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Triparametric self information function and entropy
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Abstract

In this paper we start with a triparametric self information function and triparametric entropy. Some famil-
iar entropies are derived as particular cases. A measure called information deviation and some generalization
of Kullback’s information are obtained under some boundary conditions.
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1 Introduction

Shannon[10] first introduced the idea of self-information function in the form

f(x) = − log2 x, 0 < x ≤ 1. (1.1)

In this paper we use the method of averaging self-informations introduced by Shannon. Like Shannon we
introduce a triparametric self-information function defined by

f3(x; α, β, γ) =
k(xα/γ − xβ/γ)

x
, 0 < x ≤ 1, α ≥ 0, β ≥ 0, γ > 0, α 6= β 6= γ (1.2)

Where k is a constant, depending upon the real valued parameters α, β, γ and k is ascertained by a suitable
pair (x, f3). We apply the following conditions on f3:

(i) f3 → 0 as x→ 0.
(ii) f3 = 0, when x = 1.

(iii) f3 = 1, x = 1
2 , then k =

(
2

γ−α
γ − 2

γ−β
γ

)−1

.

The function shows the following particular behaviors:

(I) If α, β are fixed, then for x < 1
2 , f3 →∞ as γ →∞ and for x > 1

2 , f3 → 0 as γ →∞.

(II) For any fixed γ, f3 → −(2x)
α−γ

γ log2 x as α→ β.
(III) If β = γ and α→ γ(α < γ), then f3 → − log2 x.

Self-information function is different from information function. Different authors, namely Darcozy [4], Aczel
[1], Arndt [2], Chaundy and Mcleod [3], Havrda and Charvat [5], Kannapan [6], Sharma and Taneja [11], Mittal
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[9] and some others have solved some typical functional equations and have used their solutions as entropy,
inaccuracy, directed divergence etc., In the capacity of finite measures only in complete probability distributions.
The method of averaging self-informations includes the case of generalized probability distributions. Moreover,
we have discussed in this paper, information measures in the capacity of even an infinite range, because
a parameter can have negative values also corresponding to phenomenal circumstances. Further since it is
uncertain and difficult to choose an arbitrary functional equation and to find its suitable solutions to be used
as information measures, it becomes easier if we choose any suitable parametric self-information function that
can satisfy a number of effective boundary conditions. We have given a most simple and general choice in (1.2).

Section 2 describes a triparametric entropy from which other familiar entropies have been deduced as par-
ticular cases. We have given a number of this entropy in section 3 as joint entropy, triparmetric information
functions, generalized information function, generalized inaccuracy, a new information called information de-
viation and lastly generalizations of Kullback’s information.

2 Triparametric entropy

Let P = (p1, p2, ..., pn) be a finite discrete probability distribution, where 0 < pi ≤ 1,
∑n

i=1 pi ≤ 1 .
Then, averaging the function f3(pi;α, β, γ) with respect to P , we define the triparametric entropy as

H(P ;α, β, γ) =
(
2

γ−α
γ − 2

γ−β
γ

)−1
[

n∑
i=1

(pα/γ
i − p

β/γ
i )

]/
n∑

i=1

pi, (2.1)

where α, β, γ > 0, α 6= β 6= γ.
When P is complete, we have

H(P ;α, β, γ) =
(
2

γ−α
γ − 2

γ−β
γ

)−1
[

n∑
i=1

(pα/γ
i − p

β/γ
i )

]
, (2.2)

where α ≥ 0, β ≥ 0, γ > 0, α 6= β 6= γ.

2.1 Some familiar entropies

From (2.2), we get the following entropies as particular cases:
(i) γ = 1 gives Sharma and Taneja’s entropy [11] of type (α,β) in the form

H(P ;α, β) =
(
21−α − 21−β

)−1

[
n∑

i=1

(pα
i − pβ

i )

]
, α 6= β (2.3)

and

Lt
α→β

H(P ;α, β) =

(
n∑

i=1

pβ
i log2

1
pi

)
2β−1.

