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Abstract

We consider an M [x]/G/1 queue with two phases of service, with different general (arbitrary) service time
distributions. The first phase of service is essential for all customers, as soon as the first service of a customer is
completed, then with probability θ, he may opt for the second service or else with probability (1− θ), he leaves
the system. At each service completion, the server will take compulsory vacation. The vacation period of the
server has two heterogeneous phases. Phase one is compulsory and phase two follows the phase one vacation
in such a way that the server may take phase two vacation with probability p or return back to the system
with probability (1 − p). The service and vacation periods are assumed to be general. The time dependent
probability generating functions have been obtained in terms of their Laplace transforms and the corresponding
steady state results have been obtained explicitly. Also the average number of customers in the queue and the
waiting time are also derived.

Keywords: Batch arrival, optional service, second optional vacation, stability condition, average queue size,
average waiting time.
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1 Introduction

The modelling analysis for the queueing systems with vacations has been done by a considerable amount
of work in the past and successfully used in various applied problems such as production/inventory system,
communication systems, computer networks etc. A comprehensive and excellent study on the vacation models
can be found in Levy and Yechiali [11], Doshi [6], Takagi [15], Lee et al. [10], Krishna Reddy et al. [9], Hur
and Paik [7] and others. Batch arrival M [x]/G/1 queueing systems with multiple vacations were first studied
by Baba [1]. Badamchi Zadeh [2] studied a batch arrival queuening system with two phases of heterogenous
service with optional second service and restricted admissibility with single vacation policy.

Recently, there have been several contributions considering queueing system of M/G/1 type in which the
server may provide a second phase service. Such queueing situations occur in day-to-day life, for example in
many applications such as hospital services, production systems, bank services, computer and communication
networks there is two phase of services such that the first phase is essential for all customers, but as soon as the
essential services completed, it may leave the system or may immediately go for the second phase of service.
One may refer to Medhi [14], Krishnakumar et al. [8], Choudhury [4], Madan and Choudhury [13], Choudhury
and Paul [5]. Badamchi and Shankar [3] have also studied a single server queue with two phase queueing
system with Bernoulli feedback and Bernoulli schedule server vacation. Madan and Choudhury [12] proposed
an queueing system with restricted admissibilty of arriving batches and Bernoulli schedule server vacation.
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In this paper we consider batch arrival queue with two phases of service and optional server vacation. The
first phase of service is essential for all customers, as soon as the first service of a customer is completed, then
with probability θ, he may opt for the second service or else with probability (1 − θ), he leaves the system.
After completion of each service, the server will take compulsory vacation. The vacation periods of the server
has two heterogeneous phases. However, after returning from phase one compulsory vacation the server may
take one more optional vacation with probability p or return back to the system with probability (1− p).

This paper is organized as follows. The mathematical description of our model is given in section 2.
Definitions and equations governing the system are given in section 3. The time dependent solution have been
obtained in section 4 and corresponding steady state results have been derived explicitly in section 5. Average
queue size and average waiting time are computed in section 6.

2 Mathematical description of the model

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a compound Poisson process and they are
provided one by one service on a first come - first served basis. Let λcidt (i = 1, 2, . . .) be the first order
probability that a batch of i customers arrives at the system during a short interval of time (t, t + dt],

where 0 ≤ ci ≤ 1 and
∞∑

i=1

ci = 1 and λ > 0 is the arrival rate of batches.

b) There is a single server who provides the first phase of essential service for all customers, as soon as the
essential service of a customer is completed, then with probability θ, he may opt for the second service
or else with probability (1− θ), he leave the system.

c) The service time follows a general (arbitrary) distribution with distribution function Bi(s) and density
function bi(s). Let µi(x)dx be the conditional probability density of service completion during the interval
(x, x + dx], given that the elapsed time is x, so that

µi(x) =
bi(x)

1−Bi(x)
, i = 1, 2,

and therefore,

bi(s) = µi(s)e
−

s∫
0

µi(x)dx
, i = 1, 2.

