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On marker set distance Laplacian eigenvalues in
graphs.
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Abstract
In our previous paper, we had introduced the marker set distance matrix and its eigenvalues. In this paper,
we extend them naturally to the Laplacian eigenvalues. To define the Laplacian, we have defined the distance
degree sequence of the marker set in the graph. Here we have considered the study of the Laplacian matrix, its
characteristic polynomial and related results.
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1. Introduction
Cluster identification is an important operation usually done in
fields like electrical network connections, using algorithms de-
pending on matrix manipulations. Graph spectral methods are
widely used in non-bonded clusters in protein structures [17],
[18]. The main algorithm of [18], the clustering procedure de-
pends on eigenvalues and eigenvector components of weighted
adjacency matrix. In fact, the second smallest eigenvalue of
the Laplacian matrix and its associated vector components
yield the clustering of vertices in the graph. Hence a matrix
different from the adjacency matrix and distance matrix of a
graph that can cater to the clustering distances was introduced
in the form of the marker set distance matrix and consequent
energy parameters in [12].
We recall some of the definitions for ready reference.

2. Preliminaries

Definition 2.1. [12] Let G = (V,E) be a simple connected
graph of order p. Let M ⊆V (G) be a nonempty marker set of

G. We define M-set distance between two vertices vi and v j
as di j = |d(vi,M)−d(v j,M)|.

Here d(vi,M) = min{d(vi,w) : w ∈M}.
The p× p matrix DM(G) = [di j] is called the M-set distance
matrix of the marker set M in the graph G.

Definition 2.2. [12] The M-set eccentricity of a vertex v of G,
denoted by eM(v) is defined as the maximum of all the M-set
distances of v.

Definition 2.3. [12] The M-set diameter of a graph G with
respect to a marker set M is denoted by diamM(G) and is
defined as the maximum of all the M-set eccentricities of the
vertices of G.

We now give the general structure of a M-set distance
matrix taken from [12] Let G be a simple connected graph of
order p and M be a marker set with |M|= k and diamM(G) =
m. Let ki be the number of vertices of G at M-distance i
(1≤ i≤ m) so that k+Σm

i=1ki = p. The M-distance matrix is
given by DM(G)

=



0k×k 1k×k1 . . . mk×km

1k1×k 0k1×k1 . . . (m−1)k1×km

2k2×k 1k2×k1 . . . (m−2)k2×km

. . . . . .

. . . . . .

. . . . . .
mkm×k (m−1)km×k1 . . . 0km×km


.
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We call the above matrix as the standard form of marker
set distance matrix. We recall the definition of the distance
degree sequence of the M-set of a graph G.

Definition 2.4. Given a simple connected graph G and a
marker set M of G, the distance degree sequence denoted by
DDSG(M) can be defined as

DDSG(M)= (k0,k1,k2, . . . ,kn) written in a non-decreasing
order where ki is the number of vertices of G at distance i
from M where, 0≤ i≤ m and m = diamM(G).

The first entry of the sequence is the number of vertices
of G which are at distance 0 from M, so is always |M|.

Example 2.5. Consider a graph G (Figure 1). Let the marker
set be M1 = {u1,u2}. Then, DDSG(M1) = (2,1,2). Let M2 =

Figure 1

{u1,u4}. Then, DDSG(M2) = (2,3).

Remark 2.6. If the marker set M is a dominating set with
|M|= k for a graph G of order p then, DDSG(M) = (k,(p−
k)).

To define the Laplacian matrix derived from the marker set
distance matrix, we now make use of the marker set distance
degree sequence.

3. Marker set distance Laplacian

Definition 3.1. Let G = (V,E) be a simple connected graph
of order p. Let M ⊆V (G) be a non empty marker set of
G. The M-set distance Laplacian is defined as LM(G) =
DM(G)−diag[DDSG(M)],
where DM(G) is the marker set distance matrix in the standard
form.

The p× p matrix LM(G) = [ai j] is called the M-set dis-
tance laplacian matrix of the marker set M in the graph G.

If M = V (G) then DM(G) = [0]p×p and LM(G) is also a
p× p matrix with all the entries 0 except for the first principal
diagonal element which is −p since DDSG(M) = (p). Unless
specified we always consider marker set M such that M 6= Φ

and M 6=V (G). It is easy to get the M-set distance Laplacian
matrix of a graph G for any marker set M. In the following
section we give an algorithmic construction for the same.

