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Optimal intervals for uniqueness of solutions for lipschitz nonlocal

boundary value problems

Johnny Hendersona,∗

aDepartment of Mathematics, Baylor University, Waco, Texas 76798-7328, USA.

In Memory of Kathryn Madora Strunk, February 5, 1991-March 1, 2007.

Abstract

For the nth order differential equation, y(n) = f(t, y, y′, . . . , y(n−1)), where f(t, r1, r2, . . . , rn) satisfies a Lipschitz

condition in terms of ri, 1 ≤ i ≤ n, we obtain optimal bounds on the length of intervals on which solutions are unique

for certain nonlocal three point boundary value problems. These bounds are obtained through an application of the

Pontryagin Maximum Principle.
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1 Introduction

In this paper, we shall be concerned with the nth order differential equation,

y(n) = f(t, y, y′, . . . , y(n−1)), a < t < b, (1.1)

where we assume throughout that

(A) f(t, r1, . . . , r3n) : (a, b)×Rn → R is continuous, and

(B) f satisfies the Lipschitz condition

|f(t, r1, . . . , rn)− f(t, s1, . . . , sn)| ≤
n∑

i=1

ki|ri − si|

for each (t, r1, . . . , rn), (t, s1, . . . , s3) ∈ (a, b)×R3
.

Let 0 ≤ p ≤ n− 2 be fixed throughout the paper.

We characterize optimal length for subintervals of (a, b), in terms of the Lipschitz coefficients ki, 1 ≤ i ≤ n,

on which solutions are unique for problems involving (1.1) and satisfying the nonlocal three point boundary
conditions,

y(i)(t1) = yi+1, i ∈ {0, . . . , n− 1} \ {p + 1}, y(p)(t2)− y(p)(t3) = yp+2, (1.2)

where a < t1 < t2 < t3 < b, and y1, . . . , yn ∈ R.

Namely, we characterize optimal length for subintervals of (a, b) on which solutions of (1.1), (1.2) are unique.
Such uniqueness results are of interest, because in many cases, uniqueness of solutions implies existence of
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solutions for boundary value problems; see, for example, the papers [5, 7, 9, 20, 21, 24, 26, 27, 35] and the
references therein.

There is a close connection between the boundary value problem (1.1), (1.2) and certain focal boundary value
problems for (1.1). From this relationship, we will eventually establish that it suffices for us to characterize
optimal length subintervals of (a, b) on which solutions are unique for (1.1) satisfying the focal boundary
conditions,

y(i)(t1) = yi+1, i ∈ {0, . . . , n− 1} \ {p + 1}, y(p+1)(t2) = yp+2, (1.3)

where a < t1 < t2 < b, and y1, . . . , yn ∈ R. The connection between this characterization and the characteri-
zation for our three point nonlocal problems is through a simple application of the Mean Value Theorem.

Theorem 1.1. If solutions for (1.1), (1.3) are unique, when they exist on (a, b), then solutions for (1.1), (1.2)
are unique, when they exist on (a, b).

In view of Theorem 1.1, conditions sufficient to provide uniqueness of solutions, when they exist on (a, b),
for two point focal boundary value problems (1.1), (1.3), are sufficient to provide uniqueness of solutions, when
they exist on (a, b) for three point nonlocal boundary value problems (1.1), (1.2).

Our process will involve development of a situation in which the Pontryagin Maximum Principle can be
applied. We follow a pattern that has an extensive history, with first motivation found in the papers by
Melentsova [39] and Melentsova and Mil’shtein [40, 41]. Those papers were subsequently adapted to the
context of several types of boundary value problems, with classical papers including Jackson [31, 32], Eloe and
Henderson [8], Hankerson and Henderson [19] and Henderson et al. [22, 23, 28], and more recent results have
appeared in [6, 10, 11, 25]

Interest in nonlocal boundary value problems also has a long history, both in application and theory, as
can be seen in this list of papers and the references therein: [1] -[4], [12, 13], [15] - [18], [25], [29, 30], [33, 34],
[37, 38], [42] - [50].

2 Optimal Intervals for Uniqueness of Solutions

In this section, we characterize in terms of the Lipschitz constants ki, 1 ≤ i ≤ n, optimal length for
subintervals of (a, b) on which solutions are unique, when they exist for the focal boundary value problem (1.1),
(1.3). This length, it will be argued later, is optimal for uniqueness of solutions for the three point nonlocal
boundary value problem (1.1), (1.2). Our characterization involves an application of the Pontryagin Maximum
Principle.

We begin by defining a set U of vector-valued control functions

U := {v(t) = (v1(t), . . . , vn(t))T ∈ Rn | vi(t) are Lebesgue

measurable and |vi(t)| ≤ ki on (a, b), i = 1, . . . , n}.

We will be concerned with boundary value problems associated with linear differential equations of the form

x(n) =
n∑

i=1

ui(t)x(i−1), (2.1)

where u(t) = (u1(t), . . . , un(t))T ∈ U . We immediately make a connection of these linear differential equations
in the context of solutions of (1.1), (1.3). Much of our analysis will be based upon our choosing, if they exist,
distinct solutions y(t) and z(t) of (1.1), (1.3).