d) After completion of each service, the server will take compulsory vacation of random length. The vacation
time has two phases with phase one is compulsory. However, after phase one vacation, the server takes
phase two optional vacation with probability p or may return back to the system with probability (1−p).

e) The server’s vacation time follows a general (arbitrary) distribution with distribution function Vi(t) and
density function vi(t). Let γi(x)dx be the conditional probability of a completion of a vacation during
the interval (x, x + dx] given that the elapsed vacation time is x, so that

γi(x) =
vi(x)

1− Vi(x)
, i = 1, 2,

and therefore,

vi(t) = γi(t)e
−

t∫
0

γi(x)dx
i = 1, 2.

f) Various stochastic processes involved in the system are assumed to be independent of each other.

3 Definitions and equations governing the system

We define
P

(1)
n (x, t) = Probability that at time t, the server is active providing essential service and there are n (n ≥ 0)

customers in the queue excluding the one being served and the elapsed service time for this customer is x.
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Consequently P
(1)
n (t) =

∞∫
0

P
(1)
n (x, t)dx denotes the probability that at time t there are n customers in the

queue excluding one customer in the essential service irrespective of the value of x.
P

(2)
n (x, t) = Probability that at time t, the server is active providing second optional service and there are n

(n ≥ 0) customers in the queue excluding the one being served and the elapsed service time for this customer

is x. Consequently P
(2)
n (t) =

∞∫
0

P
(2)
n (x, t)dx denotes the probability that at time t there are n customers in the

queue excluding one customer in the second optional service irrespective of the value of x.

V
(1)
n (x, t) = Probability that at time t, the server is under phase one compulsory vacation with elapsed vacation

time x and there are n (n ≥ 0) customers in the queue. Consequently V
(1)
n (t)=

∞∫
0

V
(1)
n (x, t)dx denotes the

probability that at time t there are n customers in the queue and the server is under phase one compulsory
vacation irrespective of the value of x.

V
(2)
n (x, t) = Probability that at time t, the server is under phase two optional vacation with elapsed vacation

time x and there are n (n ≥ 0) customers in the queue. Consequently V
(2)
n (t)=

∞∫
0

V
(2)
n (x, t)dx denotes the

probability that at time t there are n customers in the queue and the server is under phase two optional
vacation irrespective of the value of x.
Q(t) = Probability that at time t, there are no customers in the queue and the server is idle but available in
the system.

The model is then, governed by the following set of differential-difference equations:

∂

∂x
P

(1)
0 (x, t) +

∂

∂t
P

(1)
0 (x, t) + [λ + µ1(x)]P (1)

0 (x, t) = 0 (3.1)

∂

∂x
P (1)

n (x, t) +
∂

∂t
P (1)

n (x, t) + [λ + µ1(x)]P (1)
n (x, t) = λ

n∑
k=1

ckP
(1)
n−k(x, t), n ≥ 1 (3.2)

∂

∂x
P

(2)
0 (x, t) +

∂

∂t
P

(2)
0 (x, t) + [λ + µ2(x)]P (2)

0 (x, t) = 0 (3.3)

∂

∂x
P (2)

n (x, t) +
∂

∂t
P (2)

n (x, t) + [λ + µ2(x)]P (2)
n (x, t) = λ

n∑
k=1

ckP
(2)
n−k(x, t), n ≥ 1 (3.4)

∂

∂x
V

(1)
0 (x, t) +

∂

∂t
V

(1)
0 (x, t) + [λ + γ1(x)]V (1)

0 (x, t) = 0 (3.5)

∂

∂x
V (1)

n (x, t) +
∂

∂t
V (1)

n (x, t) + [λ + γ1(x)]V (1)
n (x, t) = λ

n∑
k=1

ckV
(1)
n−k(x, t), n ≥ 1 (3.6)

∂

∂x
V

(2)
0 (x, t) +

∂

∂t
V

(2)
0 (x, t) + [λ + γ2(x)]V (2)

0 (x, t) = 0 (3.7)

