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Inequalities for Tricomi functions
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Abstract
In this study, we establish new two-sided inequalities for Tricomi functions. Some special and confluent cases of
our main aim are established with the help of the inequalities for hypergeometric functions 0F1

(
−;c;z

)
, c > 0.
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1. Introduction, Motivation and
Preliminaries

Two-sided inequalities for the theory of special functions ap-
pear in the literature of many areas. A good number of such
two-sided inequalities are motivated by different problems in
mathematics, sciences and engineering that involve inequal-
ities for the theory of special functions in [2–5, 7, 16, 19–
21, 24–26]. Joshi and Arya [9, 10] are devoted to analogous
questions. Recently, Joshi and Bissu [11, 13] introduced the
concept of the inequalities for confluent hypergeometric func-
tion. The inequalities of Bessel functions of the first kind
are important in several problems of applied mathematics,
mathematical physics, and engineering. Because of their im-
portance, there is an extensive literature on various properties
of the inequalities of Bessel functions of the first kind, and
they were investigated by famous researchers such as Watson
[30], Joshi and Bissu [13], Joshi and Bissu [11], Laforgia
[14, 15], Nasell [22]. For more details, the author [6, 27, 28]
has earlier introduced two-sided inequalities of the special

functions.
Our main motivation for this paper is to complement and

improve the results of Luke [18–21], and Joshi and Bissu
[11, 13]. In this present paper, we introduce some new results
for the inequalities of Tricomi functions by using inequalities
for the hypergeometric functions under certain additional con-
ditions in section 3. By using a similar technique as two-sided
inequalities for the modified Bessel and Bessel functions,
which may be of interest in themselves, have been discussed
briefly for presenting research in section 4.

Here, we use the lemma and theorem in [12, 18] are
needed throughout in this paper to obtain our main results.
The lemma and theorem bring about numerous applications
two-sided inequalities in the theory of special functions.

Lemma 1.1. (i) Let c > 0 and z > 0. Then (see Joshi and
Bissu [12] eq.(1.1))

1− z
c
< 0F1

(
−;c;−z

)
< 1− z

c
+

z2

2(c)(c+1)
. (1.1)

(ii) Let c > 0 and 0 < z < 1. Then (see Joshi and Bissu [12]
eq.(1.2))

1+
z
c
< 0F1

(
−;c;z

)
< 1+

2z
c

(1.2)

where the confluent hypergeometric function is defined by the
power series:

0F1

(
−;c;z

)
= ∑

k≥0

zk

k!(c)k
(1.3)

and (c)k = c(c+1) . . .(c+ k−1) for k > 1 and (c)0 = 1.
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Now, we recall the inequalities of Luke [18] which will
be used in the follows investigation:

Theorem 1.2. (i) If c≥ a > 0 and z > 0, then (see Luke [18],
eq. (5.3) )

−1+2
[

1+
a
2c

z
]−1

< 1F1

(
a;c;−z

)
< 1− a(c+1)

c(a+1)
+

a(c+1)
c(a+1)

[
1+

a+1
c+1

z
]−1

.

(1.4)

(ii) If c > 0, a < 1 and z > 0, then (see Luke [18], eq. (5.4))

− 1
c
+

c+1
2

[
1+

a
c+1

z
]−1

< 1F1

(
a;c;−z

)
<

1−a
1+a

+
2a

a+1

[
1+

(a+1)
2c

z
]−1

,

(1.5)

where the confluent hypergeometric functions 1F1(a;c;z) is
formally defined as

1F1

(
a;c;z

)
= ∑

k≥0

(a)kxk

k!(c)k
.

In fact, we give the known hypergeometric functions
whose product is also a hypergeometric function leads to
new two-sided inequalities for Tricomi functions. For these,
we use Kummer’s transformations in the form

0F0

(
−;−;

1
2

z
)

1F1

(
µ;2µ;−z

)
= 0F1

(
−; µ +

1
2

;
z2

16

)
(1.6)

and the product identities listed is later given by Preece and
Bailey [1, 23]:

0F1

(
−; µ;z

)
0F1

(
−; µ;z

)
= 0F3

(
−; µ,

1
2

µ,
1
2
(µ +1);−1

4
z2
)
.

