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Abstract
The basic motivation of the present study is to apply the local fractional Sumudu decomposition method to solve
linear system of local fractional partial differential equations. The local fractional Sumudu decomposition methodl
(LFSDM) can easily be applied to many problems and it’s capable of reducing the size of computational work
to find non-differentiable solutions for similar problems. Some illustrative examples are given, revealing the
effectiveness and convenience of this method.
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1. Introduction
Systems of partial differential equations have attracted much
attention in a variety of applied sciences. The general ideas
and the essential features of these systems are of wide ap-
plicability. These systems were formally derived to describe
wave propagation, to control the shallow water waves, and to
examine the chemical reaction-diffusion model of Brusselator
[1]. To solve these equations or systems, researchers use many
methods, among them, we find an Adomian decomposition
method (ADM) [2], homotopy perturbation method (HPM)
[3], variational iteration method (VIM) [4], Fourier transform
method [5], Fourier series method [6], Laplace transform
method [7], and Sumudu transform method [8], and then ex-
tended it to solve differential equations of fractional orders.
Recently, there appeared a large part of scientific research

concerning local fractional differential equations or local frac-
tional partial differential, adopted in its entirety on the above
mentioned methods to solve this new types of equations. For
example, among these research we find, local fractional Ado-
mian decomposition method ([9], [10], [15]), local fractional
homotopy perturbation method ([11], [12]), local fractional
homotopy perturbation Sumudu transform method [13], local
fractional variational iteration method ([14], [15]), local frac-
tional variational iteration transform method ([16]-[18]), local
fractional Fourier series method ([19]-[21]), Laplace trans-
form series expansion method [22], local fractional Sumudu
transform method ([23], [24]), local fractional Sumudu trans-
form series expansion method ([25], [26]), local fractional
Sumudu decomposition method for linear partial differential
equations with local fractional derivative [27].

The basic motivation of the present study is to extend
the application of the local fractional Sumudu decomposition
method suggested by D. Ziane et al.[27] to solve linear system
of local fractional partial differential equations. The advantage
of this method is its ability to combine two powerful methods
to obtain exact solutions for linear system of local fractional
partial differential equations. Three examples are given to
re-confirm the effectiveness of this method.

The present paper has been organized as follows: In Sec-
tion 2 some basic definitions and properties of the local frac-
tional calculus and local fractional Sumudu transform method.
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In section 3 We present an analysis of the proposed method.
In section 4 We apply the modified method (LFSDM) to solve
the proposed systems. Finally, the conclusion follows.

2. Preliminaries
In this section, we present the basic theory of local fractional
calculus and we focus specifically on the definitions of the fol-
lowing concepts: Local fractional derivative, local fractional
integral, some important results and local fractional Sumudu
transform.

Definition 2.1. The local fractional derivative of Ψ(r) of
order η at r = r0 is defined ([28],[29])

Ψ
(η)(r) =

dη Φ

drη

∣∣∣∣
r=r0

=
∆η(Ψ(r)−Ψ(r0))

(r− r0)η
, (2.1)

where

∆
η(Ψ(r)−Ψ(r0))∼= Γ(1+η) [(Ψ(r)−Ψ(r0))] . (2.2)

For any r ∈ (α,β ), there exists

Ψ
(η)(r) = Dη

r Ψ(r),

denoted by

Ψ(r) ∈ Dη
r (α,β ).

Local fractional derivative of high order is written in the
form

Ψ
(mη)(r) =

m times︷ ︸︸ ︷
D(η)

r · · ·D(η)
r Ψ(r), (2.3)

and local fractional partial derivative of high order ln3

∂ mη Ψ(r)
∂ rmη

=

m times︷ ︸︸ ︷
∂ η

∂ rη
· · · ∂ η

∂ rη
Ψ(r) . (2.4)

Definition 2.2. The local fractional integral of Ψ(r) of order
η in the interval [α,β ] is defined as ([28],[29])

α I(η)
β

Ψ(r) =
1

Γ(1+η)

∫
β

α

Ψ(s)(ds)η

=
1

Γ(1+η)
lim

∆s−→0

N−1

∑
i=0

f (si)(∆si)
η , (2.5)

where ∆si = si+1− si, ∆s = max{∆s0,∆s1,∆s2, · · ·} and
[si,si+1] , s0 = α, sN = β , is a partition of

the interval [α,β ]. For any r ∈ (α,β ), there exists

α I(η)
r Ψ(r),

denoted by

Ψ(r) ∈ I(η)
r (α,β ).