Algorithm

Let G be a graph of order p. Let |M|= k and let DDSG(M) =
(ki/ki = number of vertices of G at distance i from M where
0≤ i≤ m) and m = diamM(G).
Step 1: Write the M-set distance matrix of the graph G.
Step 2: Rewrite the matrix with the rows corresponding to the
vertices in M as the first k-rows, the rows corresponding to
vertices which are at distance 1 from the M-set as the next k1
rows, the rows corresponding to vertices which are at distance
2 from the M-set as the next k1 rows and so on upto the rows
corresponding to vertices at distance m from the M-set to get
the M-set distance matrix in the standard form.
Step 3: Sum this matrix with −diag[DDSG(M)] to get the
required M-set Laplacian matrix of G.

Marker Set Distance Laplacian Energy

The characteristic polynomial of LM(G) is defined as f (G :
M,λ ) = det(λ I−LM(G)), the roots of which are assumed
to be in non-increasing order and are called the M-distance
Laplacian eigen values of M in G. The distance Laplacian
marker set energy (DLMSE in short) of M in G is defined as

LεM(G) = ∑
p
i=1 |λi|,

where λ1,λ2, . . . ,λp are the M-distance Laplacian eigen val-
ues.
Since LM(G) is a real symmetric matrix, the M-set Laplacian
eigen values are real. Thus λ1 ≥ λ2 ≥ . . .≥ λp.

Example 1 : The M-set Laplacian matrix of the graph in
Figure 1 is as follows.
Let M1 = {u1,u4} be a marker set of the graph G. In this
case it is clear that M1(G) is a dominating set of the graph G.
DDSG(M1) = (2,3). The M-set Laplacian matrix is written
as

LM1(G) =


−2 0 1 1 1
0 −3 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

 .

The characteristic polynomial of the M1-set distance Lapla-
cian matrix is
f (G : M1,λ ) = det(λ I−LM1(G)) = λ 5+5λ 4−15λ 2 and the
M1 -set Laplacian eigen values are λ1 = 1.5171,λ2 = 0,λ3 =
0,λ4 =−2.4036,λ5 =−4.1135.
The M1 - set Laplacian energy =LεM1(G)=Σ5

i=1|λi|= 8.0341.

For M2 = {u4,u5} another marker set ( a non-dominating
set) of the graph G, DDSG(M2) = (2,1,1,1).
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LM2(G) =


−2 0 1 2 3
0 −1 1 2 3
1 1 −1 1 2
2 2 1 −1 1
3 3 2 1 0

 .
The characteristic polynomial of the M2-set distance Lapla-
cian matrix is
f (G : M2,λ )= det(λ I−LM2(G)= λ 5+5λ 4−25λ 3−164λ 2−
280λ +153 and the M2 -set eigen values are λ1 = 5.7896,λ2 =
−1.4030,λ3 =−1.5501,λ4 =−2.1289,λ5 =−5.7076.
The M2 - set Laplacian energy =LεM2(G)=Σ5

i=1|λi|= 16.5792.
For another marker set M3 = {u1,u2} ( a non-dominating set)
of the graph G, DDSG(M3) = (2,1,2).

LM3(G) =


−2 0 1 2 2
0 −1 1 2 2
1 1 −2 1 1
2 2 1 0 0
2 2 1 0 0

 .
The characteristic polynomial of the M3-set distance Lapla-

cian matrix is
f (G : M3,λ )= det(λ I−LM3(G)= λ 5+5λ 4−12λ 3−77λ 2−
76λ and the M3 -set laplacian eigen values are λ1 = 4,λ2 =
0,λ3 =−1.4679,λ4 =−2.6527,λ5 =−4.8794.
The M3 - set Laplacian energy = LεM3(G) = Σ5

i=1|λi|= 13.
For M4 = {u2,u4} another marker set ( a dominating set) of
the graph G, DDSG(M) = (2,3).

LM4(G) =


−2 0 1 1 1
0 −3 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

 .

It can be seen that LM4(G) = LM1(G). The characteristic
polynomial of the M4-set distance Laplacian matrix is equal
to that of M1 and so has the same eigenvalues. Also, the M4 -
set Laplacian energy = LεM4(G) = Σ5

i=1|λi|= 8.0341.

Definition 3.2. Two marker sets M1 and M2 of a graph G
are said to be Laplacian equienergetic if the DLMSEs of G
corresponding to the two sets are equal.

Remark 3.3. In Example 1, the marker sets M1 and M4 are
equienergetic.

From the Example 1, the following conclusions can be
drawn.

1. Two marker sets M1 and M2 which are minimum domi-
nating sets are Laplacian equienergetic

2. The DMSLE of a graph G with respect to a marker
set M1 is greater than that with respect to M2 where
|M1|= |M2| whenever
diamM1(G)> diamM2(G).