∂

∂x
V (2)

n (x, t) +
∂

∂t
V (2)

n (x, t) + [λ + γ2(x)]V (2)
n (x, t) = λβ

n∑
k=1

ckV
(2)
n−k(x, t), n ≥ 1 (3.8)

d

dt
Q(t) + λQ(t) = (1− p)

∫ ∞

0

γ1(x)V (1)
0 (x, t)dx +

∫ ∞

0

γ2(x)V (2)
0 (x, t)dx (3.9)

The above equations are to be solved subject to the following boundary conditions:

P (1)
n (0, t) = αλCn+1Q(t) + (1− p)

∫ ∞

0

γ1(x)V (1)
n+1(x, t)dx +

∫ ∞

0

γ2(x)V (2)
n+1(x, t)dx, n ≥ 0 (3.10)

P (2)
n (0, t) = θ

∫ ∞

0

µ1(x)P (1)
n (x, t)dx, n ≥ 0 (3.11)



G. Ayyappan et al. / Time dependent solution of ... 23

V (1)
n (0, t) = (1− θ)

∫ ∞

0

µ1(x)P (1)
n (x, t)dx +

∫ ∞

0

µ2(x)P (2)
n (x, t)dx, n ≥ 0 (3.12)

V (2)
n (0, t) = p

∫ ∞

0

γ1(x)V (1)
n (x, t)dx, n ≥ 0 (3.13)

We assume that initially there are no customers in the system and the server is idle. So the initial conditions
are

V
(i)
0 (0) = V (i)

n (0) = 0, Q(0) = 1 and

P (i)
n (0) = 0 for n = 0, 1, 2, ..., i = 1, 2. (3.14)

4 Generating functions of the queue length: The time-dependent solution

In this section we obtain the transient solution for the above set of dfferential-difference equations.

Theorem 4.1. The system of differential difference equations to describe an M [x]/G/1 queue with first essential
service, second optional service, first phase of vacation and optional vacation are given by equations (3.1) to
(3.13) with initial conditions (3.14) and the generating functions of transient solution are given by equation
(4.50) to (4.53).

Proof. We define the probability generating functions ,

P (i)(x, z, t) =
∞∑

n=0

znP (i)
n (x, t); P (i)(z, t) =

∞∑
n=0

znP (i)
n (t), for i = 1, 2. (4.1)

V (i)(x, z, t) =
∞∑

n=0

znV (i)
n (x, t);V (i)(z, t) =

∞∑
n=0

znV (i)
n (t), C(z) =

∞∑
n=1

cnzn (4.2)

which are convergent inside the circle given by z ≤ 1 and define the Laplace transform of a function f(t) as

f̄(s) =

∞∫
0

e−stf(t)dt, <(s) > 0 (4.3)

Taking the Laplace transform of equations (3.1) to (3.13) and using (3.14), we obtain

∂

∂x
P̄

(1)
0 (x, s) + (s + λ + µ1(x))P̄ (1)

0 (x, s) = 0 (4.4)

∂

∂x
P̄ (1)

n (x, s) + (s + λ + µ1(x))P̄ (1)
n (x, s) = λ

n∑
k=1

ckP̄
(1)
n−k(x, s), n ≥ 1 (4.5)

∂

∂x
P̄

(2)
0 (x, s) + (s + λ + µ2(x))P̄ (2)

0 (x, s) = 0 (4.6)

∂

∂x
P̄ (2)

n (x, s) + (s + λ + µ2(x))P̄ (2)
n (x, s) = λ

n∑
k=1

ckP̄
(2)
n−k(x, s), n ≥ 1 (4.7)

∂

∂x
V̄

(1)
0 (x, s) + (s + λ + γ1(x))V̄ (1)

0 (x, s) = 0 (4.8)

∂

∂x
V̄ (1)

n (x, s) + (s + λβ + γ1(x))V̄ (1)
n (x, s) = λ

n∑
k=1

ckV̄
(1)
n−k(x, s), n ≥ 1 (4.9)

∂

∂x
V̄

(2)
0 (x, s) + (s + λ + γ2(x))V̄ (2)