If y(t) and z(t) are distinct solutions of (1.1), (1.3), then their difference x(t) := y(t)− z(t) satisfies

x(i)(t1) = x(p+1)(t2) = 0, i ∈ {0, . . . , n− 1} \ {p + 1}, (2.2)

for some a < t1 < t2 < b, and x(t) is a nontrivial solution of (2.1), for u(t) = (u1(t), . . . , un(t))T ∈ U , where
for 1 ≤ i ≤ n,

ui(t) :=


f(t,z(t),...,z(i−2)(t),y(i−1)(t),...,y(n−1)(t))−f(t,z(t),...,z(i−1)(t),y(i)(t),...,y(n−1)(t))

y(i−1)(t)−z(i−1)(t)
,

y(i−1)(t) 6= z(i−1)(t),

0, y(i−1)(t) = z(i−1)(t).
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From optimal control theory (cf. Gamkrelidze [14, p. 147] and Lee and Markus [36, p. 259]), there is a
boundary value problem in the class (2.1), (2.2), which has a nontrivial time optimal solution; that is, there
exists at least one nontrivial u∗ ∈ U and points t1 ≤ c < d ≤ t2 such that

x(n) =
n∑

i=1

u∗i (t)x
(i−1), (2.3)

x(i)(c) = x(p+1)(d) = 0, i ∈ {0, . . . , n− 1} \ {p + 1}, (2.4)

has a nontrivial solution, x0(t), and d− c is a minimum over all such solutions. For this time optimal solution,
x0(t), set x0(t) = (x0(t), . . . , x

(n−1)
0 (t))T . Then x0(t) is a solution of a first order system,

r′ = A[u∗(t)]r, a < t < b.

By the Pontryagin Maximum Principle, the adjoint system, whose form is given by

x′ = −AT [u∗(t)]x, a < t < b, (2.5)

has a nontrivial optimal solution, x∗(t) = (x∗1(t), . . . , x
∗
n(t))T such that, for a. e. t ∈ [c, d],

(i)
∑n

i=1 x
(i)
0 (t)x∗i (t) = 〈x′0(t),x∗(t)〉 = maxu∈U{〈A[u(t)]x0(t),x∗(t)〉},

(ii) 〈x′0(t),x∗(t)〉 is a nonnegative constant,

(iii) x∗p+2(c) = x∗1(d) = · · · = x∗p+1(d) = x∗p+3(d) = · · · = x∗n(d) = 0.

The maximum condition in (i) can be rewritten as

x∗n(t)
n∑

i=1

u∗i (t)x
(i−1)
0 (t) = max

u∈U

{
x∗n(t)

n∑
i=1

ui(t)x
(i−1)
0 (t)

}
, (2.6)

for a. e. t ∈ [c, d].
By its time optimality and repeated applications of Rolle’s Theorem, x0(t) 6= 0, t ∈ (c, d]. In fact, for each

0 ≤ i ≤ p+1, x
(i)
0 (t) 6= 0 on (c, d). We may assume without loss of generality that x0(t) > 0 on (c, d]. Moreover,

by its own time optimality, x∗n(t) has no zeros on (c, d). In view of that, we can use (2.6) to determine an
optimal control u∗(t), for a. e. t ∈ [c, d].

Now, x0(t) > 0 on (c, d], and so we have from (2.6) that, if x∗n(t) < 0 on (c, d), then the time optimal
solution x0(t) is a solution of

x(n) = −k1x−
n∑

i=2

ki|x(i−1)| (2.7)

on [c, d], while if x∗n(t) > 0 on (c, d), then the time optimal solution x0(t) is a solution of

x(n) = k1x +
n∑

i=2

ki|x(i−1)| (2.8)

on [c, d]. In particular, from either (2.7) or (2.8), x
(n)
0 (t) is of one sign. It follows from the assumed positivity of

x0(t) and the nature of the boundary conditions (2.4) that x
(n−1)
0 (t) is decreasing so that x∗n(t) < 0 and x0(t)

is a solution of (2.7). In addition, from the boundary conditions (2.4), x
(i)
0 (t) > 0 on (c, d), 0 ≤ i ≤ p + 1, and

x
(i)
0 (t) < 0 on (c, d), p + 2 ≤ i ≤ n− 1. As a consequence, not only is x0(t) is a solution of (2.7), but also where

(2.7) takes the form

x(n) = −
p+2∑
i=1

kix
(i−1) +

n∑
i=p+3

kix
(i−1). (2.9)

Our discussion to this point has been based on (1.1) having distinct solutions whose difference satisfies
(2.2). This led to optimal intervals being determined on which only trivial solutions exist for boundary value
problems (2.7), (2.2) or (2.8), (2.2). A more detailed sign analysis led to determination of optimal intervals on
which only trivial solutions exist for only the boundary value problem (2.9), (2.2). As a consequence, solutions
of the boundary value problem (1.1), (1.3) will be unique on such subintervals.
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Theorem 2.1. If there is a vector-valued u(t) ∈ U for all a < t < b, for which the boundary value problem
(2.1), (2.2) has a nontrivial solution for some a < t1 < t2 < b, and if x0(t) is a time optimal solution satisfing
(2.4), where d− c is a minimum, then x0(t) is a solution of (2.9) on [c, d].