In general, the characteristic polynomial of a square matrix
A of order n can be written as ∆(A) = tn−S1tn−1 +S2tn−2−
S3tn−3 + ...+(−1)nSn. In case of a graph of order p and its
distance laplacian matrix of a marker set M being LM(G), the
characteristic polynomial can be written as
f (G : M,λ )=∆(LM(G)= λ p−S1λ p−1+S2λ p−2−...+(−1)pSp.
It is clear from [13] that (−1)iSi = ΣMLM(i), where MLM(i) are
the principal minors of LM(G) with order i. ( Minors whose
diagonal elements belong to the main diagonal of LM(G)).
S0 = 1 and S1 = traceLM(G) =−p.
Also, we can derive the following lemma.

Lemma 3.4. If λ1,λ2, . . . ,λp are the M-distance Laplacian
eigenvalues of the set M in G, then ∑

p
i=1 λ 2

i = 2S2 + p2.

Proof. We have ∑
p
i=1 λ 2

i
= trace ofL2

M(G)
= ∑

p
i=1 ∑

p
j=1 ai ja ji

= ∑
p
i=1 ∑

p
j=1 a2

i j(since ai j = a ji)

= 2∑
p−1
i=1 ∑

p
j>i a2

i j +∑
p
i=1 a2

ii

= 2∑
p−1
i=1 ∑

p
j>i a2

i j +∑
p
i=1 k2

i (since aii = ki)

= 2∑
p−1
i=1 ∑

p
j>i a2

i j + p2−2∑
p−1
i=1 ∑

p
j>i kik j(since Σ

p
i=1ki = p)

= 2∑
p−1
i=1 ∑

p
j>i[a

2
i j− kik j]+ p2

= 2×(sum of all principal minors of order 2 of LM(G))+ p2

= 2S2 + p2.

Lemma 3.5. For a complete graph of order p and any marker
set M, zero is a M-set Laplacian eigenvalue of multiplicity
(p−3) or (p−4).

Proof. In a complete graph Kp the M-set distance matrix is
a (0,1) matrix as maximum M -set distance is 1 for any set
M. Let |M| = k. Also, DDSG(M) = (k,(p− k)). The M-set
distance matrix of Kp is of the form

DM(Kp) =

[
0k×k 1k×(p−k)

1(p−k)×k 0(p−k)×(p−k)

]
LM(G)=DM(G)−diag[DDSG(M)]. Now LM(Kp)= (ai j)p×p
can be different from DM(Kp) in only two places a11 and a22.
a11 =−k, a22 =−(p− k).
For k = 1, the first row has first entry as −k and the rest of
the entries as 1. The second row has the first entry 1, second
entry −(p− k) and the rest of the entries zero. The third row
to pth row has the first entry 1 and the rest of the entries zero.
Hence for k = 1, the number of distinct rows is 3 and so, the
number of nonzero eigenvalues is 3. This implies that zero is
an eigenvalue of multiplicity 3.
For k = 2, the first row has first entry as−k, second entry zero
and the rest of the entries as 1, the second row has the first
entry 0, second entry −(p− k) and the rest of the entries zero
and the third row to pth row has the first two entries 1 and
the rest of the entries zero. Hence for k = 2, the number of
distinct rows is 3 and so, the number of nonzero eigenvalues
is 3. This implies that zero is an eigenvalue of multiplicity 3.
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For k ≥ 3, the first row has first entry −k, second entry to
kth entry zero and the rest of the entries 1. The second row
has first entry zero, the second entry −(p− k), third entry to
kth entry zero and the rest of the entries 1. The third row to
kth row has the first k entries zero and the rest of the entries
1. The (k+1)th row to pth row have the first k entries 1 and
the rest of the entries zero. So, there are only 4 distinct rows.
Hence, there can be only 4 nonzero eigenvalues and so zero is
an eigenvalue of multiplicity (p−4).
Therefore, zero is an eigenvalue of multiplicity (p− 3) or
(p−4).

Lemma 3.6. If G is a simple connected graph with a marker
set M then√

2S2 + p2 ≤ LεM(G)≤
√

p(2S2 + p2).

Proof. Consider the Cauchy - Schwartz inequality,(
p

∑
i=1

aibi

)2

≤

(
p

∑
i=1

a2
i

)(
p

∑
i=1

b2
i

)
.

Choosing ai = 1 and bi = |λi| we get,(
p

∑
i=1
|λi|

)2

≤ p
p

∑
i=1

λ
2
i from which we get

Lε
2
M(G)≤ p(2S2 + p2) (by Lemma 1.1)

which in turn implies

LεM(G)≤
√

p(2S2 + p2) (eqn 1).

