Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...

Fuzzy boundedness and contractiveness on intuitionistic 2-fuzzy 2-normed linear space

Thangaraj Beaula,^{*a*,*} and Lilly Esthar Rani^{*b*}

 a,b Department of Mathematics, TBML College, Porayar, Tamil Nadu, India.

Abstract

The concepts of fuzzy boundedness, fuzzy continuity and intuitionistic fuzzy 2- contractive mapping on intuitionistic 2-fuzzy 2-normed linear space are introduced. Using these concepts some theorems are proved.

Keywords: Intuitionistic 2-fuzzy 2-normed linear space, convergent and Cauchy sequences, intuitionistic 2-fuzzy 2-Banach space.

2010 MSC: 46B20, 46B99, 46A19, 46A99, 47H10.

©2012 MJM. All rights reserved.

1 Introduction

In 1965, the theory of fuzzy sets was introduced by L. Zadeh [9]. In 1964, a satisfactory theory of 2-norm on a linear space has been introduced and developed by Gahler [2]. In 2003, the concepts fuzzy norm and α -norm were introduced by Bag and Samanta [1]. Jialu Zhang [3] has defined fuzzy linear space in a different way. The notion of 2-fuzzy 2-normed linear space of the set of all fuzzy sets of a set was introduced by R.M. Somasundaram and Thangaraj Beaula [6]. The concept of intuitionistic 2fuzzy 2-normed linear space of the set of all fuzzy sets of a set was introduced by Thangaraj Beaula and Lilly Esthar Rani [7].

We have introduced the concepts of fuzzy boundedness, fuzzy continuity and intuitionistic fuzzy 2 contractive mapping on intuitionistic 2-fuzzy 2-normed linear space. Using these concepts some theorems are proved.

2 Preliminaries

For the sake of completeness, we reproduce the following definitions due to Gahler [2], Bag and Samanta [1] and Jialu Zhang [3].

Definition 2.1. [2] Let X be a real linear space of dimension greater than one and let $\|\cdot, \cdot\|$ be a real valued function on $X \times X$ satisfying the following conditions:

1. ||x, y|| = 0 if and only if x and y are linearly dependent,

- 2. ||x, y|| = ||y, x||,
- 3. $\|\alpha x, y\| = |\alpha| \|x, y\|$, where α is real,
- 4. $||x, y+z|| \le ||x, y|| + ||x, z||$.

*Corresponding author.

E-mail addresses: edwinbeaula@yahoo.co.in (Thangaraj Beaula)

 $\|\cdot,\cdot\|$ is called a 2-norm on X and the pair $(X, \|\cdot,\cdot\|)$ is called a 2-normed linear space.

Definition 2.2. [1] Let X be a linear space over K(the field of real or complex numbers). A fuzzy subset N of $X \times R$ (R, the set of real numbers) is called a fuzzy norm on X if and only if for all x, $u \in X$ and $c \in K$.

(N1) for all $t \in R$ with t < 0, N(x, t)=0.

(N2) for all $t \in R$ with t > 0, N(x, t)=1 if and only if x = 0.

(N3) for all $t \in R$ with t > 0, $N(cx, t) = N(x, \frac{t}{|c|})$, if $c \neq 0$.

(N4) for all s, $t \in R$, x, $u \in X$, $N(x+u, s+t) \ge min \{ N(x, s), N(u, t) \}$.

(N5) $N(x, \cdot)$ is a non decreasing function of R and $\lim_{t\to\infty} N(x, t) = 1$.

The pair (X, N) will be referred to as a fuzzy normed linear space.

Definition 2.3. [3] Let X be any non - empty set and F(X) be the set of all fuzzy sets on X. Then for U, V $\in F(X)$ and $k \in K$ the field of real numbers, define

$$\begin{array}{rcl} U+V &=& \left\{ \begin{array}{ll} (x+y,\lambda \wedge \mu) | (x,\lambda) \in U, (y,\mu) \in V \right\} \\ kU &=& \left\{ \begin{array}{ll} (kx,\lambda | (x,\lambda) \in U \right\} \end{array} \right. \end{array}$$

Definition 2.4. [3] A fuzzy linear space $\tilde{X} = X \times (0,1]$ over the number field K, where the addition and scalar multiplication operation on \tilde{X} are defined by