Definition 2.3. In fractal space, the Mittage Leffler function,
sine function and cosine function are defined as ([28],[29])

Eη(rη) =
+∞

∑
m=0

rmη

Γ(1+mη)
, 0 < η 6 1, (2.6)

sinη(rη)=
+∞

∑
m=0

(−1)η r(2m+1)η

Γ(1+(2m+1)η)
, 0<η 6 1, (2.7)

cosη(rη) =
+∞

∑
m=0

(−1)η r2mη

Γ(1+2mη)
, 0 < η 6 1, (2.8)

The properties of local fractional derivatives and integral
of nondifferentiable functions are given by ([28],[29])

dη

drη

rmη

Γ(1+mη)
=

r(m−1)η

Γ(1+(m−1)η)
. (2.9)

dη

drη
Eη(rη) = Eη(rη). (2.10)

dη

drη
sinη(rη) = cos η(rη). (2.11)

dη

drη
cosη(rη) =−sinη(rη).

dη

drη
sinhη(rη) = coshη(rη). (2.12)

dη

drη
coshη(rη) = sinhη(rη). (2.13)

Definition 2.4. [30] The local fractional Sumudu transform
of Ψ(r) of order η is defined as

LFSη {Ψ(r)} = zη(u), 0 < η 6 1 (2.14)

=
1

Γ(1+η)

∫
∞

0
Eη(−u−η rη)

Ψ(r)
uη

(dr)η

Following (2.14), its inverse formula is defined as

LFS−1
η

{
zη(u)

}
= Ψ(r) , 0 < η 6 1 . (2.15)
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Theorem 2.5. (1) (local fractional Sumudu transform of local
fractional derivative). If LFSη { Ψ(r)} = zη(u), then one
has

LFSη

{
dη Ψ(r)

drη

}
=

zη(u)−z(0)
uη

. (2.16)

As the direct result of (2.16), we have the following results.
If LFSη { Ψ(r)}=zη(u), we obtain

LFSη

{
dnη Ψ(r)

drnη

}
=

1
unη

[
zη(u)−

n−1

∑
k=0

ukη
Ψ

(kη)(0)

]
.

(2.17)

When n = 2, from (2.17), we get

LFSη

{
d2η Ψ(r)

dr2η

}
=

1
u2η

[
zη(u)− Ψ(0)−uη

Ψ
(η)(0)

]
.

(2.18)

(2) (local fractional Sumudu transform of local fractional
integral). If LFSη { Ψ(r)}=zη(u), then we have

LFSη

{
0I(η)

r Ψ(r)
}
= uηzη(u). (2.19)

3. Analysis of the Method
To illustrate the basic idea of this method, we consider a
general linear operator with local fractional derivative

{
∂ ηV
∂ sη + ∂ ηW

∂ rη +R1(V,W ) = f (r,s),
∂ ηW
∂ sη + ∂ ηV

∂ rη +R2(V,W ) = g(r,s),
(3.1)

where ∂ η

∂ (·)η denotes linear local fractional derivative op-
erator of order η , R1, R2 are the linear operators, and f (r,s),
g(r,s) are the nondifferentiable source terms.

Taking the local fractional Sumudu transform (denoted in
this paper by LFSη ) on both sides of (3.1), we get

 LFSη

[
∂ ηV
∂ sη

]
+ LFSη

[
∂ ηW
∂ rη

]
+LFSη [R1(V,W )] = LFSη [ f (r,s)]

LFSη

[
∂ ηW
∂ sη

]
+ LFSη

[
∂ ηV
∂ rη

]
+LFSη [R2(V,W )] = LFSη [g(r,s)]

(3.2)

Using the property of the local fractional Sumudu trans-
form, we have


LFSη [V (r,s)] =V (r,0)+uη (LFSη [ f (r,s)])

−uη

(
LFSη

[
∂ ηW
∂ rη +R1(V,W )

])
LFSη [W (r,s)] =W (r,0)+uη (LFSη [g(r,s)])

−uη

(
LFSη

[
∂ ηV
∂ rη +R2(V,W )