0 (x, s) = 0 (4.10)

∂

∂x
V̄ (2)

n (x, s) + (s + λ + γ2(x))V̄ (2)
n (x, s) = λ

n∑
k=1

ckV̄
(2)
n−k(x, s), n ≥ 1 (4.11)
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(s + λ)Q̄(s) = 1 + (1− p)
∫ ∞

0

γ1(x)V̄ (1)
0 (x, s)dx +

∫ ∞

0

γ2(x)V̄ (2)
0 (x, s)dx (4.12)

P̄ (1)
n (0, s) = αλcn+1Q̄(s) + (1− p)

∫ ∞

0

γ1(x)V̄ (1)
n+1(x, s)dx +

∫ ∞

0

γ2(x)V̄ (2)
n+1(x, s)dx, n ≥ 0 (4.13)

P̄ (2)
n (0, s) = θ

∫ ∞

0

µ1(x)P̄ (1)
n (x, s)dx, n ≥ 0 (4.14)

V̄ (1)
n (0, s) = (1− θ)

∫ ∞

0

µ1(x)P̄ (1)
n (x, s)dx +

∫ ∞

0

µ2(x)P̄ (2)
n (x, s)dx, n ≥ 0 (4.15)

V̄ (2)
n (0, s) = p

∫ ∞

0

γ1(x)V̄ (1)
n (x, s)dx, n ≥ 0 (4.16)

Now multiplying equations (4.5), (4.7), (4.9) and (4.11) by zn and summing over n from 1 to ∞, adding to
equation (4.4), (4.6), (4.8) and (4.10) using the generating functions defined in (4.1) and (4.2) we get

∂

∂x
P̄ (1)

n (x, z, s) + [s + λ− λC(z) + µ1(x)]P̄ (1)(x, z, s) = 0 (4.17)

∂

∂x
P̄ (2)

n (x, z, s) + [s + λ(1− C(z)) + µ2(x)]P̄ (2)(x, z, s) = 0 (4.18)

∂

∂x
V̄ (1)

n (x, z, s) + [s + λ− λC(z) + γ1(x)]V̄ (1)(x, z, s) = 0 (4.19)

∂

∂x
V̄ (2)

n (x, z, s) + [s + λ− λC(z) + γ2(x)]V̄ (2)(x, z, s) = 0 (4.20)

For the boundary conditions, we multiply both sides of equation (4.13) by zn sum over n from 0 to ∞, and use
the equation (4.12), we get

zP̄ (1)(0, z, s) = [1− sQ̄(s)] + λ[C(z)− 1]Q̄(s)

+(1− p)
∫ ∞

0

γ1(x)V̄ (1)(x, z, s)dx +
∫ ∞

0

γ2(x)V̄ (2)(x, z, s)dx (4.21)

Performing similar operation on equations (4.14) to (4.16) we get,

P̄ (2)(0, z, s) = θ

∫ ∞

0

µ1(x)P̄ (1)(x, z, s)dx (4.22)

V̄ (1)(0, z, s) = (1− θ)
∫ ∞

0

µ1(x)P̄ (1)(x, z, s)dx +
∫ ∞

0

µ2(x)P̄ (2)(x, z, s)dx (4.23)

V̄ (2)(0, z, s) = p

∫ ∞

0

γ1(x)V̄ (1)(x, z, s)dx (4.24)

Integrating equation (4.17) between 0 to x, we get

P̄ (1)(x, z, s) = P̄ (1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ1(t)dt
(4.25)

where P (1)(0, z, s) is given by equation (4.21).
Again integrating equation (4.25) by parts with respect to x yields,

P̄ (1)(z, s) = P̄ (1)(0, z, s)
[
1− B̄1(s + λ− λC(z))

s + λ− λC(z)

]
(4.26)

where

B̄1(s + λ− λC(z)) =

∞∫
0

e−[s+λ−λC(z)]xdB1(x) (4.27)
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is the Laplace-Stieltjes transform of the first phase of essential service time B1(x). Now multiplying both sides
of equation (4.25) by µ1(x) and integrating over x we obtain