 $(x, \lambda)+(y, \mu)=(x+y, \lambda \wedge \mu), k(x, \lambda)=(kx, \lambda)$

is a fuzzy normed space if to every $(x, \lambda) \in \tilde{X}$ there is associated a non-negative real number, $\|(x, \lambda)\|$, called the fuzzy norm of (x, λ) , in such a way that

- 1. $||(x, \lambda)|| = 0$ if and only if x=0 the zero element of $X, \lambda \in (0,1]$.
- 2. $||k(x, \lambda)|| = |k| || (x, \lambda)||$ for all $(x, \lambda) \in \tilde{X}$ and all $k \in K$.
- 3. $||(x, \lambda) + (y, \mu)|| \le ||(x, \lambda \land \mu)|| + ||(y, \lambda \land \mu)||$ for all (x, λ) and $(y, \mu) \in \tilde{X}$.
- 4. $||(x, \forall \lambda_t)|| = \forall ||(x, \lambda_t)||$ for $\lambda_t \in (0, 1]$.

Definition 2.5. [6] Let X be a non empty and F(X) be the set of all fuzzy sets in X. If $f \in F(X)$ then $f = \{(x, f) \in F(X) \}$ $|\mu\rangle | x \in X$ and $\mu \in (0,1]$. Clearly f is a bounded function for $|f(x)| \leq 1$. Let K be the space of real numbers, then F(X) is a linear space over the field K where the addition and scalar multiplication are defined by

$$\begin{array}{lll} f+g &=& \{ \ (x,\mu)+(y,\eta)=\{ \ (x+y,\mu\wedge\eta)|(x,\mu)\in f, \ and \ (y,\eta)\in g \} \\ kg &=& \{ \ (kf,\mu \ | \ (x,\mu)\in f \} \ where \ k\in K. \end{array}$$

The linear space F(X) is said to be normed space if to every $f \in F(X)$, there is associated a non-negative real number ||f|| called the norm of f in such a way that

||f|| = 0 if and only if f = 01. For, $||f|| = 0 \Leftrightarrow \{ || (x, \mu) || | (x, \mu) \in f \} = 0$ $\Leftrightarrow x = 0$, $\mu \in (0,1]$ $\Leftrightarrow f = 0.$

2.
$$||kf|| = |k| ||f||$$
, $k \in K$
For, $||kf|| = \{ ||k(x, \mu)|| | (x, \mu) \in f, k \in K \}$
 $= \{ |k| ||x, \mu|| | (x, \mu) \in f \}$
 $= |k| ||f||.$

3.
$$|| f+g || \le || f || + || g || for every f, g \in F(X)$$

For, $|| f+g || = \{ || (x, \mu) + (y, \eta) || | x, y \in X, \mu, \eta \in (0, 1] \}$
 $= \{ || (x+y), (\mu \land \eta) || | x, y \in X, \mu, \eta \in (0, 1] \}$
 $\le \{ || x, \mu \land \eta || + || y, \mu \land \eta || | (x, \mu) \in f and (y, \eta) \in g \}$
 $= || f || + || g ||.$

And so $(F(X), \|\cdot\|)$ is a normed linear space.

Definition 2.6. [6] A 2-fuzzy set on X is a fuzzy set on F(X).

Definition 2.7. [6] Let F(X) be a linear space over the real field K. A fuzzy subset N of $F(X) \times R$, (R, the set of real numbers) is called a 2-fuzzy 2-norm on X(or fuzzy 2-norm on F(X)) if and only if,

- (N1) for all $t \in R$ with $t \leq 0$, $N(f_1, f_2, t) = 0$.
- (N2) for all $t \in R$ with t > 0, $N(f_1, f_2, t) = 1$ if and only if f_1 and f_2 are linearly dependent.
- (N3) $N(f_1, f_2, t)$ is invariant under any permutation of f_1, f_2 .
- (N4) for all $t \in N$ with $t \ge 0$, $N(f_1, cf_2, t) = N(f_1, f_2, \frac{t}{|c|})$ if $c \ne 0, c \in K$ (field).
- (N5) for all s, $t \in R$, N $(f_1, f_2 + f_3, s + t) \ge min \{ N(f_1, f_2, s), N(f_1, f_3, t) \}$.
- (N6) $N(f_1, f_2, \cdot) : (0, \infty) \to [0, 1]$ is continuous.
- (N7) $\lim_{t\to\infty} N(f_1, f_2, t) = 1.$

Then the pair (F(X), N) is a fuzzy 2-normed linear space or (X, N) is a 2-fuzzy 2-normed linear space.

