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Some inequalities for the Kirchhoff index of graphs
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Abstract
Let G be a simple connected graph of order n, sequence of vertex degrees d1 ≥ d2 ≥ ·· · ≥ dn > 0 and Laplacian
eigenvalues µ1 ≥ µ2 ≥ ·· · ≥ µn−1 > µn = 0. With Π1 = Π1(G) = ∏

n
i=1 d2

i we denote the multiplicative first Zagreb
index of graph, and K f (G) = n∑

n−1
i=1

1
µi

the Kirchhoff index of G. In this paper we determine several lower and
upper bounds for K f depending on some of the graph parameters such as number of vertices, maximum degree,
minimum degree, and number of spanning trees or multiplicative Zagreb index.
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1. Introduction
Let G=(V,E) be a simple connected graph with n vertices

and m edges with vertex degree sequence d1≥ d2≥ ·· · ≥ dn >
0, and ∆ = d1, ∆1 = d2, δ = dn, δ1 = dn−1. If vertices i and
j are adjacent we write i∼ j. Further, let A be the adjacency
matrix of G and D = diag(d1,d2, . . . ,dn) the diagonal matrix
of its vertex degrees. Then L = D−A is the Laplacian matrix
of G. Eigenvalues of L, µ1 ≥ µ2 ≥ ·· · ≥ µn−1 > µn = 0, form
the so-called Laplacian spectrum of G. Following identities
are valid for µi (see [1])

n−1

∑
i=1

µi = 2m and
n−1

∑
i=1

µ
2
i =

n

∑
i=1

d2
i +

n

∑
i=1

di = M1 +2m,

where M1 = M1(G) = ∑
n
i=1 d2

i is the first Zagreb index intro-
duced in [2]. More about this degree–based topological index
one can be found in [3–8].

It is well known that a connected graph G of order n has

t = t(G) =
1
n

n−1

∏
i=1

µi

spanning trees.
In [9] (see also [10]) a multiplicative variant of the first

Zagreb index, named the first multiplicative Zagreb index, Π1,
was introduced. It is define as

Π1 = Π1(G) =
n

∏
i=1

d2
i .

In [11], Klein and Randić, introduced the notion of resis-
tance distance, ri j. It is defined as the resistance between the
nodes i and j in an electrical network corresponding to the
graph G in which all edges are replaced by unit resistors. The
sum of resistance distances of all pairs of vertices of a graph
G is named as the Kirchhoff index, i.e.

K f (G) = ∑
i< j

ri j.

There are several equivalent ways to define the resistance
distance. Gutman and Mohar [12] (see also [13]) proved
that the Kirchhoff index can be obtained from the non-zero
eigenvalues of the Laplacian matrix:

K f (G) = n
n−1

∑
i=1

1
µi
.

Among various indices in mathematical chemistry, those
based on the effective resistance, ri j, such as the Kirchhoff
index and its generalizations, have received a lot of attention
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in the literature, as it turned out that they play an important
role in solving problems in different scientific disciplines,
such as molecular chemistry, spectral graph theory, network
theory, etc. (see, for example, [14–21]).

Considering the fact that obtaining the exact and easy
to compute formula for the Kirchhoff index is not always
possible, it is useful to know approximating expressions, i.e.
upper and lower bounds and corresponding extremal graphs.
In this paper we report several lower and upper bounds for
K f (G) of a connected (molecular) graph in terms of some
structural graph parameters, such as the number of vertices
(atoms), maximum vertex degree (valency), minimal vertex
degree, and graph invariants such as number of spanning trees,
t, and multiplicative first Zagreb index, Π1.

2. Preliminaries
In this section we recall some inequalities for the Kirchhoff in-
dex, and some analytic inequalities for real number sequences
that are of interest for the subsequent considerations.

Let G be a simple connected graph with n≥ 2 vertices. In
[21] the following inequality was proved

K f (G)≥−1+(n−1)
n

∑
i=1

1
di
, (2.1)

with equality if and only if G ∼= Kn, or G ∼= K n
2 ,

n
2
, or G ∼=

K1,n−1, or G ∈ Γd .
The following lower bound for K f (G) that depends on

number of vertices, n, the maximum degree, ∆ and the number
of spanning trees, t, was determined in [14]:

K f (G)≥ n
1+∆

+n(n−2)
(

∆+1
nt

) 1
n−2

, (2.2)

with equality if and only if G∼= Kn, or G∼= K1,n−1.

Let a = (ai), and b = (bi), i = 1,2, . . . ,n, be two positive
real number sequences with the properties 0 < r1 ≤ ai ≤
R1 <+∞ and 0 < r2 ≤ bi ≤ R2 <+∞. In [22] the following
inequality was proved∣∣∣∣∣n n

∑
i=1

aibi−
n

∑
i=1

ai

n

∑
i=1

bi

∣∣∣∣∣≤ n2(R1−r1)(R2−r2)α(n), (2.3)

where

α(n) =
1
n

⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
=

1
4

(
1− (−1)n+1 +1

2n2

)
.