∞∫
0

P̄ (1)(x, z, s)µ1(x)dx = P̄ (1)(0, z, s)B̄1[s + λ(1− c(z))] (4.28)

Similarly, on integrating equations (4.18) to (4.20) from 0 to x, we get

P̄ (2)(x, z, s) = P̄ (2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ2(t)dt
(4.29)

V̄ (1)(x, z, s) = V̄ (1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ1(t)dt
(4.30)

V̄ (2)(x, z, s) = V̄ (2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ2(t)dt
(4.31)

where P̄ (2)(0, z, s), V̄ (1)(0, z, s) and V̄ (2)(0, z, s) are given by equations
(4.22) to (4.24). Again integrating equations (4.29) to (4.31) by parts with respect to x yields,

P̄ (2)(z, s) = P̄ (2)(0, z, s)
[
1− B̄2(s + λ− λC(z))

s + λ− λc(z)

]
(4.32)

V̄ (1)(z, s) = V̄ (1)(0, z, s)
[
1− V̄1(s + λ− λC(z))

s + λ− λC(z)

]
(4.33)

V̄ (2)(z, s) = V̄ (2)(0, z, s)
[
1− V̄2(s + λ− λC(z))

s + λ− λC(z)

]
(4.34)

where

B̄2(s + λ− λC(z)) =
∫ ∞

0

e−[s+λ−λC(z)]xdB2(x) (4.35)

V̄1(s + λ− λC(z)) =
∫ ∞

0

e−[s+λ−λC(z)]xdV1(x) (4.36)

V̄2(s + λ− λC(z)) =
∫ ∞

0

e−[s+λ−λC(z)]xdV2(x) (4.37)

are the Laplace-Stieltjes transform of the second optional service time B2(x), first phase of vacation time V1(x)
and second optional vacation V2(x) respectively. Now multiplying both sides of equation (4.29) to (4.31) by
µ2(x), γ1(x) and γ2(x) and integrating over x, we obtain

∞∫
0

P̄ (2)(x, z, s)µ2(x)dx = P̄ (2)(0, z, s)B̄2[s + λ− λC(z)] (4.38)

∞∫
0

V̄ (1)(x, z, s)γ1(x)dx = V̄ (1)(0, z, s)V̄1[s + λ− λC(z)] (4.39)

∞∫
0

V̄ (2)(x, z, s)γ2(x)dx = V̄ (2)(0, z, s)V̄2[s + λ− λC(z)] (4.40)

Using equations (4.28) and (4.38), we can write equation (4.23) as

V̄ (1)(0, z, s) = (1− θ)B̄1(R)P̄ (1)(0, z, s) + B̄2(R)P̄ (2)(0, z, s) (4.41)

Using equation (4.28) in (4.22), we get
P̄ (2)(0, z, s) = θP̄ (1)(0, z, s)B̄1(R) (4.42)
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By using equation (4.42), equation (4.41) reduces to

V̄ (1)(0, z, s) = B̄1(R)[1− θ + θB̄2(R)]P̄ (1)(0, z, s) (4.43)

Using equations (4.39) and (4.43) in (4.24), we get

V̄ (2)(0, z, s) = pB̄1(R)V̄1(R)[1− θ + θB̄2(R)]P̄ (1)(0, z, s) (4.44)

Similarly using equations (4.39), (4.40), (4.43) and (4.44) in (4.21), we get

P̄ (1)(0, z, s) =
[1− sQ̄(s)] + λ[(C(z)− 1]Q̄(s)

DR
(4.45)

where
DR = z − B̄1(R)V̄1(R)[1− θ + θB̄2(R)](1− p + pV̄2(R)), (4.46)

R = s + λ− λC(z). Substituting the value of P̄ (1)(0, z, s) from equation
(4.45) into equations (4.42), (4.43) and (4.44), we get

P̄ (2)(0, z, s) = θ
B̄1(R)[(1− sQ̄(s)) + λα(C(z)− 1)Q̄(s)]

DR
(4.47)