Definition 2.8. A binary operation $* : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous t-norm if it satisfies the following conditions:

- 1. * is commutative and associative.
- 2. * is continuous.
- 3. a * 1 = a, for all $a \in [0, 1]$.
- 4. $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ and $a, b, c, d \in [0, 1]$.

Definition 2.9. A binary operation $\Diamond : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous t - conorm if it satisfies the following conditions:

- 1. \Diamond is commutative and associative.
- 2. \Diamond is continuous.
- 3. $a \diamond 0 = a$, for all $a \in [0, 1]$.
- 4. $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ and $a, b, c, d \in [0, 1]$.
- **Remark 2.1.** (1) For any $r_1, r_2 \in (0, 1)$ with $r_1 > r_2$ there exist $r_3, r_4 \in (0, 1)$ such that $r_1 * r_3 \ge r_2$ and $r_1 \ge r_4 \diamond r_2$.
- (2) For any $r_5 \in (0,1)$, there exist $r_6, r_7 \in (0,1)$ such that $r_6 * r_6 \ge r_5$ and $r_7 \diamondsuit r_7 \ge r_5$.

Definition 2.10. An intuitionistic fuzzy 2- normed linear space (I-F-2-NLS) is of the form $A = \{F(X), N(f_1, f_2, t) | (f_1, f_2) \in F[(X)]^2 \}$ where F(X) is a linear space over a field K, * is a continuous t-norm, \Diamond is a continuous t-conorm, N and M are fuzzy sets on $[F(X)]^2 \times (0,\infty)$ such that N denotes the degree of membership and M denotes the degree of non-membership of $(f_1, f_2, t) \in [F(X)]^2 \times (0,\infty)$ satisfying the following conditions:

- (1) $N(f_1, f_2, t) + M(f_1, f_2, t) \le 1.$
- (2) $N(f_1, f_2, t) > 0.$
- (3) $N(f_1, f_2, t) = 1$ if and only if f_1, f_2 are linearly dependent.

- (4) $N(f_1, f_2, t)$ is invariant under any permutation of f_1, f_2 .
- (5) $N(f_1, f_2, t) : (0, \infty) \to [0, 1]$ is continuous in t.
- (6) $N(f_1, cf_2, t) = N(f_1, f_2, \frac{t}{|c|}), \text{ if } c \neq 0, c \in K.$
- (7) $N(f_1, f_2, s) * N(f_1, f_3, t) \le N(f_1, f_2 + f_3, s + t).$
- (8) $M(f_1, f_2, t) > 0.$
- (9) $M(f_1, f_2, t) = 0$ if and only if f_1, f_2 are linearly dependent.
- (10) $M(f_1, f_2, t)$ is invariant under any permutation of f_1, f_2 .
- (11) $M(f_1, cf_2, t) = M(f_1, f_2, \frac{t}{|c|})$ if $c \neq 0, c \in k$.
- (12) $M(f_1, f_2, s) \Diamond M(f_1, f_3, t) \ge M(f_1, f_2 + f_3, s + t).$
- (13) $M(f_1, f_2, t) : (0, \infty) \to [0,1]$ is continuous in t.

3 Fuzzy boundedness and fuzzy continuity on intuitionistic fuzzy 2- normed linear space

Definition 3.1. A sequence $\{f_n\}$ in an (IF 2-NLS) is said to converge to f if for given r > 0, t > 0, 0 < r < 1, there exists an integer $n_0 \in N$ such that

 $N(f_n - f, g_1, t) > 1 - r, N(f_n - f, g_2, t) > 1 - r$

 $M(f_n - f, g_1, t) < r, M(f_n - f, g_2, t) < r$

where g_1, g_2 are linearly independent (or) $N(f_n-f, g_i, t) \to 1$ as $n \to \infty$ for i = 1, 2 and $M(f_n - f, g_i, t) \to 0$ as $n \to \infty$ for i = 1, 2.