(1.7)

2. Inequalities for confluent
hypergeometric functions 0F1(−;c;z)

In this section, we mention new and known interesting special
cases of two-sided inequalities for confluent hypergeometric
functions 0F1(−;c;z). In Theorem 1.1, in the other limiting
process (replacing z by z

a and letting a −→ ∞), become the
following inequalities for limitless confluent hypergeometric
function [8]:

0F1

(
−;c;z

)
= lim

a→∞
1F1

(
a;c;

z
a

)
(2.1)

or by transforming appropriately (2.1), we have the following
theorem:

Theorem 2.1. (i) If c > 0, and z > 0, then

−1+2
[

1+
1
2c

z
]−1

< 0F1

(
−;c;−z

)
< 1− (c+1)

c
+

(c+1)
c

[
1+

1
c+1

z
]−1

.

(2.2)

(ii) If c > 0 and z > 0, then

− 1
c
+

c+1
2

[
1+

1
c+1

z
]−1

< 0F1

(
−;c;−z

)
<−1+2

[
1+

1
2c

z
]−1

.

(2.3)

Theorem 2.2. If ν ≥− 1
2 and z > 0, then

−1+2
[

1+
1
2

z
]−1

< e−z
0F1

(
−;ν +1;

z2

4

)
<

1
(2ν +3)

+
2(ν +1)
(2ν +3)

[
1+

2ν +3
2(ν +1)

z
]−1

.

(2.4)

Proof. From (1.4) and (1.6), we obtain (2.4).

Lemma 2.3. (i) Let a > 0, b > 0, c > 0 and z > 0. Then

1− z
abc

< 0F3

(
−;a,b,c;−z

)
< 1− z

abc
+

z2

2abc(a+1)(b+1)(c+1)
.

(2.5)

(ii) Let a > 0, b > 0, c > 0 and 0 < z < 1. Then

1+
z

abc
< 0F3

(
−;a,b,c;z

)
< 1+

2z
abc

, (2.6)

where

0F3

(
−;a,b,c;z

)
= ∑

k≥0

zk

k!(a)k(b)k(c)k
.

Proof. To obtain another important integral representation of
hypergeometric functions 0F3, we start from the formula for
the reciprocal gamma function

1
Γ(b+ k)

=
1

2π i

∫
C

ett−(b+k)dt, (2.7)

where C is the contour (see [17], p. 115, No. (5.10.5)). Substi-
tuting (2.7) into (1.3), we find that hypergeometric functions
0F2

0F2(−;b,c;−z) =
Γ(b)
2π i

∫
C

ett−b
0F1

(
−;c;− z

t

)
dt,(2.8)

and again using the following integral representation, we get

0F3(−;a,b,c;−z) =
Γ(b)
2π i

∫
C

ett−a
0F2

(
−;b,c;− z

t

)
dt.(2.9)

Appropriately applying the inequalities (1.1), (1.2), (1.7), (2.7)
and (2.9), we easily obtain (2.5) and (2.6).
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3. Inequalities for Tricomi functions
In this section, we present the inequalities for Tricomi func-
tions which are obtained from inequalities for hypergeometric
functions 0F1 and we just take them as examples and the oth-
ers can be derived in the same manner. The Tricomi functions
of of the first kind is defined as (see Tricomi [29])

Cν(z) =
1

Γ(ν +1) 0F1

(
−;ν +1;−z

)
. (3.1)

From (2.2)-(2.6) and (3.1), we get the respective inequalities:

Theorem 3.1. (i) If ν ≥ 0 and z > 0, then the inequality for
the Tricomi function is held:

1
Γ(ν +1)

[
−1+2

(
1+

z
2(ν +1)

)−1]
< Cν(z)

<
1

Γ(ν +1)

[
− 1

ν +1
+

(ν +2)
ν +1

(
1+

z
ν +2

)−1]
.

(3.2)

(ii) If ν >−1 and z > 0, then

1
Γ(ν +1)

[
− 1

ν +1
+

ν +2
2

(
1+

z
ν +2

)−1]
< Cν(z)<

1
Γ(ν +1)

[
−1+2

(
1+

z
2(ν +1)

)−1]
.