V̄ (1)(0, z, s) = B̄1(R)(1− θ + θB̄2(R))
[(1− sQ̄(s)) + λα(C(z)− 1)Q̄(s)]

DR
(4.48)

V̄ (2)(0, z, s) = pB̄1(R)(1− θ + θB̄2(R))V̄1(R)
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

DR
(4.49)

Using equations (4.45), (4.47), (4.48) and (4.49) in (4.26), (4.32), (4.33) and (4.34), we get

P̄ (1)(z, s) =
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

DR

[1− B̄1(R)]
R

(4.50)

P̄ (2)(z, s) =
θB̄1(R)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

DR

[1− B̄2(R)]
R

(4.51)

V̄ (1)(z, s) =
[1− θ + θB̄2(R)]B̄1(R)

DR

[(1− sQ̄(s))(λC(z)− λ)Q̄(s)]
[1− V̄1(R)]

R
(4.52)

V̄ (2)(z, s) = pB̄1(R)V̄1(R)
[1− θ + θB̄2(R)]

DR

[(1− sQ̄(s)) + (λC(z)− λ)Q̄(s)]
[1− V̄2(R)]

R
(4.53)

where DR is given by equation (60). Thus P̄ (1)(z, s), P̄ (2)(z, s),
V̄ (1)(z, s) and V̄ (2)(z, s) are completely determined from equations (4.50) to (4.53) which completes the proof
of the theorem.

5 The steady state results

In this section, we shall derive the steady state probability distribution for our queueing model. To define
the steady state probabilities we suppress the argument t wherever it appears in the time-dependent analysis.
This can be obtained by applying the well-known Tauberian property,

lim
s→0

sf̄(s) = lim
t→∞

f(t) (5.1)

In order to determine P̄ (1)(z, s), P̄ (2)(z, s), V̄ (1)(z, s) and V̄ (2)(z, s) completely, we have yet to determine
the unknown Q which appears in the numerators of the right hand sides of equations (4.50) to (4.53). For that
purpose, we shall use the normalizing condition

P (1)(1) + P (2)(1) + V (1)(1) + V (2)(1) + Q = 1 (5.2)
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Theorem 5.1. The steady state probabilities for an M [x]/G/1 first essential service, second optional service,
first phase of vacation and optional vacation are given by

P (1)(1) =
λE(I)E(B1)Q

dr
(5.3)

P (2)(1) =
θλE(I)E(B2)Q

dr
(5.4)

V (1)(1) =
λE(I)E(V1)Q

dr
(5.5)

V (2)(1) =
pλE(I)E(V2)Q

dr
(5.6)

where
dr = 1− λE(I)[E(B1) + θE(B2) + E(V1) + pE(V2)], (5.7)

P (1)(1), P (2)(1), V (1)(1), V (2)(1) and Q are the steady state probabilities that the server is providing first
essential service, second optional service, server under first phase of vacation, optional vacation, server under
idle respectively without regard to the number of customers in the system.

Proof. Multiplying both sides of equations (4.50) to (4.53) by s, taking limit as s→ 0, applying property (5.1)
and simplifying, we obtain

P (1)(z) =
[B̄1(T )− 1]Q

D(z)
(5.8)

P (2)(z) =
θB̄1(T )[B̄2(T )− 1]Q

D(z)
(5.9)

V (1)(z) =
B̄1(T )[1− θ + θB̄2(T )][V̄1(T )− 1]Q

D(z)
(5.10)

V (2)(z) =
pB̄1(T )[1− θ + θB̄2(T )]V̄1(f3(z))[V̄2(T )− 1]Q

D(z)
(5.11)

where
D(z) = z − V̄1(T )B̄1(T )[1− θ + θB̄2(T )][1− p + pV̄2(T )], (5.12)

T = λ− λC(z).
Let Wq(z) denote the probability generating function of the queue size irrespective of the state of the system.
Then adding equations (5.8) to (5.11) we obtain

Wq(z) = P (1)(z) + P (2)(z) + V (1)(z) + V (2)(z)