Let a1 ≥ a2 ≥ ·· · ≥ an > 0 be real number sequence. In
[23] it was proved

a1+a2+ · · ·+an−n n
√

a1a2 · · ·an ≥ (
√

a1−
√

an)
2 , (2.4)

with equality if and only if a2 = a3 = · · · = an−1 =
√

a1an,
and

a1 +a2 + · · ·+an

n n
√

a1a2 · · ·an
≥

(√
a1
an
+
√

an
a1

) 2
n

2
2
n

, (2.5)

with equality if and only if a2 = a3 = · · ·= an−1 =
a1+a2

2 .
Let a = (ai), i = 1,2, . . . ,n, be positive real number se-

quence. In [24] (see also [25]) the following was proved

n

1
n

n

∑
i=1

ai−

(
n

∏
i=1

ai

) 1
n
≤ n

n

∑
i=1

ai−

(
n

∑
i=1

√
ai

)2

≤ n(n−1)

1
n

n

∑
i=1

ai−

(
n

∏
i=1

ai

) 1
n
 ,

(2.6)

with equalities if and only if a1 = a2 = · · ·= an.
Before we proceed, let us define one special class of d-

regular graphs Γd (see [20]). Let N(i) be a set of all neighbors
of the vertex i, i.e. N(i) = {k |k ∈ V, k ∼ i}, and d(i, j) the
distance between vertices i and j. Denote by Γd a set of
all d-regular graphs, 1 ≤ d ≤ n− 1, with diameter 2 and
|N(i)∩N( j)|= d for i � j.

3. Main results
In the following theorem we establish upper bound for K f (G)
in terms of number of spanning trees, number of vertices, n,
and parameter k, where k is an arbitrary real number such that
µn−1 ≥ k > 0.

Theorem 3.1. Let G be a simple connected graph with n≥ 3
vertices. Then, for any real k with the property µn−1 ≥ k > 0,
holds

K f (G)≤ n(n−1)(nt)−
1

n−1 +n(n−1)2
α(n−1)

(√
n−
√

k
)2

nk
,

(3.1)

with equality if and only if k = n and G∼= Kn.

Proof. For n := n−1, ai = bi =
1√
µi

, i = 1,2, . . . ,n−1, R1 =

R2 = 1/
√

µn−1, r1 = r2 = 1/
√

µ1, the inequality (2.3) trans-
forms into

(n−1)
n−1

∑
i=1

1
µi
−

(
n−1

∑
i=1

1
√

µi

)2

≤

≤ (n−1)2
α(n−1)

(
1

√
µn−1

− 1
√

µ1

)2

.

Since 0 < µ1 ≤ n and µn−1 ≥ k > 0, it follows

(n−1)
n−1

∑
i=1

1
µi
≤

(
n−1

∑
i=1

1
√

µi

)2

+

+(n−1)2
α(n−1)

(
1√
k
− 1√

n

)2

.

(3.2)

For n := n−1, ai =
1
µi

, i = 1,2, . . . ,n−1, left hand side
of inequality (2.6) becomes

n−1

∑
i=1

1
µi
−(n−1)

(
n−1

∏
i=1

1
µi

) 1
n−1

≤ (n−1)
n−1

∑
i=1

1
µi
−

(
n−1

∑
i=1

1
√

µi

)2

,
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i.e. (
n−1

∑
i=1

1
√

µi

)2

≤ (n−2)
n−1

∑
i=1

1
µi

+(n−1)(nt)−
1

n−1 . (3.3)

From (3.2) and (3.3) we obtain

(n−1)
n−1

∑
i=1

1
µi

≤ (n−2)
n−1

∑
i=1

1
µi

+(n−1)(nt)−
1

n−1 +

+(n−1)2
α(n−1)

(√
n−
√

k
)2

nk
,

i.e.

n−1

∑
i=1

1
µi
≤ (n−1)(nt)−

1
n−1 +(n−1)2

α(n−1)

(√
n−
√

k
)2

nk
,

wherefrom we get (3.1).
Equality in (3.3) holds if and only if µ1 = · · · = µn−1,

therefore equality in (3.1) holds if and only if k = n and
G∼= Kn.

In the next theorem we establish lower bound for K f (G)
depending on structural graph parameters n, ∆, ∆2, δ and the
number of spanning trees t.