Definition 3.2. A sequence $\{f_n\}$ is a cauchy sequence if for given $\in > 0$, $N(f_n - f_m, g_i, t) > 1 - \in$, $M(f_n - f_m, g_i, t) < \in$, $0 < \in < 1$, t > 0, g_i 's are linearly independent, for i = 1, 2.

Definition 3.3. Let $A = \{ (F(X), N(f_1, f_2, t), M(f_1, f_2, t) | (f_1, f_2) \in [F(X)]^2) \}$ be an intuitionistic fuzzy 2-normed linear space then

 $N((f_1, f_2), (f_1', f_2'), t) = N((f_1 - f_1'), (f_2 - f_2'), t)$

 $M((f_1, f_2), (f_1, f_2), t) = M((f_1 - f_1), (f_2 - f_2), t)$

are intuitionistic 2-fuzzy metrics defined on A and (A, N, M, *) is an intuitionistic 2-fuzzy metric space (i-2-f-m-s).

Definition 3.4. Let (A, N, M, *) be an intuitionistic 2-fuzzy normed linear space. For t > 0, define the openball $B((f_1, f_2), r, t)$ with center $(f_1, f_2) \in A$ and radius 0 < r < 1 as

$$B((f_1, f_2), r, t) = \{ (g_1, g_2) \in A : N((f_1, g_1), (f_2, g_2), t) > 1 - r \}$$

$$M(f_1 - g_1), (f_2 - g_2) < r\}$$
.

Definition 3.5. A subset $G \subset A$ is said to be open if for each $(f_1, f_2) \in G$, there exists t > 0 and 0 < r < 1 such that $B((f_1, f_2), r, t), r, t) \subset G$.

Definition 3.6. Let \Im be the set of all open subsets of A, then it is called the intuitionistic 2-fuzzy topology induced by the intuitionistic 2-fuzzy norm.

Definition 3.7. Let (A, N, M, *) be an *i*-2-*f*-*m*-*s* then a subset D of A is said to be intuitionistic 2- fuzzy bounded if there exists t > 0 and 0 < r < 1 such that

 $M((f_1, f_2), (g_1, g_2), t) > 1 - r, N((f_1, f_2), (g_1, g_2), t) < r$ for each $((f_1, f_2), (g_1, g_2)) \in [F(X)]^2.$

Definition 3.8. Let $(A, N_1, M_1, *)$ $(B, N_2, M_2, *)$ be an intuitionistic 2-fuzzy normed linear space, a mapping $T : A \to B$ is said to be an intuitionistic fuzzy 2 - bounded if there exist constants $m_1, m_2 \in R^+$ such that for every $f \in A$ and for each t > 0,

$$N_2(Tf, Tg, t) > N_1(f, g, \frac{t}{m_1})$$

 $M_2(Tf, Tg, t) > M_1(f, g, \frac{t}{m_2})$.

Definition 3.9. Let $T : A \to B$ be a linear operator from IF 2-Banach Space A to IF 2- Banach space B. Then T is said to be an intuitionistic 2 -fuzzy continuous if for each \in with $0 < \in < 1$, there exists δ , $0 < \delta < 1$, such that

 N_1 $(f, g, t) \geq 1$ - δ and M_1 $(f, g, t) \leq \delta$, implies

 N_2 (Tf, Tg, t) \geq 1- \in and M_2 (Tf, Tg, t) $\leq \in$.

Theorem 3.1. A linear operator $T : (A, N_1, M_1, *) \rightarrow (B, N_2, M_2, *)$ is an intuitionistic 2- fuzzy bounded if and only if it is an intuitionistic 2- fuzzy continuous.

Proof. Assume $T : A \to B$ is an intuitionistic 2-fuzzy bounded. Then there exist constants $m_1, m_2 \in R^+$ such that for every $f \in A$ and for each t > 0,

$$N_{2}(Tf, Tg, t) \geq N_{1}(f, g, \frac{t}{m_{1}})$$

$$M_{2}(Tf, Tg, t) \leq M_{1}(f, g, \frac{t}{m_{2}}).$$
(3.1)

Suppose for \in , with $0 < \in < 1$, choose δ , with $0 < \delta < 1$

such that $N_1(f, g, t) \ge 1$ - δ and $M_1(f, g, t) \le for any t > 0$ and $N_1(f, g, \frac{t}{m_1}) \le 1$ - \in

$$M_1(f, g, \frac{t}{m_2}) < \in \text{ (because } m_1, m_2 > 0\text{)}.$$
 (3.2)

Using (3.2) in (3.1) we get

 N_2 (Tf, Tg, t) $\geq 1 - \epsilon$ and M_2 (Tf, Tg, t) $\leq \epsilon$

Hence T is an intuitionistic 2- fuzzy continuous. Conversely,

Suppose T is an intuitionistic 2- fuzzy continuous.