Wq(z) =
[B̄1(T )− 1]Q

D(z)

+
θB̄1(T )[B̄2(T )− 1]Q

D(z)

+
B̄1(T )[1− θ + θB̄2(T )][V̄1(T )− 1]Q

D(z)

+
pB̄1(T )[1− θ + θB̄2(T )]V̄1(T )[V̄2(T )− 1]Q

D(z)
(5.13)

where C(1)= 1, C ′(1) = E(I) is mean batch size of the arriving customers,
−B̄′i(0) = E(Bi),−V̄ ′i (0) = E(Vi), for i = 1, 2.
In order to find Q, we use the normalization condition Wq(1) + Q = 1. We see that for z=1, Wq(1) is
indeterminate of the form 0/0. Therefore, we apply L’Hopital’s rule and on simplifying we get,

Wq(1) =
αλE(I)[E(B1) + θE(B2) + E(V1 + pE(V2))]

1− λE(I)[E(B1) + θE(B2) + E(V1) + pE(V2)]
Q (5.14)
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Therefore adding Q to equation (5.14), equating to 1 and simplifying, we get

Q = 1− ρ (5.15)

and hence the utilization factor ρ of the system is given by

ρ = λE(I)[E(B1) + θE(B2) + E(V1) + pE(V2)] (5.16)

where ρ < 1 is the stability condition under which the steady state exists. Equation (5.15) gives the probability
that the server is idle. Substituting Q from (5.15) into (5.13), we have completely and explicitly determined
Wq(z), the probability generating function of the queue size.

6 The mean queue size and the mean system size

Let Lq denote the mean number of customers in the queue under the steady state. Then

Lq =
d

dz
Wq(z) at z = 1

Since this formula gives 0/0 form, then we write Wq(z) given in (5.13) as Wq(z) = N(z)
D(z) where N(z) and

D(z) are numerator and denominator of the right hand side of (5.13) respectively. Then we use

Lq = lim
z→1

d

dz
Wq(z) = lim

z→1

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
(6.1)

where primes and double primes in (6.1) denote first and second derivative at z = 1, respectively. Carrying
out the derivative at z = 1 we have

N ′(1) = λαβE(I)[E(B1) + θE(B2) + E(V1) + pE(V2)]Q (6.2)

N ′′(1) = [λ2(E(I))2[E(B2
1) + θE(B2

2) + E(V 2
1 ) + pE(V 2

2 ))]

+ λE(I(I − 1))[E(B1) + θE(B2) + E(V1) + pE(V2]

+ 2λ2(E(I))2[E(B1)E(V1) + pθE(B2)E(V2)]

+ 2λ2(E(I))2(E(B1) + E(V1))(θE(B2) + pE(V2))]Q (6.3)

D′(1) = 1− λE(I)[E(B1) + θE(B2) + E(V1) + pE(V2)] (6.4)

D′′(1) = −λ2(E(I))2[E(B1) + θE(B2) + E(V1 + pE(V2]

−2λ2(E(I))2[E(B1)E(V1) + pθE(B2)E(V2)]

+2λ2(E(I))2[E(B1) + E(V1)][θE(B2) + pE(V2)]

+λE(I(I − 1))[E(B1) + θE(B2) + E(V1) + pE(V2)], (6.5)

where E(V 2) are the second moment of the vacation time. E(I(I − 1)) is the second factorial moment of the
batch size of arriving customers. Then if we substitute the values N ′(1), N ′′(1), D′(1), D′′(1) from equations
(6.2) to (6.5) into equation (6.1) we obtain Lq in the closed form.

Further, we find the mean system size L using Little’s formula. Thus we have

L = Lq + ρ (6.6)

where Lq has been found by equation (6.1) and ρ is obtained from equation (5.16).
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7 The average waiting time

Let Wq and W denote the mean waiting time in the queue and in the system respectively. Then using
Little’s formula, we obtain,

Wq =
Lq

λ
(7.1)

W =
L

λ
, (7.2)

where Lq and L have been found in equations (6.1) and (6.6).
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