Theorem 3.2. Let G be a simple connected graph with n≥ 3
vertices. Then

K f (G)≥ n
1+∆

+n(n−2)
(

∆+1
nt

) 1
n−2

+n
(

1√
δ
− 1√

∆2

)2

,

(3.4)

with equality if and only if G ∼= Kn, or G ∼= K1,n−1, or G ∼=
K n

2 ,
n
2

Proof. According to (2.4) we have that

a2+a3+· · ·+an−1−(n−2)(a2a3 · · ·an−1)
1

n−2 ≥ (
√

a2−
√

an−1)
2 .

For ai =
1

µn−i−1
, i = 2, . . . ,n−1, the above inequality trans-

forms into

n−1

∑
i=2

1
µi
− (n−2)

(
n−1

∏
i=2

1
µi

) 1
n−2

≥
(

1
√

µn−1
− 1
√

µ2

)2

i.e.

n−1

∑
i=1

1
µi
≥ 1

µ1
+(n−2)

(
n−1

∏
i=2

µ1

µi

) 1
n−2

+

(
1

√
µn−1

− 1
√

µ2

)2

.

(3.5)

Obviously, equality in (3.5), i.e. (3.4), is attained if G∼= Kn.
Therefore suppose that G 6=Kn. In that case µ2≥∆2 (see [26])

and µn−1 ≤ δ (see [27]), and the inequality (3.5) transforms
into

n−1

∑
i=1

1
µi
≥ 1

µ1
+(n−2)

(
µ1

nt

) 1
n−2

+

(
1√
δ
− 1√

∆2

)2

.

Now, consider the function g(x) = 1
x + (n− 2)

( x
nt

) 1
n−2 . It

was proved that it is monotone increasing for x≥ 1+∆ and
x≥ (nt)

1
n−1 (see [14]). Since µ1 ≥ 1+∆ (see [28]) and µ1 ≥

(nt)
1

n−1 , we have that

n−1

∑
i=1

1
µi
≥ 1

1+∆
+(n−2)

(
1+∆

nt

) 1
n−2

+

(
1√
δ
− 1√

∆2

)2

,

wherefrom we obtain (3.4).
Equality in (3.5) holds if and only if µ2 = · · · = µn−1,

hence equality in (3.4) holds if and only if G ∼= Kn, or G ∼=
K1,n−1, or G∼= K n

2 ,
n
2

(see [29]).

Similarly, the following result can be proved.

Theorem 3.3. Let G be a simple connected graph with n≥ 3
vertices. Then

K f (G)≥ n
1+∆

+n(n−2)
(

1+∆

nt

) 1
n−2
(

∆2 +δ

2
√

∆2δ

) 2
n−2

.

(3.6)

Equality holds if and only if G ∼= Kn, or G ∼= K1,n−1 or G ∼=
K n

2 ,
n
2
.

Remark 3.4. Since
(

∆2 +δ

2
√

∆2δ

) 2
n−2
≥ 1, the inequality (3.6)

is stronger than (2.2).

In the following theorem we determine lower bound for
K f (G) in terms of number of vertices, n, maximum degree,
∆, minimum degree, δ , and topological index Π1.

Theorem 3.5. Let G be a simple connected graph with n≥ 2
vertices. Then

K f (G)≥−1+n(n−1)
(∆+δ )

2
n

(2
√

∆δ )
2
n
(Π1)

− 1
2n . (3.7)

Equality holds if and only if G∼= Kn, or G∼= K n
2 ,

n
2
, or G ∈ Γd .

Proof. For ai =
1
di

, i = 1,2, . . . ,n, a1 = 1
δ

, an = 1
∆

, the in-
equality (2.5) transforms into

∑
n
i=1

1
di

n
(

∏
n
i=1

1
di

) 1
n
≥

(√
∆

δ
+
√

δ

∆

) 2
n

2
2
n

, (3.8)
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i.e.

n

∑
i=1

1
di
≥ n(∆+δ )

2
n

(4∆δ )
1
n

(Π1)
− 1

2n . (3.9)

From (3.9) and (2.1) we obtain (3.7).
Equality in (3.8) holds if and only if d2 = · · · = dn−1 =

2d1dn
d1+dn

, i.e. if and only if d1 = d2 = · · ·= dn−1 = dn. Equality
in (2.1) is attained if and only if G ∼= Kn, or G ∼= K1,n−1, or
G∼= K n

2 ,
n
2
, or G ∈ Γd , hence equality in (3.7) holds if and only

if G∼= Kn, or G∼= K n
2 ,

n
2
, or G ∈ Γd .

By a similar procedure as in case of Theorem 3.5, the
following results can be proved.

Theorem 3.6. Let G be a simple connected graph with n≥ 3
vertices. Then

K f (G)≥ n−1−∆

∆
+(n−1)2 (∆1 +δ )

2
n−1

(4∆1δ )
1

n−1

(
Π1

∆2

)− 1
2(n−1)

.

Equality holds if and only if G ∼= Kn, or G ∼= K n
2 ,

n
2
, or G ∼=

K1,n−1, or G ∈ Γd .