(ii) Putting α = γ = 1, we get Darcozy’s entropy [4] of type β as

H(P ;β) =
(
21−β − 1

)−1

[
n∑

i=1

(pβ
i − 1)

]
, β > 0, β 6= 1 (2.4)

(iii) When β = γ and α→ γ, then (2.2) reduces to

H(P ) =
n∑

i=1

pi log2

1
pi

, (2.5)

which is Shannon entropy.
(iv) When n > 2, then H →∞ as γ →∞; when n = 1, then H = 0, p1 = 1 and when n = 2, then H = 1.

3 Application of the entropy (2.2)
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3.1 Joint entropy

For joint probability distribution, a relation similar to (2.2) also holds in the form

H(PQ;α, β, γ) =
(
2

γ−α
γ − 2

γ−β
γ

)−1

 n∑
k=1

m∑
j=1

(pα/γ
kj − p

β/γ
kj )

 , (3.1)

0 < pkj ≤ 1,
n∑

k=1

m∑
j=1

pkj = 1; α ≥ 0, β ≥ 0, γ > 0, α 6= β.

Theorem 3.1. If P = (p1, p2, ..., pn) be the distribution of input symbols of a source, Q = (q1, q2, ..., qm) be
that of output symbols and PQ = (pk1, pk2, ..., pkm; k = 1, 2, ..., n) be the joint distribution of input and output
symbols; also

Rk =
(

pk1

pk
,

pk2

pk
, ...,

pkm

pk

)
be the conditional distribution of output symbols and

Rj =
(

p1j

qj
,

p2j

qj
, ...,

pnj

qj

)
be the conditional distribution of input symbols, where

pkj

/
pk = pj|k, (j = 1, 2, ...,m); pkj

/
qj = pk|j , (k = 1, 2, ..., n);

m∑
j=1

pkj = pk and
n∑

k=1

pkj = qj ,

then

H(PQ;α, β, γ) =
n∑

k=1

p
β
γ

k H(Rk;α, β, γ) +
(
2

γ−α
γ − 2

β−γ
γ

)−1

 n∑
k=1

(
p

α
γ

k − p
β
γ

k

) m∑
j=1

p
α
γ

j|k

 . (3.2)

Putting α = γ = 1 and using
∑m

j=1 pj|k = 1 in (3.2), we have

H(PQ; β) =
n∑

k=1

pβ
kH1(Rk;β) + H1(P ;β). (3.3)

Theorem 3.2. If pkj = pkqj , then

H(PQ; α, β, γ) =
n∑

k=1

p
α
γ

k H(Rk;α, β, γ) +
m∑

j=1

q
β
γ

j H(Rj ;α, β, γ)

=
n∑

k=1

p
α
γ

k H(Q;α, β, γ) +
m∑

j=1

q
β
γ

j H(P ;α, β, γ). (3.4)

3.2 Triparametric information function

With the help of equation (2.2), we define a triparametric information function in the form

F3(x) = F3(x;α, β, γ) =
(
2

γ−α
γ − 2

γ−β
γ

)−1

(xα/γ − xβ/γ) (3.5)

α ≥ 0, β ≥ 0, γ > 0, α 6= β 6= γ and 0 < x ≤ 1.

Where F3(0) = 0, but F3(1) = 0 and F3

(
1
2

)
= 1

2 always.
Thus

H(P ;α, β, γ) =
n∑

k=1

F (pk), 0 < pk ≤ 1,
n∑

ki=1

pk = 1. (3.6)

Putting a = α/γ, b = β/γ in (3.5), we have

F3(x) = F (x;α, β, γ) =
(
21−a − 21−b

)−1
(xa − xb), −∞ < a, b <∞, a 6= b. (3.7)

Now, from practical point of view, as far as an inaccuracy in a measure is concerned, a measure is associated
with at least two probability distributions, corresponding to which at least two variables u and v are needed.
This suggests the choice of at least four parameters a, b, c and d.
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3.3 Generalized information function

Concerning an association of two variables u, v and four parameters a, b, c, d, an information measure similar
to (3.7) is introduced by

F4(u, v) = F (u, v; a, b, c, d) = G[uavb − ucvd], (3.8)

0 < u, v ≤ 1, −∞ < a, b, c, d <∞, a 6= b 6= c 6= d

as the generalized information function, which possesses the characteristic of becoming both bounded and
unbounded.