For \in with $0 < \in < 1$, there exists δ with $0 < \delta < 1$

such that N1 (f, g, t) < 1 - δ , M1 (f, g, t)< δ implies that

$$N_2(Tf, Tg, t) > 1 - \in, M_2(Tf, Tg, t) < \in.$$
 (3.3)

Choose $m_1, m_2 \in \mathbb{R}^+$ such that

 N_1 (f, g, $\frac{t}{m_1}$) $\leq 1 - \epsilon$ for given $N_1(f, g, t) > 1 - \delta$ and

$$M_1(f, g, \frac{t}{m_2}) \ge \epsilon$$
 for given $M_1(f, g, t) < \delta.$ (3.4)

Then applying (3.4) on (3.3) we get

$$N_2(Tf, Tg, t) > 1 - \epsilon \geq N_1(f, g, \frac{t}{m_1})$$

$$M_2$$
 (Tf, Tg, t) $< \delta \le M_1$ (f, g, $\frac{t}{m_2}$)

Therefore T is intuitionistic 2- fuzzy bounded.

4 Intuitionistic 2-fuzzy contraction on intuitionistic 2-fuzzy metric space

Definition 4.1. Let (A, N, M, *) be an intuitionistic 2-fuzzy metric space then $T: A \to A$ is said to be intuitionistic 2-fuzzy contraction if there exists $C \in (0, 1)$ such that CN_2 (Tf, Tg, t) $\geq N_1$ (f, g, t) and $\frac{1}{C}$ M_2 (Tf, Tg, t) $\leq M_1$ (f, g, t).

Theorem 4.1. Let (A, N, M, *) be a intuitionistic 2-fuzzy metric space. If $T : A \to A$ is an intuitionistic 2-fuzzy contractive mapping then T is an intuitionistic 2-fuzzy uniformly continuous.

Proof. Assume $T : A \to A$ is an intuitionistic 2- fuzzy contractive mapping. Then there exists $C \in (0, 1)$ such that $CN_2(Tf, Tg, t) \ge N_1(f, g, t)$ and

 $\frac{1}{C}$ M₂ (Tf, Tg, t) \leq M₁ (f, g, t) for every t < 0

Assume for a given \in with $0 < \epsilon < 1$ there exists $0 < \delta < 1$ such that N_1 (f, g, t) $\geq 1-\delta$ and M_1 (f, g, t) $< \delta$

Then CN_2 (Tf, Tg, t) $\geq 1 - \delta$ implies N_2 (Tf, Tg, t) $\geq \frac{1-\delta}{C}$ and M_2 (Tf, Tg, t) $\leq \delta$ implies M_2 (Tf, Tg, t) $\leq \delta C$

Choose C and δ in such a way that $\delta = \frac{1}{1+C}$. Then we can define \in so that it satisfies the relationship $\frac{1-\delta}{C} \ge 1-\epsilon$ and $\delta C \le \epsilon$. Thus N₂ (Tf, Tg, t) $\ge 1-\epsilon$ and M₂ (Tf, Tg, t) $\le \epsilon$. Therefore, T is an intuitionistic 2- fuzzy uniformly continuous.

Definition 4.2. Let (F(X), N, M) be an intuitionistic 2-fuzzy normed linear space. S is said to be is intuitionistic 2- fuzzy closed if and only if any sequence $\{f_n\}$ in S converges to $f \in S$. (ie) $\lim_{n\to\infty} N(f_n - f, g_i, t) = 1$ and $\lim_{n\to\infty} M(f_n - f, g_i, t) = 0$ for i = 1, 2 implies $f \in S$.

Definition 4.3. Let (F(X), N, M) be an intuitionistic 2-fuzzy normed linear space. \overline{B} $(f, \in, t) = \{ g \in F(X) | N (f, g, t) > 1 - \epsilon, M (f, g, t) < \epsilon \}$ is said to be a closed ball centered at f of radius ϵ w.r.to t if and only if any sequence $\{ f_n \}$ in $\overline{B}(f, \epsilon, t)$ converges to g then $g \in \overline{B}(f, \epsilon, t)$.