Theorem 3.7. Let G be a simple connected graph with n≥ 3
vertices. Then

K f (G)≥ n−1−δ

δ
+(n−1)2 (∆+δ1)

2
n−1

(4∆δ1)
1

n−1

(
Π1

δ 2

)− 1
2(n−1)

.

Equality holds if and only if G∼= Kn, or G∼= K n
2 ,

n
2
, or G ∈ Γd .

Theorem 3.8. Let G be a simple connected graph with n≥ 4
vertices. Then

K f (G) ≥ (n−1)(∆+δ )−∆δ

∆δ
+

+ (n−1)(n−2)
(∆1 +δ1)

2
n−2

(4∆1δ1)
1

n−2

(
Π1

∆2δ 2

)− 1
2(n−2)

.

Equality holds if and only if G ∼= Kn, or G ∼= K n
2 ,

n
2
, or G ∼=

K1,n−1, or G ∈ Γd .

Theorem 3.9. Let G be a simple connected graph with n≥ 2
vertices. Then

K f (G)≥−1+n(n−1)(Π1)
− 1

2n +(n−1)

(√
∆−
√

δ

)2

∆δ
.

(3.10)

Equality holds if and only if G∼= Kn, or G∼= K n
2 ,

n
2
, or G ∈ Γd .

Proof. For ai =
1
di

, i = 1,2, . . . ,n, a1 = 1
δ

, an = 1
∆

, the in-
equality (2.4) transforms into

n

∑
i=1

1
di
−n

(
n

∏
i=1

1
di

) 1
n

≥
(

1√
δ
− 1√

∆

)2

, (3.11)

i.e.

n

∑
i=1

1
di
≥ n(Π1)

− 1
2n +

(√
∆−
√

δ

)2

∆δ
. (3.12)

Finally, from (2.1) and (3.12) we arrive at (3.10).
Equality in (3.11) holds if and only if d2 = · · ·= dn−1 =√

∆δ , i.e. if and only if ∆ = d1 = · · · = dn = δ . Equality
in (2.1) is attained if and only if G ∼= Kn, or G ∼= K1,n−1, or
G∼= K n

2 ,
n
2
, or G ∈ Γd , therefore equality in (3.7) holds if and

only if G∼= Kn, or G∼= K n
2 ,

n
2
, or G ∈ Γd .

In a similar way as in case of Theorem 3.9, the following
statements can be proved.

Theorem 3.10. Let G be a simple connected graph with n≥ 3
vertices. Then

K f (G) ≥ n−1−∆

∆
+(n−1)2

(
Π1

∆2

)− 1
2(n−1)

+

+ (n−1)

(√
∆1−

√
δ

)2

∆1δ
.

Equality holds if and only if G ∼= Kn, or G ∼= K n
2 ,

n
2
, or G ∼=

K1,n−1, or G ∈ Γd .

Theorem 3.11. Let G be a simple connected graph with n≥ 3
vertices. Then

K f (G) ≥ n−1−δ

δ
+(n−1)2

(
Π1

δ 2

)− 1
2(n−1)

+

+ (n−1)

(√
∆−
√

δ1

)2

∆δ1
.

Equality holds if and only if G∼= Kn, or G∼= K n
2 ,

n
2
, or G ∈ Γd .

Theorem 3.12. Let G be a simple connected graph with n≥ 4
vertices. Then

K f (G)≥ (n−1)(∆+δ )−∆δ

∆δ
+

+(n−1)(n−2)
(

Π1

∆2δ 2

)− 1
2(n−2)

+

+(n−1)

(√
∆1−

√
δ1
)2

∆1δ1
.

Equality holds if and only if G ∼= Kn, or G ∼= K n
2 ,

n
2
, or G ∼=

K1,n−1, or G ∈ Γd .

Remark 3.13. Lower bounds for K f (G) given by (3.7) and
(3.10) depend on the same parameters n, ∆, δ and topological
index Π1. Equalities are achieved under the same conditions,
i.e. if and only if G∼= Kn, or G∼= K n

2 ,
n
2
, or G ∈ Γd . However,

these bounds are not comparable. Thus, for example, for
G∼= K1,n−1 the inequality (3.7) is stronger than (3.10), but for
G∼= Pn the inequality (3.10) is stronger than (3.7) for n≥ 5.
The same applies when compare inequalities from Theorems
3.6, 3.7 and 3.8 with those given in Theorems 3.10, 3.11 and
3.12.
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[3] B. Borovićanin, K. C. Das, B. Furtula and I. Gutman, Za-
greb indices: Bounds and Extremal graphs, In: Bounds
in Chemical Graph Theory – Basics, (I. Gutman, B. Fur-
tula, K. C. Das, E. Milovanović, I. Milovanović, Eds.),
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