(3.3)

Lemma 3.2. (i) If ν > −1 and z > 0, then the following
assertion is true:

1
Γ(ν +1)

[
1− z

ν +1

]
< Cν(z)

<
1

Γ(ν +1)

[
1− z

ν +1
+

z2

2(ν +1)(ν +2)

]
.

(3.4)

(ii) Let ν >−1 and 0 < z < 1. Then

1
Γ(ν +1)

[
1+

z
ν +1

]
< Cν(z)

<
1

Γ(ν +1)

[
1+

2z
ν +1

]
.

(3.5)

Proof. If we replace c by ν + 1 and from Lemma 1.1, we
obtain (3.4) and (3.5).

Lemma 3.3. (i) Let ν > −1 and z > 0. Then the Tricomi
function satisfy the inequality

1(
Γ(ν +1)

)2

[
1− 4z

(ν +1)2(ν +2)

]
< C 2

ν (z)

<
1(

Γ(ν +1)
)2

[
1− 4z

(ν +1)2(ν +2)

+
8z2

(ν +1)2(ν +2)2(ν +3)(ν +4)

]
.

(3.6)

(ii) If ν >−1 and 0 < z < 1, then

1(
Γ(ν +1)

)2

[
1+

4z
(ν +1)2(ν +2)

]
< C 2

ν (z)

<
1(

Γ(ν +1)
)2

[
1+

8z
(ν +1)2(ν +2)

]
.

(3.7)

Proof. By iteration Lemma 2.1, we prove the Lemma 3.2.

In conclusion we observe that on repeated application of
the two-sided inequalities for Tricomi functions Cν(z), more
two-sided inequalities could be obtained, but the details are
omitted for reasons of brevity. In the next section, we will
be applied to the study of similar inequalities for Tricomi
functions including two-sided inequalities for modified Bessel
and Bessel functions.

4. Inequalities for modified Bessel and
Bessel functions

Bessel function Jν(z) is connected with Tricomi functions by
the relation (see Luke , [19], p. 311, eq. 2 and [20], p. 39, eq.
10 and p.120, eq. 6)

Jν(z) =
(

z
2

)ν

Cν

(
z2

4

)
=

1
Γ(ν +1)

(
z
2

)ν

0F1

(
−;ν +1;−1

4
z2
)
.

(4.1)

Here, we give the theorem and two lemmas to inequalities for
Bessel functions in this first part:

Theorem 4.1. (i) If ν ≥ 0 and z > 0, then the Bessel functions
satisfy the following inequality

1
Γ(ν +1)

(
z
2

)ν[
−1+2

(
1+

z2

8(ν +1)

)−1]
< Jν(z)<

1
Γ(ν +1)

(
z
2

)ν

[
1− ν +2

ν +1
+

ν +2
ν +1

(
1+

z2

4(ν +2)

)−1]
.

(4.2)

(ii) If ν >−1 and z > 0, then

1
Γ(ν +1)

(
z
2

)ν[
− 1

ν +1
+

ν +2
2

(
1+

z2

4(ν +2)

)−1]
< Jν(z)<

1
Γ(ν +1)

(
z
2

)ν[
−1+2

(
1+

z2

8(ν +1)

)−1]
.

(4.3)

Proof. Starting with the inequalities for hypergeometric func-
tions (2.1) and (2.2) with (4.1), we obtain (4.2) and (4.3).
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Lemma 4.2. For ν > −1 and z > 0, then the following in-
equality holds:

1(
Γ(ν +1)

)2

(
z
2

)2ν[
1− z2

(ν +1)2(ν +2)

]
< J2

ν(z)

<
1(

Γ(ν +1)
)2

(
z
2

)2ν[
1− z2

(ν +1)2(ν +2)

+
8z4

(ν +1)2(ν +2)2(ν +3)(ν +4)

]
.

(4.4)

Proof. If we start with the inequalities for hypergeometric
functions (2.1) with (4.1), we get (4.4).