]) (3.3)

Taking the inverse local fractional Sumudu transform on
both sides of (3.3), gives


V (r,s) =V (r,0)+LFS−1

η (uη (LFSη [ f (r,s)]))

−LFS−1
η

(
uη

(
LFSη

[
∂ ηW
∂ rη +R1(V,W )

]))
W (r,s) =W (r,0)+LFS−1

η (uη (LFSη [g(r,s)]))

−LFS−1
η

(
uη

(
LFSη

[
∂ ηV
∂ rη +R2(V,W )

])) (3.4)

According to the Adomian decomposition method [2], we
decompose the two unknown functions V and W as an infinite
series given by

V (r,s) = ∑
∞
n=0 Vn(r,s)

W (r,s) = ∑
∞
n=0 Wn(r,s)

. (3.5)

Substituting (3.5) in (3.4), we get


V (r,s) =V (r,0)+ LFS−1

η (uη (LFSη [ f (r,s)]))

−LFS−1
η

(
uη

(
LFSη

[
∂ η

∂ rη (∑∞
n=0 Wn)+R1 (∑

∞
n=0 Vn,∑

∞
n=0 Wn)

]))
W (r,s) =W (r,0)+LFS−1

η (uη (LFSη [g(r,s)]))

−LFS−1
η

(
uη

(
LFSη

[
∂ η

∂ rη (∑∞
n=0 Vn)+R2 (∑

∞
n=0 Vn,∑

∞
n=0 Wn)

]))
(3.6)

On comparing both sides of (3.6), we have

V0(r,s) = V (r,0)+ LFS−1
η (uη LFSη [ f (r,s)]) ,

V1(r,s) = − LFS−1
η

(
uη

(
LFSη

[
∂ ηW0

∂ rη
+R1 (V0,W0)

]))
,(3.7)

V2(r,s) = − LFS−1
η

(
uη

(
LFSη

[
∂ ηW1

∂ rη
+R1 (V1,W1)

]))
,

V3(r,s) = − LFS−1
η

(
uη

(
LFSη

[
∂ ηW2

∂ rη
+R1 (V2,W2)

]))
,

...

and

W0 = W (r,0)+ LFS−1
η (uη LFSη [g(r,s)]) ,

W1 = − LFS−1
η

(
uη

(
LFSη

[
∂ ηV0

∂ rη
+R2 (V0,W0)

]))
,(3.8)

W2 = − LFS−1
η

(
uη

(
LFSη

[
∂ ηV1

∂ rη
+R2 (V1,W1)

]))
,

W3 = − LFS−1
η

(
uη

(
LFSη

[
∂ ηV2

∂ rη
+R2 (V2,W2)

]))
,

...

Finally, we approximate the analytical nondifferentiable
solution (V,W ) of the system (3.1) by

{
V (r,s) = limN→∞ ∑

N
n=0 Vn(x, t)

W (r,s) = limN→∞ ∑
N
n=0 Wn(x, t)

(3.9)
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4. Applications
In this section, we will implement the proposed method lo-
cal fractional Sumudu decomposition method (LFSDM) for
solving some exemples.

Example 4.1. First, we consider the homogeneous linear
system of local fractional partial differential equations

{
∂ ηU
∂ sη − ∂ ηV

∂ rη +U +V = 0
∂ ηV
∂ sη − ∂ ηU

∂ rη +U +V = 0
,0 < η 6 1, (4.1)

with initial conditions

U(r,0) = sinhη(rη), V (r,0) = coshη(rη). (4.2)

Taking the local fractional Sumudu transform on both
sides of each equation of the system (4.1), we have


LFSη [U(r,s)] =U(r,0)

−uη

(
LFSη

[
− ∂ ηV (r,s)

∂ rη +U(r,s)+V (r,s)
])

LFSη [V (r,s)] =V (r,0)

−uη

(
LFSη

[
− ∂ ηU(r,s)

∂ rη +U(r,s)+V (r,s)
]) (4.3)

Taking the inverse local fractional Sumudu transform on
both sides of each equation of the system (4.3) subject to the
initial conditions (4.2), we obten


U(r,s) = sinhη(rη)

−LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV (r,s)

∂ rη +U(r,s)+V (r,s)
]))

V (r,s) = coshη(rη)

−LFS−1
η

(
uη

(
LFSη

[
− ∂ ηU(r,s)

∂ rη +U(r,s)+V (r,s)
]))
(4.4)

According to the Adomian decomposition method [2], we
decompose the unknown functions U and V as two infinite
series given by

U(r,s) = ∑
∞
n=0 Un(r,s),

V (r,s) = ∑
∞
n=0 Vn(r,s).