Now

Lε
2
M(G) =

(
p

∑
i=1
|λi|

)2

≥∑ |λi|2 = 2S2 + p2.

LεM(G)≥
√

2S2 + p2 (eqn 2).

From eqn 1 and eqn 2, we get the result.

Next, we consider equienergetic marker sets.

Lemma 3.7. For any simple connected graph G, two mini-
mum dominating sets M1 and M2 are Laplacian equienergetic.

Proof. We know from [12] that DM1(G) = DM2(G) when
both of them are in the standard form. Also, DDSG(M1) =
DDSG(M2)= (k,(p−k)). This implies that, LM1(G)=LM2(G).
Both LM1(G) and LM2(G) have the same eigenvalues. There-
fore, M1 and M2 are Laplacian equienergetic.

Theorem 3.8. Let G be a simple connected graph on p ver-
tices and M be a dominating marker set of G with |M| = k.
Then the characteristic polynomial of the M-set Laplacian is
λ p− S1λ p−1 + S2λ p−2− S3λ p−3 + S4λ p−4 where S1 = −p,
S2 = 0,

S3 =

{
(p−1)(p−2), when k = 1
(k−1)p(p− k), when k ≥ 2

S4 =

{
0, when k ≤ 2
−k(k−1)(p− k)2, when k ≥ 3.

Proof. Let G be a simple connected graph and M be a dom-
inating set. Then, the M-set distance matrix is a (0,1) ma-
trix as maximum M -set distance is 1. Let |M| = k. Also,
DDSG(M) = (k,(p− k)). The M-set distance matrix of G is
of the form

DM(G) =

[
0k×k 1k×(p−k)

1(p−k)×k 0(p−k)×(p−k)

]
LM(G) = DM(G)−diag[DDSG(M)]. Now LM(G) = (ai j)p×p
can be different from DM(G) in only two places a11 and a22.
a11 =−p, a22 =−(p−k). Every subset of the principal diago-
nal gives a principal minor. Now, S1 =−k+[−(p−k)] =−p.
Also, it is evident that LM(G) has 2k(p− k) entries as 1 and
a11 = −k, a22 = −(p− k). It follows that there are k(p− k)
number of principal minors of order 2 each having value −1
and one principal minor of value k(p− k), i.e. S2 = 0.
The values of S3 and S4 are found for different values of k as
follows:
For k = 1, it is obvious that the only non-zero principal mi-
nors of order 3 are those which have the first and second row
and one of the rows from 3rd row to pth row. That is, the
sum of all nonzero principal minors of order 3 is equal to

(p−2)×

∣∣∣∣∣∣
−1 1 1
0 −(p−1) 0
1 0 0

∣∣∣∣∣∣= (p−2)(p−1).

Hence S3 = (p−1)(p−2). Minors of order more than 3 have
atleast one zero row or two like rows. In both the cases, their
value is zero. So, Si = 0 for i≥ 4. Therefore, the characteristic
polynomial is λ p + pλ (p−1)− (p−1)(p−2)λ (p−3).
For k = 2, the only nonzero minors of order 3 are those with
the first row, second row and one of the rows from 3rd row to
pth row. That is, the sum of all nonzero principal minors of

order 3 is equal to (p−2)×

∣∣∣∣∣∣
−2 0 1
0 −(p−2) 1
1 1 0

∣∣∣∣∣∣= (p−2)p.

Hence S3 = p(p−2). Also, minors of order more than 3 have
atleast one zero row or two like rows. In both the cases, their
value is zero. That is, Si = 0 for i≥ 4.
For k ≥ 3, the nonzero principal minors of order 3 are the
following:

1) The 3×3 minors with first two rows and one of the rows

from k+1th row to pth row

∣∣∣∣∣∣
−k 0 1
0 −(p− k) 1
1 1 0

∣∣∣∣∣∣ .
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2) The 3×3 minors with first row, one of the rows from 3rd row
to kth row as the 2nd row and one of the rows from (k+1)th

to pth as the third row

∣∣∣∣∣∣
−k 0 1
0 0 1
1 1 0

∣∣∣∣∣∣ .
3) The 3×3 minors with the second row, one of the rows from

3rd row to kth row as the 2nd row and one of the rows from

(k+1)th to pth as the third row are

∣∣∣∣∣∣
−(p− k) 0 1

0 0 1
1 1 0

∣∣∣∣∣∣ .
The sum of all nonzero principal minors of order 3 is

equal to S3 = (p− k)p+ k(k−2)(p− k)+(k−2)(p− k)2 =
(k−1)p(p−k). The 4×4 nonzero principal minors are those
which have the first row, second row, one of the rows from
third row to the kth row and one of the rows from (k+ 1)th