Next, the connection between modified Bessel function
and Tricomi function is given by (see Luke [19], p. 311, eq. 2
and [20], p.120, eq. 6)

Iν(z) =
(

z
2

)ν

Cν

(
− z2

4

)
=

1
Γ(ν +1)

(
z
2

)ν

0F1

(
−;ν +1;

z2

4

)
.

(4.5)

Lemma 4.3. For ν > −1 and 0 < z < 1, then the modified
Bessel functions satisfy the following inequality

1(
Γ(ν +1)

)2

(
z
2

)2ν[
1+

z2

(ν +1)2(ν +2)

]

< I 2
ν (z)<

1(
Γ(ν +1)

)2

(
z
2

)2ν[
1+

2z2

(ν +1)2(ν +2)

]
.

(4.6)

Proof. Applying the definition modified Bessel function (4.5)
and using the same technique as in Lemma 3.2, we obtain
(4.6).

In general, we use all the procedures related in [6, 12, 13,
18] to extend the domain of validity of two-sided inequalities
for Tricomi functions and extend our ideas to get inequalities
for these functions. It seems that we have sufficiently elabo-
rated on these points in this article and also in our previous
study, and further comment is unnecessary.

5. Numerical examples

Here, we conclude remarks with some numerical examples:

Example 5.1. In Cν(z), let ν = −0.5,0.1,0.2,0.5 and z =
0.1,0.2,1.5. From (3.2),(3.3), (3.4), (3.5), (3.6) and (3.7), we
have

Equations z v L.H.S. Function R.H.S
z = 0.1 v = 0.1 0.959733788189015 C0.1(0.1) 0.959922637812822
z = 0.1 v = 0.2 1.001994467373669 C0.2(0.1) 1.002310155611658

Eq.3.2 z = 0.2 v = 0.1 0.875947505093148 C0.1(0.2) 0.876639953713775
z = 0.2 v = 0.2 0.921566817818592 C0.2(0.2) 0.922730412285535
z = 1.5 v = 0.5 0.376126389031837 C0.5(1.5) 0.423142187660817
z = 0.1 v =−0.5 -0.731683366163496 C−0.5(0.1) 0.461609659266346
z = 0.1 v = 0.1 0.097946857387688 C0.1(0.1) 0.959733788189015

Eq.3.3 z = 0.1 v = 0.2 0.238344619680882 C0.2(0.1) 1.001994467373669
z = 0.2 v = 0.1 0.052141381133213 C0.1(0.2) 0.875947505093148
z = 0.2 v = 0.2 0.190596773685209 C0.2(0.2) 0.921566817818592
z = 1.5 v = 0.5 0.129293446229694 C0.5(1.5) 0.376126389031837
z = 0.1 v =−0.5 0.451351666838205 C−0.5(0.1) 0.455112930728523
z = 0.1 v = 0.1 0.955579096465253 C0.1(0.1) 0.957854284790170

Eq.3.4 z = 0.1 v = 0.2 0.998364052636808 C0.2(0.1) 1.000426788282752
z = 0.2 v = 0.1 0.860021186818727 C0.1(0.2) 0.869121940118396
z = 0.2 v = 0.2 0.907603684215280 C0.2(0.2) 0.915854626799055
z = 1.5 v = 0.5 0 C0.5(1.5) 0.338513750128654
z = 0.1 v =−0.5 0.677027500257308 C−0.5(0.1) 0.789865416966859
z = 0.1 v = 0.1 1.146694915758303 C0.1(0.1) 1.242252825404828

Eq.3.5 z = 0.1 v = 0.2 1.179884789479864 C0.2(0.1) 1.270645157901392
z = 0.2 v = 0.1 1.242252825404828 C0.1(0.2) 1.433368644697879
z = 0.2 v = 0.2 1.270645157901392 C0.2(0.2) 1.452165894744449
z = 1.5 v = 0.5 2.256758334191025 C0.5(1.5) 3.385137501286538
z = 0.1 v =−0.5 -0.021220659078919 C 2