(4.5)

Substituting (4.5) in (4.4), we get



∑
∞
n=0 Un(r,s) = sinhη(rη)

−LFS−1
η

(
uη

(
LFSη

[
− ∂ η

∂ rη (∑∞
n=0 Vn(r,s))

+∑
∞
n=0 Un(r,s)+∑

∞
n=0 Vn(r,s)

]))
∑

∞
n=0 Vn(r,s) = coshη(rη)

−LFS−1
η

(
uη

(
LFSη

[
− ∂ η

∂ rη (∑∞
n=0 Un(r,s))

+∑
∞
n=0 Un(r,s)+∑

∞
n=0 Vn(r,s)

]))
(4.6)

On comparing both sides of (4.6), we have

U0(r,s) = sinhη(rη),

U1(r,s) =− LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV0(r,s)

∂ rη +U0(r,s)+V0(r,s)
]))

,

U2(r,s) =− LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV1(r,s)

∂ rη +U1(r,s)+V1(r,s)
]))

,

U3(r,s) =− LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV2(r,s)

∂ rη +U2(r,s)+V2(r,s)
]))

,

...
(4.7)

V0(r,s) = coshη(rη),

V1(r,s) =− LFS−1
η

(
uη

(
LFSη

[
− ∂ ηU0(r,s)

∂ rη +U0(r,s)+V0(r,s)
]))

,

V2(r,s) =− LFS−1
η

(
uη

(
LFSη

[
− ∂ ηU1(r,s)

∂ rη +U1(r,s)+V1(r,s)
]))

,

V3(r,s) =− LFS−1
η

(
uη

(
LFSη

[
− ∂ ηU2(r,s)

∂ rη +U1(r,s)+V2(r,s)
]))

,

...
(4.8)

and so on.
From the equations (4.7)-(4.8), the first solution terms of

local fractional sumudu decomposition method of the system
(4.1), is given by

U0(r,s) = sinhη(rη),

U1(r,s) =−coshη(rη) sη

Γ(1+η) ,

U2(r,s) = sinhη(rη) s2η

Γ(1+2η) ,

U3(r,s) =−coshη(rη) s3η

Γ(1+3η) ,

...

(4.9)

and

V0(r,s) = coshη(rη),

V1(r,s) =−sinhη(rη) sη

Γ(1+η) ,

V2(r,s) = coshη(rη) s2η

Γ(1+2η) ,

V3(r,s) =−sinhη(rη) s3η

Γ(1+3η) ,

...

(4.10)

Then the local fractional solution (U,V ) in series form is
given by

U(r,s) = sinhη(rη)(1+ s2η

Γ(1+2η) + · · ·)
−coshη(rη)( sη

Γ(1+η) +
s3η

Γ(1+3η) + · · ·),
V (r,s) = coshη(rη)(1+ s2η

Γ(1+2η) + · · ·)
−sinhη(rη)( sη

Γ(1+η) +
s3η

Γ(1+3η) + · · ·),

(4.11)
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and the solution (U,V ) in the close form is

U(r,s) = sinhη(rη − sη).
V (r,s) = coshη(rη − sη).

(4.12)

Substituting η = 1 into (4.12), we obtain

U(r,s) = sinh(r− s).
V (r,s) = cosh(r− s). (4.13)

This obtained result is the same as in the article [31] in
the case α = β = 1, as well as the same result presented in
the article [32] in the same case.

