(n)> 0 for n≥ n1 ≥ n0 we have ∆x(n)< 0 for n≥ n2 ≥ n1.
Thus

fi(n,x[n−mτi])

x[n−mτ]
≥ fi(n,x[n−mτi])

x[n−mτi]
≥ qi(n), 0≤ i≤ k.(3.4)

The above inequality is also true for the case where x(n)< 0,
n≥ n0 and hence (3.1) and (3.2) reduce to

x(n)

{
Lmx(n)+q0(n)x(n)+(

k

∑
i=1

qi(n)

)
x[n−mτ]

}
≤ 0,n is odd (3.1’)

and

x(n)

{
Lmx(n)−q0(n)x(n)−(

k

∑
i=1

qi(n)

)
x[n−mτ]

}
≥ 0,n is even. (3.2’)

Now, the required extensions follows immediately by letting

q0(n) = a(n) and p(m)(n)+q(n) =
k

∑
i=0

qi(n),

where a(n), p(n) and q(n) are defined as above and satisfy
the hypotheses of our theorems.

Example 3.1. Consider the equation

∆
mx(n)+(−1)(2m+1) (1+ e)m

e2m x(n−m) = 0. (E8)

We conclude that every solution of (E8) is oscillatory if m is
odd, while m is even, every solution of (E8) with the property

that
x(n)

n
→ 0 as n→ ∞ is oscillatory.

Finally, the results presented is this paper can be extended
to equation (β ) which can be written as

Lmx(n)+a(n)x(n)+ f (n,x[n−mτ1], · · ·x[n−mτk]) = 0,(3.5)

n is odd and

Lmx(n)−a(n)x(n)+ f (n,x[n−mτ1], · · ·x[n−mτk]) = 0,(3.6)

n is even, where Lm is defined as above, τi, i = 1,2, · · · ,k are
positive constants and τ = min{τ1, · · · ,τk}.

f ∈C[[n0,∞)×Rm,R]
f (n,y1,y2, · · · ,yk)> 0 i f yi > 0 f or all i

f (n,y1,y2, · · · ,yk)< 0 i f yi < 0 f or all i

f (n,y1,y2, · · · ,yk) is nondecreasing onY n≥ n0
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where

Y =

{
(y1, · · · ,yk)|yi ∈ R and either every yi ≥ 0

or every yi < 0 f or i = 1,2, · · ·k

}
and

| f (n,y1, · · · ,yk)| ≥ γ(n)|y(n)| f or y 6= 0 and n≥ n0

where γ ∈C[[n0,∞),(0,∞)].
If we write γ(n) = q(n)+ p(m)(n) where a(n), p(n) and

q(n) are as given before and hence we obtain the desired
extension.

Example 3.2. Consider the equation

∆
mx(n)+(−1)(m+1) (1+ e)m

e4m−2n x(n−m)× x2(n−m) = 0,

(E9)

where m = τ and γ(n) =
(1+ e)m

e4m−2n , one can easily see that

every solution of (E9) is oscillating if m is odd, while if m is

even, every solution of (E9) such that
x(n)

n
→ 0 as n→ ∞ is

also oscillatory.
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