3.3.1 Boundary conditions

(i) At u = 1, v = 1
2 , F4

(
1, 1

2

)
= 1

2 , so that G = (21−b − 21−d)−1, where b 6= d.

If a + b = c + d, where a 6= c, then F4

(
1
2 , 1

2

)
= 0. Similarly at u = 1

2 , v = 1, F4

(
1
2 , 1
)

= 1
2 so that

G = (21−a − 21−c)−1, where a 6= c.

(ii) At u = 1, v = 1
2 , F4

(
1, 1

2

)
= 1

2 so that G = (2−b − 2−d)−1, where b 6= d.

At u = 1
2 , v = 1, F4

(
1
2 , 1
)

= 1, so that G = (2−a − 2−c)−1, where a 6= c.

3.3.2 Generalize inaccuracy

Let P = (p1, p2, ..., pn) and Q = (q1, q2, ..., qn) be two discrete probability distributions concerned with
(3.8), where 0 < pi ≤ 1, 0 < qi,

∑n
i=1 pi = 1,

∑n
i=1 qi = 1, (u, v) = (pi, qi) or (qi, pi); i = 1, 2, ..., n.

We may then define the generalized inaccuracies by

I4(P ‖Q) =
n∑

i=1

F4(pi, qi) = (21−b − 21−d)−1

[
n∑

i=1

pa
i qb

i −
n∑

i=1

pc
iq

d
i

]
, b 6= d, (3.9)

I4(Q ‖P ) =
n∑

i=1

F4(qi, pi) = (21−b − 21−d)−1

[
n∑

i=1

qa
i pb

i −
n∑

i=1

qc
i p

d
i

]
, b 6= d, (3.10)

which follows from (3.8) and boundary condition 3.3.1(i).
Given P and Q, we see that
(i) I4(P ‖Q) → +∞ or −∞, according as a → −∞ or c → −∞ for b < d; or as c → −∞ or a → −∞ for
b > d.

(ii) If d = 1, c = 0, then I4(P ‖Q) → (1− 21−b)−1 as a→∞.

(iii) If d = 1, c = 0, then I4(P ‖Q) → 1 as b→∞.

It is to be noted that when d = 1, c = 0, then

I4(Q ‖P ) = (21−b − 1)−1

[
n∑

i=1

pa
i qb

i − 1

]
. (3.11)

3.3.3 Information deviations

If d = 1, c = 0, a + b = 1, then we introduce the quantities

D(Q ‖P ‖Q) = Lt
b→1

I4(P ‖Q) = H(Q)−H(Q ‖P ) (3.12)

and
D(P ‖Q ‖P ) = Lt

b→1
I4(Q ‖P ) = H(P )−H(P ‖Q) (3.13)

as the information deviation of Q from P and of P from Q respectively, where

H(P ) =
n∑

k=1

pk log2

1
pk

, H(Q) =
n∑

k=1

qk log2

1
qk
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are Shannon’s [10] entropies and

H(Q‖P ) =
n∑

k=1

qk log2

1
pk

, H(P‖Q) =
n∑

k=1

pk log2

1
qk

are Kerridge’s [7] inaccuracies. Thus

D(Q‖P ‖Q ) =
n∑

k=1

qk log2

pk

qk
, D(P‖Q ‖P ) =

n∑
k=1

pk log2

qk

pk
(3.14)

3.3.4 Kullback’s information and its generalizations

If we take the boundary conditions 3.3.1(ii), then

I4(P ‖Q) =
1
2
I∗4 (P ‖Q), (3.15)

where

I∗4 (P ‖Q) = (2−b − 2−d)−1

[
n∑

i=1

pa
i qb

i −
n∑

i=1

pc
iq

d
i

]
, b 6= d. (3.16)

Now if d = 0, c = 1, a + b = 1, then

Lt
b→0

I4(P
∥∥Q) = 1

2 I(P ‖P ‖Q), Lt
b→0

I4(Q
∥∥P ) = 1

2 I(Q ‖Q ‖P ), (3.17)

where

D(P‖P ‖Q ) =
n∑

k=1

pk log2

pk

qk
= H(P ‖Q)−H(P ) (3.18)

and

D(Q‖Q ‖P ) =
n∑

k=1

qk log2

qk

pk
= H(Q ‖P )−H(Q) (3.19)

represents Kullback’s [8] informations.