Example 4.2. Second, we consider the nonhomogeneous lin-
ear system of local fractional partial differential equations

{
∂ ηU
∂ sη − ∂ ηV

∂ rη −U +V =−2
∂ ηV
∂ sη + ∂ ηU

∂ rη −U +V =−2
,0 < η 6 1, (4.14)

subject to the initial conditions

U(r,0) = 1+Eη(rη), V (r,0) =−1+Eη(rη). (4.15)

Taking the local fractional Sumudu transform on both
sides of each equation of the system (4.14), we have


LFSη [U(r,s)] =U(r,0)−2uη

+uη

(
LFSη

[
∂ ηV (r,s)

∂ rη +U(r,s)−V (r,s)
])

LFSη [V (r,s)] =V (r,0)−2uη

+uη

(
LFSη

[
− ∂ ηU(r,s)

∂ rη +U(r,s)−V (r,s)
]) (4.16)

Taking the inverse local fractional Sumudu transform on
both sides of each equation of the system (4.16) subject to the
initial conditions (4.15), we obtain



U(r,s) = 1+Eη(rη)−2 sη

Γ(1+η)

+LFS−1
η

(
uη

(
LFSη

[
∂ ηV (r,s)

∂ rη +U(r,s)−V (r,s)
]))

V (r,s) =−1+Eη(rη)−2 sη

Γ(1+η)

+LFS−1
η

(
uη

(
LFSη

[
− ∂ ηU(r,s)

∂ rη +U(r,s)−V (r,s)
]))
(4.17)

According to the Adomian decomposition method [2], we
decompose the unknown functions U and V as two infinite
series given by

U(r,s) = ∑
∞
n=0 Un(r,s),

V (r,s) = ∑
∞
n=0 Vn(r,s).

(4.18)

Substituting (4.18) in (4.17), we get



∑
∞
n=0 Un(r,s) = 1+Eη(rη)−2 sη

Γ(1+η)

+LFS−1
η

(
uη

(
LFSη

[
∂ η

∂ rη (∑∞
n=0 Vn)+∑

∞
n=0 Un−∑

∞
n=0 Vn

]))
∑

∞
n=0 Vn(r,s) =−1+Eη(rη)−2 sη

Γ(1+η)

+LFS−1
η

(
uη

(
LFSη

[
− ∂ η

∂ rη (∑∞
n=0 Un)+∑

∞
n=0 Un−∑

∞
n=0 Vn

]))
(4.19)

On comparing both sides of (4.19), we have

U0(r,s) = 1+Eη(rη)−2 sη

Γ(1+η) ,

U1(r,s) = LFS−1
η

(
uη

(
LFSη

[
∂ ηV0(r,s)

∂ rη +U0(r,s)−V0(r,s)
]))

,

U2(r,s) = LFS−1
η

(
uη

(
LFSη

[
∂ ηV1(r,s)

∂ rη +U1(r,s)−V1(r,s)
]))

,

U3(r,s) = LFS−1
η

(
uη

(
LFSη

[
∂ ηV2(r,s)

∂ rη +U2(r,s)−V2(r,s)
]))

,

...
(4.20)

V0(r,s) =−1+Eη(rη)−2 sη

Γ(1+η) ,

V1(r,s) = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηU0(r,s)

∂ rη +U0(r,s)−V0(r,s)
]))

,

V2(r,s) = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηU1(r,s)

∂ rη +U1(r,s)−V1(r,s)
]))

,

V3(r,s) = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηU2(r,s)

∂ rη +U2(r,s)−V2(r,s)
]))

,

...
(4.21)

and so on.
From the equations (4.20)-(4.21), the first solution terms of

local fractional sumudu decomposition method of the system
(4.14), is given by

U0(r,s) = 1+Eη(rη)−2 sη

Γ(1+η) ,

U1(r,s) = Eη(rη) sη

Γ(1+η) +2 sη

Γ(1+η) ,

U2(r,s) = Eη(rη) s2η

Γ(1+2η) ,

U3(r,s) = Eη(rη) s3η

Γ(1+3η) ,

...

(4.22)

and

V0(r,s) =−1+Eη(rη)−2 sη

Γ(1+η) ,

V1(r,s) =−Eη(rη) sη

Γ(1+η) +2 sη

Γ(1+η) ,

V2(r,s) = Eη(rη) s2η

Γ(1+2η) ,

V3(r,s) =−Eη(rη) s3η

Γ(1+3η) ,

...

(4.23)
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Then the local fractional solution (U,V ) in series form is
given by

U(r,s) = 1+Eη(rη)(1+ sη

Γ(1+η) +
s2η

Γ(1+2η) +
s3η

Γ(1+3η) + · · ·),
V (r,s) =−1+Eη(rη)(1− sη

Γ(1+η) +
s2η

Γ(1+2η) −
s3η

Γ(1+3η) + · · ·),
(4.24)

and the solution (U,V ) in the close form is

U(r,s) = 1+Eη((r+ s)η).
V (r,s) =−1+Eη((r− s)η).