Theorem 4.2. Suppose A = (F(X), N, M) is an intuitionistic 2-fuzzy Banach space. Let $T : A \to A$ be an intuitionistic 2-fuzzy contractive mapping on $\overline{B}(f, \in, t)$ with contraction constant C and $C N (f, Tf, t) > 1 - \epsilon$ and $\frac{1}{C} M(f, Tf, t) < \epsilon$ Then there exists a sequence $\{f_n\}$ in F(X) such that $N(f, f_n, t) > 1-\epsilon$ and $M (f, f_n, t) < \epsilon$.

Proof. Assume $f_1 = T(f)$, $f_2 = T(f_1) = T(T(f_1)) = T^2(f_1)$ therefore $f_n = T(f_{n-1}) = T^n(f)$ for all $n \in N$. Then C N (f, Tf, t) > 1- \in implies N (f, Tf, t)> $\frac{1-\epsilon}{C} > 1 - \epsilon$

Therefore N $(f, f_1, t) > 1 \in$

Also $\frac{1}{C}$ M (f, Tf, t) $< \in$ implies M(f, Tf, t) $< C \in < \in$ Thus M(f, Tf, t) $< \in$ and so $f \in \overline{B}$ (f, \in , t) Now assume $f_1, f_2, .., f_{n-1} \in \overline{B}$ (f, \in , t) Let us show that $f_n \in \overline{B}$ (f, \in , t) C N (f_1, f_2, t) = C N (Tf, Tf_1, t) $\geq N$ (f, f_1, t) $\geq 1 - \in$ So, N (f_1, f_2 t) $> \frac{1 - \epsilon}{C} > 1 - \epsilon$ C N (f_2, f_3, t) = C N (T(f_1), T(f_2), t) $\geq N$ (f_1, f_2, t) $> 1 - \epsilon$ therefore N (f_2, f_3, t) $> \frac{1 - \epsilon}{C} > 1 - \epsilon$ Amain $\frac{1}{C}$ M (f_1 f_2, t) $= \frac{1 - \epsilon}{C} > 1 - \epsilon$

Again $\frac{1}{C}M$ $(f_1,\,f_2,\,t)=\frac{1}{C}$ M $(T(f),\,T(f_1),\,t)\leq M$ $(f,\,f_1,\,t)$

Thus $M(f_1, f_2, t) \leq C M (f, f_1, t) < C \in \langle \in \rangle$

Again $\frac{1}{C}M(f_2, f_3, t) = \frac{1}{C}M(T(f_1), T(f_2), t) \le M(f_1, f_2, t)$

So,

 $M(f_2,\,f_3,\,t) \leq C \,\,M\,\,(f_1,\,f_2,\,t) {<}\, C \in {<} \in$

Thus we obtain

 $N(f_3,\,f_4,\,t)>1\;{\text{-}}{\in},\,M\;(f_3,\,f_4,\,t)<{\in},{\text{...}},\,N(f_{n-1},\,f_n,\,t)>1\;{\text{-}}{\in}\;M\;(f_{n-1},\,f_n,\,t)<{\in}$

Thus we obtain N(f, f_n, t) \geq N(f, f₁, $\frac{t}{n}$) * N(f₁, f₂, $\frac{t}{n}$) * ..., N(f_{n-1}, f_n, $\frac{t}{n}$)

$$> (1 - \epsilon) * (1 - \epsilon) * \dots * (1 - \epsilon)$$

 $= 1 - \in$

Therefore, $N(f, f_n, t) > 1 \in$

$$\mathbf{M}(\mathbf{f},\,\mathbf{f}_n,\,\mathbf{t}) \leq \mathbf{M}\,\,(\mathbf{f},\!\mathbf{f}_1,\!\frac{t}{n}) \diamond \dots \diamond \mathbf{M}(\mathbf{f}_{n-1},\,\mathbf{f}_n,\,\frac{t}{n})$$

 $= \mathbf{r} \diamond \mathbf{r} \diamond \dots \diamond \mathbf{r} = \mathbf{r}$ Thus N (f, f_n, t) > 1- \in and M (f, f_n, t) < \in .