row to the pth row. That is

∣∣∣∣∣∣∣∣
−p 0 0 1
0 −(p− k) 0 1
0 0 0 1
1 1 1 0

∣∣∣∣∣∣∣∣ . The

sum of all nonzero principal minors of order 4 is equal to
S4 =−(k−2)p(p− k)2. Since, any principal minor of order
more than 4 has either two equal rows or two zero rows its
value is equal to zero. Hence Si = 0 for i≥ 5.

Corollary 3.9. For a complete graph of order p and any
marker set M, with |M| = k, the characteristic polynomial
of the M-set Laplacian is λ p−S1λ p−1 +S2λ p−2−S3λ p−3 +
S4λ p−4 where S1 =−p, S2 = 0,

S3 =

{
(p−1)(p−2), when k = 1
(k−1)p(p− k), when k ≥ 2

S4 =

{
0, when k ≤ 2
−k(k−1)(p− k)2, when k ≥ 3.

Now, we give the condition for a polynomial to be realized
as the characteristic polynomial of a M-set distance Laplacian
matrix of a graph.

Theorem 3.10. The set of polynomials of the form xp+ pxp−1−
(p−1)(p−2)x(p−3) where p is a positive integer, can be re-
alized as the characteristic polynomial of a M-set distance
Laplacian matrix of a simple connected graph G on p vertices.

Proof. Let P(x) = xp + pxp−1− (p− 1)(p− 2))xp−3 be the
given polynomial. Then, this is the characteristic polynomial
of the M-set distance Laplacian matrix LM(G) = DM(G)−

diag[1,(p− 1)] where DM(G) =

[
01×1 11×(p−1)

1(p−1)×1 0(p−1)×(p−1)

]
The corresponding graph G can be obtained by sequentially
joining a graph M on 1 vertex with Kp−1.
i.e.

G = 〈M〉+Kp−1.

Now, G with marker set M has the marker set distance Lapla-
cian characteristic polynomial P(x).

An algorithm can be written for the above theorem. An
example is as given below.

Example 3.11. Let P(x) = x6 + 6x5− 20x3. Then P(x) can
be written as x6+6x5− (6−1)(6−2)x5. Take a single vertex
graph M.
Join this sequentially with K5 to get a graph G (Figure 2).

G = 〈M〉+K5

G is the graph with marker set M, whose M-set distance Lapla-
cian matrix is LM(G) = DM(G)−diag[1,5] where DM(G) =[

01×1 11×5
15×1 05×5

]
and the corresponding characteristic polyno-

mial is x6 +6x5−20x3.

Figure 2

Theorem 3.12. The set of polynomials of the form xp+ pxp−1−
(k−1)p(p−k)xp−3−k(k−1)(p−k)2xp−4 where p and k are
positive integers with k ≤ p can be realized as the character-
istic polynomial of a M-set distance Laplacian matrix of a
simple connected graph G on p vertices.

Proof. Let P(x) = xp + pxp−1− (k−1)p(p−k)xp−3−k(k−
2)(p− k)2xp−4 be the given polynomial. Then, this is the
characteristic polynomial of the M-set distance Laplacian
matrix LM(G) = DM(G)− diag[k,(p− k)] where DM(G) =[

0k×k 1k×(p−k)
1(p−k)×k 0(p−k)×(p−k).

]
The corresponding graph G can

be obtained by sequentially joining a graph M on k vertices
with Kp−k.
i.e.

G = 〈M〉+Kp−k.

Now, G with marker set M has the marker set distance Lapla-
cian characteristic polynomial P(x).

Example 3.13. Let P(x) = x6+6x5−36x3−27x2. Then P(x)
can be written as x6+6x5− (3−1)6(6−3)x3−3(3−2)(6−
3)2x2. Take a graph M on 3 vertices. Join this sequentially
with K3 to get a graph G (Figure 3).

G = 〈M〉+K3

G is the graph with marker set M, whose M-set distance Lapla-
cian matrix is LM(G) = DM(G)−diag[3,3] where DM(G) =
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[
03×3 13×3
13×3 03×3

]
and the corresponding characteristic polyno-

mial is x6 +6x5−36x3−27x2.

Figure 3

Conclusion
Although, we have initiated the study of marker set Laplacian
eigenvalues in graphs in this paper, there are many related
results which can be obtained. Many cases are being proved
for the natural extensions.
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