(4.25)

Substituting η = 1 into (4.25), we obtain

U(r,s) = 1+ er+s.
V (r,s) =−1+ er−s.

(4.26)

This obtained result is the same as in the article [1], as
well as the same work presented in [33].

Example 4.3. Finaly, we consider the homogeneous linear
system of local fractional partial differential equations


∂ ηU
∂ tη + ∂ ηV

∂ rη − ∂ ηW
∂ sη =W

∂ ηV
∂ tη + ∂ ηW

∂ rη + ∂ ηU
∂ sη =U

∂ ηW
∂ tη + ∂ ηV

∂ rη − ∂ ηV
∂ rη =V

,0 < η 6 1, (4.27)

subject to the initial conditions

U(r,s,0) = sinη((r+ s)η),
V (r,s,0) = cosη((r+ s)η),

W (r,s,0) =−sinη((r+ s)η).
(4.28)

Taking the local fractional Sumudu transform on both
sides of each equation of the system (4.27), we have



LFSη [U(r,s, t)] =U(r,s,0)

+uη

(
LFSη

[
− ∂ ηV (r,s,t)

∂ rη + ∂ ηW (r,s,t)
∂ sη +W (r,s, t)

])
LFSη [V (r,s, t)] =V (r,s,0)

+uη

(
LFSη

[
− ∂ ηW (r,s,t)

∂ rη − ∂ ηU(r,s,t)
∂ sη +U(r,s, t)

])
LFSη [W (r,s, t)] =W (r,s,0)

+uη

(
LFSη

[
− ∂ ηV (r,s,t)

∂ rη + ∂ ηV (r,s,t)
∂ sη +V (r,s, t)

])
(4.29)

Taking the inverse local fractional Sumudu transform on
both sides of each equation of the system (4.29) subject to the

initial conditions (4.28), we obtain



U(r,s, t) = sinη((r+ s)η)

+LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV (r,s,t)

∂ rη + ∂ ηW (r,s,t)
∂ sη +W (r,s, t)

]))
V (r,s, t) = cosη((r+ s)η)

+LFS−1
η

(
uη

(
LFSη

[
− ∂ ηW (r,s,t)

∂ rη − ∂ ηU(r,s,t)
∂ sη +U(r,s, t)

]))
W (r,s, t) =−sinη((r+ s)η)

+LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV (r,s,t)

∂ rη + ∂ ηV (r,s,t)
∂ sη +V (r,s, t)

]))
(4.30)

According to the Adomian decomposition method [2], we
decompose the unknown functions U and V as two infinite
series given by

U(r,s, t) = ∑
∞
n=0 Un(r,s, t),

V (r,s, t) = ∑
∞
n=0 Vn(r,s, t),

W (r,s, t) = ∑
∞
n=0 Wn(r,s, t),

(4.31)

Substituting (4.31) in (4.30), we get



∑
∞
n=0 Un(r,s, t) = sinη((r+ s)η)

+LFS−1
η

(
uη

(
LFSη

[
− ∂ η

∂ rη (∑∞
n=0 Vn)+

∂ η

∂ sη (∑∞
n=0 Wn)+∑

∞
n=0 Wn

]))
∑

∞
n=0 Vn(r,s, t) = cosη((r+ s)η)

+LFS−1
η

(
uη

(
LFSη

[
− ∂ η

∂ rη (∑∞
n=0 Wn)− ∂ η

∂ sη (∑∞
n=0 Un)+∑

∞
n=0 Un

]))
∑

∞
n=0 Vn(r,s, t) =−sinη((r+ s)η)

+LFS−1
η

(
uη

(
LFSη

[
− ∂ η

∂ rη (∑∞
n=0 Vn)+

∂ η

∂ sη (∑∞
n=0 Vn)+∑

∞
n=0 Vn

]))
(4.32)

On comparing both sides of (4.32), we have

U0 = sinη((r+ s)η),

U1 = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV0

∂ rη + ∂ ηW0
∂ sη +W0

]))
,

U2 = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV1

∂ rη + ∂ ηW1
∂ sη +W1

]))
,

U3 = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV2

∂ rη + ∂ ηW2
∂ sη +W2

]))
,

...
(4.33)