−0.5(0.1) -0.016046860293964
z = 0.1 v = 0.1 0.930959213312613 C 2

0.1(0.1) 0.932262497508072
Eq.3.6 z = 0.1 v = 0.2 1.036420286799993 C 2

0.2(0.1) 1.037433353072623
z = 0.2 v = 0.1 0.757029421007594 C 2

0.1(0.2) 0.762242557789431
z = 0.2 v = 0.2 0.886648569054329 C 2

0.2(0.2) 0.890700834144850
z = 1.5 v = 0.5 -0.084882636315677 C 2

0.5(1.5) 0.018593339383434
z = 0.1 v =−0.5 0.657840431446501 C 2

−0.5(0.1) 0.997370976709211
z = 0.1 v = 0.1 1.278818797922650 C 2

0.1(0.1) 1.452748590227669
Eq.3.7 z = 0.1 v = 0.2 1.335963722291320 C 2

0.2(0.1) 1.485735440036984
z = 0.2 v = 0.1 1.452748590227669 C 2

0.1(0.2) 1.800608174837707
z = 0.2 v = 0.2 1.485735440036984 C 2

0.2(0.2) 1.785278875528311
z = 1.5 v = 0.5 2.631361725786003 C 2

0.5(1.5) 3.989483906836843

Example 5.2. In Jν(z), for ν = −0.5,0.1,0.2,0.5 and z =
0.1,0.2,1.5, and from (4.2), (4.3) and (4.4), we have

Equations z v L.H.S. Function R.H.S.
z = 0.1 v = 0.1 0.777265324176332 J0.1(0.1) 0.777265419761771
z = 0.1 v = 0.2 0.596989532768496 J0.2(0.1) 0.596989650534774

Eq.4.2 z = 0.2 v = 0.1 0.827391713807563 J0.1(0.2) 0.827393341573335
z = 0.2 v = 0.2 0.681488222208131 J0.2(0.2) 0.681490372596634
z = 1.5 v = 0.5 0.668613963656627 J0.5(1.5) 0.678060628763236
z = 0.1 v =−0.5 -3.157064320397937 J−0.5(0.1) 2.510548319915321
z = 0.1 v = 0.1 0.108800316612373 J0.1(0.1) 0.777265324176332

Eq.4.3 z = 0.1 v = 0.2 0.158782271033230 J0.2(0.1) 0.596989532768496
z = 0.2 v = 0.1 0.113496782289734 J0.1(0.2) 0.827391713807563
z = 0.2 v = 0.2 0.179830539384815 J0.2(0.2) 0.681488222208131
z = 1.5 v = 0.5 0.345677967604787 J0.5(1.5) 0.668613963656627
z = 0.1 v =−0.5 6.196432451044458 J 2

−0.5(0.1) 6.197467210801449
z = 0.1 v = 0.1 0.604505328062984 J 2

0.1(0.1) 0.604512486745953
Eq.4.4 z = 0.1 v = 0.2 0.356754900027543 J 2

0.2(0.1) 0.356757956537808
z = 0.2 v = 0.1 0.686163604941986 J 2

0.1(0.2) 0.686295175619597
z = 0.2 v = 0.2 0.466269023184786 J 2

0.2(0.2) 0.466333552616367
z = 1.5 v = 0.5 0.572957795130823 J 2

0.5(1.5) 0.747573504123074

Example 5.3. In I2
ν(z), let ν = −0.5,0.1,0.2,0.5 and z =

0.1,0.2,1.5, and from (4.6), we have

Equations z v L.H.S. Function R.H.S.
z = 0.1 v =−0.5 6.535962996307167 I 2

−0.5(0.1) 6.70572826893852
z = 0.1 v = 0.1 0.609282138241277 I 2

0.1(0.1) 0.611670543330424
Eq.4.6 z = 0.1 v = 0.2 0.359014272415304 I 2

0.2(0.1) 0.360143958609185
z = 0.2 v = 0.1 0.708112060917739 I 2

0.1(0.2) 0.719086288905615
z = 0.2 v = 0.2 0.478194062140919 I 2

0.2(0.2) 0.484156581618985
z = 1.5 v = 0.5 1.336901521971921 I 2

0.5(1.5) 1.718873385392470
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