Lemma 4.1. Let (F(X), N, M, *) be an intuitionistic 2-fuzzy normed linear space. Let $T : F(X) \to F(X)$ be an intuitionistic 2- fuzzy continuous. If $f_n \to f$ then $T(f_n) \to T(f)$ as $n \to \infty$.

Proof. Given $f_n \to f$ in (F(X), N, M, *). Then for given $\in > 0$, t > 0, 0 < t < 1 there exists an integer $n_0 \in N$ such that $N(f_n-f, g_i, t) > 1 - \epsilon$ and $M(f_n-f, g_i, t) < \epsilon$

where g_i 's are linearly independent for all $n \ge n_0$, i = 1, 2.

Since T is is intuitionistic 2- fuzzy continuous,

 $N(T(f_n - f), Tg_i, t) > 1 - \epsilon$ and $M(T(f_n - f), Tg_i, t) < \epsilon$ implies

 $N(Tf_n - Tf, g'_i, t) > 1 - \epsilon$ and $M(Tf_n - Tf, g'_i, t) < \epsilon$

Thus $\mathrm{Tf}_n \to \mathrm{Tf}$ as $n \to \infty$.

Lemma 4.2. Let (F(X), N, M, *) be an intuitionistic 2-fuzzy normed linear space then N and M are jointly continuous.

Proof. If $f_n \to f$ and $g_n \to g$ in (F(X), N, M, *) we have to prove that $N(f_n-f,g_n-g, t) > 1 - \epsilon$ and $M(f_n-f,g_n-g, t) < \epsilon$ as $n \to \infty$.

We know that

$$\begin{split} \lim_{n \to \infty} N(f_n - f, f'_i, t) &= 1 \text{ or } > 1 - \in, \lim_{n \to \infty} N(g_n - g, f'_i, t) = 1 > 1 - \in \text{ and} \\ \lim_{n \to \infty} M(f_n - f, f'_i, t) &= 0 < \in, \lim_{n \to \infty} M(g_n - g, f'_i, t) = 0 < \in \\ N(f_n - f, g_n - g, t) &\geq N(f_n - f, f'_i, \frac{t}{2}) * N(g_n - g, f'_i, \frac{t}{2}) \\ &> (1 - \epsilon) * (1 - \epsilon) \\ &= 1 - \epsilon \\ \end{split}$$
And, $(f_n - f, g_n - g, t) \leq M(f_n - f, f'_i, \frac{t}{2}) \diamond M(g_n - g, f'_i, \frac{t}{2})$

$$\langle \in \diamond \in = \in.$$

Definition 4.4. Let (F(X), N, M, *) be an intuitionistic 2-fuzzy normed linear space. A subset A of F (X) is said to be an intuitionistic 2- fuzzy bounded if $N(f, g, t) \ge 1$ - M and $M(f, g, t) \le M$ where M is a positive constant.

References

- T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear space, J. Fuzzy Math., 11(3)(2003), 687-705.
- [2] S. Gahler, Lineare 2 normierte Raume, Math. Nachr., 28(1964), 1-43.
- [3] Jialu Zhang, The continuity and Boundedness of Fuzzy linear operators in Fuzzy normed space, J. Fuzzy Math., 13(2005), 519-536.
- [4] A.R. Meenakshi and R. Cokilavany, On fuzzy 2- normed linear spaces, J. Fuzzy Math., 9(2)(2001), 345-351.
- [5] R. Saadati and S.M. Vaezpour, Some results on Fuzzy Banach spaces, J. Appl. Math and Comput., 17(12)(2005), 475-484.
- [6] R.M. Somasundaram and Thangaraj Beaula, Some Aspects of 2-Fuzzy 2-Normed Linear Spaces, Bulletin of Malaysian Mathematical Society, 32(2)(2009), 211-222.

- [7] Thangaraj Beaula and Lilly Esthar Rani Some Aspects of Intuitionistic 2-Fuzzy 2-Normed Linear Spaces, J. Fuzzy Math., 20(2)(2012), 371-378.
- [8] A. White, 2-Banach spaces, Math. Nachr., 42(1969), 43-60.
- [9] A. Zadeh, Fuzzy sets, Inform and control, 8(1965), 338-353.

Received: October 02, 2012; Accepted: May 21, 2013

UNIVERSITY PRESS