Information deviations and Kullback’s informations are equal and opposite measures. The fact follows from

D(Q ‖P ‖Q) + I(Q ‖Q ‖P ) = 0, D(P ‖Q ‖P ) + I(P ‖P ‖Q) = 0 (3.20)

It may be noted that information deviations and Kullback’s informations become zero, if pk = qk for k =
1, 2, ..., n.

3.3.5 Generalized Boundary Conditions

We shall now show that so far as our generalized inaccuracies (3.9) and (3.10) are concerned, there exist certain
boundary conditions for which certain limiting functions of (3.9) and (3.10) may be taken as the generalized
forms of Kullback’s informations. For this, we generalized the boundary conditions in the following ways and
get the results:
(i) Let u = 1, v = 1

2 , F4

(
1, 1

2

)
= 1

2m ,

where m is real number ≥ 0. Then, we have for d = 0, c = 1, a + b = 1,

I(1)(P,Q,m) = Lt
b→0

I4(P
∥∥Q) = 2−m

n∑
k=1

pk log2

pk

qk
, m ≥ 0 (3.21)

to be called the first generalized Kullback’s information. For m = 0 in (3.21), we get Kullback’s information.
The information (3.21) decreases as m increases.

(ii) let u = 1, v = 1
2 , F4

(
1, 1

2

)
= 1

2m , where m is real number ≥ 0. Also let d = 0, c = 1 + m, a + b = 1 + m,

then we have

I(2)(P,Q,m) = Lt
b→0

I4(P
∥∥Q) = 2−m

n∑
k=1

pm+1
k log2

pk

qk
, m ≥ 0 (3.22)
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to be called the second generalized Kullback’s information. It is observed that I2(P,Q,m) ≤ I1(P,Q,m).

For m = 0 in (3.22), we get Kullback’s information.

(iii) let u = 1, v = 1
2 , F4

(
1, 1

2

)
= 2−1/m, where m is any positive real number. Then the values

d = 0, c = 1 + 1/m, a + b = 1 + 1/m, lead to the information

I(3)(P,Q,m) = Lt
b→0

I4(P ‖Q) = 2−1/m
n∑

k=1

p
1/m+1
k log2

pk

qk
, (3.23)

which may be called the third generalized Kullback’s information. In this case

Lt
m→0

I(3)(P,Q,m) = 0 and Lt
m→∞

I(3)(P,Q,m) = I(P ‖P ‖Q).

References

[1] J. Aczel, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.

[2] C. Arndt, Information Measure-Information and Its Description in Science and Engineering, Springer,
Berlin, 2001.

[3] T.W. Chaundy, and J.B. Mcleod, On a functional equation, Proc. Edinb. Math. Soc. Edinb. Notes,
43(1960), 7-8.

[4] Z. Darcozy, Generalized information function, Inf. Control, 16(1970), 35-51.

[5] J. Harvda, and F. Charvat, Quantification method of classification processes, Kybernetika, 3(1967),
30-35.

[6] P. Kannapan, On Shannon’s entropy, directed divergence and inaccuracy, Z. Wahrs. Verw. Ceb.,
22(1972), 95-100.

[7] D.F. Kerridge, Inaccuracy and inference, J.R. Statist. Soc., B23(1961), 184-194.

[8] S. Kullback, Information Theory and Statistics, John Wiley, New York, 1959.

[9] D.P. Mittal, On Some functional equations concerning entropy, directed divergence and inaccuracy,
Metrika, 22(1975), 35-45.

[10] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27(1948), 623-658.

[11] B.D. Sharma, and I.J. Taneja, Entropy of type (α, β) and other generalized measures in information
theory, Metrika, 22(1975), 205-215.

Received: March 04, 2013; Accepted: May 19, 2013

UNIVERSITY PRESS


	Introduction
	Triparametric entropy
	Some familiar entropies

	Application of the entropy (2.2)
	Joint entropy
	Triparametric information function
	Generalized information function
	Boundary conditions
	Generalize inaccuracy
	Information deviations
	Kullback's information and its generalizations
	Generalized Boundary Conditions