V0 = cosη((r+ s)η),

V1 = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηW0

∂ rη − ∂ ηU0
∂ sη +U0

]))
,

V2 = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηW1

∂ rη − ∂ ηU1
∂ sη +U1

]))
,

V3 = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηW2

∂ rη − ∂ ηU2
∂ sη +U2

]))
,

...
(4.34)
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and

W0 =−sinη((r+ s)η),

W1 = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV0

∂ rη + ∂ ηV0
∂ sη +V0

]))
,

W2 = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV1

∂ rη + ∂ ηV1
∂ sη +V1

]))
,

W3 = LFS−1
η

(
uη

(
LFSη

[
− ∂ ηV2

∂ rη + ∂ ηV2
∂ sη +V2

]))
,

...
(4.35)

and so on.
From the equations (4.33)-(4.35), the first solution terms of

local fractional sumudu decomposition method of the system
(4.27), is given by

U0(r,s, t) = sinη((r+ s)η),

U1(r,s, t) =−cosη((r+ s)η) tη

Γ(1+η) ,

U2(r,s, t) =−sinη((r+ s)η) t2η

Γ(1+2η) ,

U3(r,s, t) = cosη((r+ s)η) t3η

Γ(1+3η) ,

U4(r,s, t) = sinη((r+ s)η) t4η

Γ(1+4η) ,

...

(4.36)

V0(r,s, t) = cosη((r+ s)η),

V1(r,s, t) = sinη((r+ s)η) tη

Γ(1+η) ,

V2(r,s, t) =−cosη((r+ s)η) t2η

Γ(1+2η) ,

V3(r,s, t) =−sinη((r+ s)η) t3η

Γ(1+3η) ,

V4(r,s, t) = cosη((r+ s)η) t4η

Γ(1+4η) ,

...

(4.37)

and

W0(r,s, t) =−sinη((r+ s)η),

W1(r,s, t) = cosη((r+ s)η) tη

Γ(1+η) ,

W2(r,s, t) = sinη((r+ s)η) t2η

Γ(1+2η) ,

W3(r,s, t) =−cosη((r+ s)η) t3η

Γ(1+3η) ,

W4(r,s, t) =−sinη((r+ s)η) t4η

Γ(1+4η) ,

...

(4.38)

Then, the local fractional solution (U,V,W ) in series form,
is given by

U(r,s, t) = sinη((r+ s)η)(1− t2η

Γ(1+2η) +
t4η

Γ(1+4η) + · · ·)
−cosη((r+ s)η)( tη

Γ(1+η) −
t3η

Γ(1+3η) + · · ·),
V (r,s, t) = cosη((r+ s)η)(1− s2η

Γ(1+2η) +
s4η

Γ(1+4η) + · · ·)
+sinη((r+ s)η)( tη

Γ(1+η) −
t3η

Γ(1+3η) + · · ·),
W (r,s, t) =−sinη((r+ s)η)(1− t2η

Γ(1+2η) +
t4η

Γ(1+4η) + · · ·)
+cosη((r+ s)η)( tη

Γ(1+η) −
t3η

Γ(1+3η) + · · ·),

(4.39)

and the solution (U,V,W ) in the close form is

U(r,s, t) = sinη((r+ s− t)η).
V (r,s, t) = cosη((r+ s− t)η).

W (r,s, t) =−sinη((r+ s− t)η).
(4.40)

In the case of η = 1, we get

U(r,s, t) = sin(r+ s− t).
V (r,s, t) = cos(r+ s− t).

W (r,s, t) =−sin(r+ s− t).
(4.41)

This result is the exact solution of the system (4.27) in the
case of η = 1

5. Conclusion
In this work, we have seen that the composite method of Ado-
mian decomposition method and Sumudu transform method in
the sense of local fractional derivative, proved very effective
to solve linear systems of local fractional partial differen-
tial equations. The local fractional Sumudu decomposition
method (LFSDM) is suitable for such problems and is very
user friendly. The advantage of this method is its ability to
combine two powerful methods for obtaining exact solutions
of linear systems of local fractional partial differential equa-
tions. The results obtained in the examples presented, showed
that this method is capable of solving other problems of these
types.
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