Theorem 2.2. Let ` = `(k1, . . . , kn) > 0 be the smallest positive number such that there exists a solution x(t)
of the boundary value problem for (2.9) satisfying

x(i)(0) = 0, i ∈ {0, . . . , n− 1} \ {p + 1}, x(p+1)(`) = 0, (2.10)

with x(t) > 0 on (0, `], or ` = ∞ if no such solution exists. If y(t) and z(t) are solutions of the boundary value
problem (1.1), (1.3), for some a < t1 < t2 < b, and if t2 − t1 < `, it follows that y(t) ≡ z(t) on [t1, t2], and this
is best possible for the class of all differential equations satisfying the Lipschitz condition (B).

Proof. Since equation (2.9) is autonomous, translations of solutions are again solutions of (2.9). Hence, it
suffices to apply Theorem 2.1 with respect to the boundary conditions at 0 and `.

Now, if y(t) and z(t) are distinct solutions of (1.1) whose difference w(t) := y(t)− z(t) satisfies (2.2), where
t2 − t1 < `, then w(t) is a nontrivial solution of the boundary value problem (2.1), (2.2), for appropriately
defined u ∈ U . Then, from the discussion and Theorem 2.1, equation (2.9) has a nontrivial solution on a
subinterval of length less than `. But, by the minimality of `, such a boundary value problem can have only
the trivial solution; this is a contradiction. Therefore, solutions of the boundary value problem (1.1), (1.3) are
unique, whenever t2 − t1 < `.

That this is best possible from the fact that (2.9) satisfies the Lipschitz condition (B), and if ` 6= ∞,
then x(t) is a nontrivial solution of (2.9) and (2.2) on [0, `]. The boundary value problem also has the trivial
solution.

Remark 2.1. Since (2.9) is a linear equation, we observe that, if x(t) is the solution, of the initial value
problem for (2.9), satisfying,

x(i)(0) = 0, i ∈ {0, . . . , n− 1} \ {p + 1}, x(p+1)(0) = 1,

and if η > 0 is the first positive number such that x(p+1)(η) = 0, then η = `(k1, . . . , kn) of Theorem 2.2.

Because of the uniqueness relationships stated in Theorem 1.1, we can apply Theorem 2.2 to obtain optimal
intervals for uniqueness of solutions of the boundary value problem (1.1), (1.2).

Theorem 2.3. Let ` be as in Theorem 2.2. If y(t) and z(t) are solutions of the boundary value problem (1.1),
(1.2), for some a < t1 < t2 < t3 < b, and if t3 − t1 ≤ `, it follows that y(t) ≡ z(t) on [t1, t3], and this is best
possible for the class of all differential equations satisfying the Lipschitz condition (B).

Proof. In view of Theorem 1.1 and Theorem 2.2, solutions of the boundary value problem (1.1), (1.2) are
unique, when t3 − t1 ≤ `. To see again that this is best possible, consider the nontrivial solution x(t) of (2.9)
and (2.10) in Theorem 2.2.

Let ε > 0 be sufficiently small that x(t) is a solution of (2.9) on [0, ` + ε]. Now, x(p+2)(t) < 0 on [0, ` + ε].
From (2.10), x(p+1)(`) = 0, and since x(p+2)(`) < 0, we have that x(p)(t) has a positive maximum at `. So,
there exist 0 < τ1 < ` < τ2 < ` + ε such that x(t) is a nontrivial solution of (2.9) satisfying x(i)(0) = 0, i ∈
{0, . . . , n− 1} \ {p + 1}, and x(p)(τ1)− x(p)(τ2) = 0. This boundary value problem also has the trivial solution.
Since ε > 0 was arbitrary, the “best possible” statement follows for uniqueness of solutions of the boundary
value problem (1.1), (1.2).

3 Optimal Intervals of Existence for Linear Equations

In the case of boundary value problem (1.1), (1.2), we do not have a “uniqueness implies existence” theorem
to appeal to, since this is an open question for this type of boundary value problem. However, uniqueness does
imply existence for linear differential equations, and so the following corollary can be stated.

Corollary 3.1. Let ` be as in Theorem 2.2. Assume ri(t), 1 ≤ i ≤ n, and q(t) are continuous on (a, b) and
that |ri(t)| ≤ ki on (a, b), 1 ≤ i ≤ n. If a < t1 < t2 < t3 < b and t3 − t1 < `, then the boundary value problem,

y(n) =
n∑

i=1

ri(t)y(i−1) + q(t),
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y(i)(t1) = yi+1, i ∈ {0, . . . , n− 1} \ {p + 1}, y(p)(t2)− y(p)(t3) = yp+2,

has a solution for any assignment of values of yi ∈ R, 1 ≤ i ≤ n.
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