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Extended Darboux frame field in Minkowski
space-time E4
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Abstract
In this paper, we extend the Darboux frame field along a non-null curve lying on an orientable non-null hyper-
surface into Minkowski space-time E4

1 in two cases which the curvature vector and the normal vector of the
hypersurface are linearly independent or dependent. Then the normal curvature, the geodesic curvature(s), and
the geodesic torsion(s) of the hypersurface are given when the curve lying on the hypersurface is an asymptotic
or geodesic curve.
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1. Introduction
The most known frame fields of differential geometry are the
Frenet frame field and the Darboux frame field, and these
frame fields occupy an important place in the study of curves
and surfaces. There are many studies about generalization of
the Frenet frame in higher dimensional spaces in the literature,
but there is no study about generalization of Darboux frame
to higher dimensional spaces, except for the article given by
Düldül et al., [2].

As we know, in differential geometry the Darboux frame
field along a curve lying on a surface denoted by {T,V,N},
where T is the unit tangent vector of the curve, N is the surface
normal restricted to the curve, and V = T×N. The normal
curvature, the geodesic curvature and the geodesic torsion
of the surface can be calculated by means of the derivative
equations of this frame field, [1,5,7,8,10].

In this paper, similar to given in Euclidean 4-space we
construct a frame field along a non-null curve lying on an

orientable non-null hypersurface in Minkowski space-time
E4

1 and call as ”extended Darboux frame field” or shortly
”ED-frame field”. After, we obtain the derivative equations of
this frame field and give the normal curvature, the geodesic
curvature(s) and the geodesic torsion(s) of the hypersurface.

We hope that this new frame field will provide the basis
for future works to be done in this area.

2. Preliminaries
The Minkowski space-time E4

1 is the Euclidean space E4 pro-
vided with the indefinite flat metric given by

〈,〉=−dx2
1 +dx2

2 +dx2
3 +dx2

4,

where (x1,x2,x3,x4) is a rectangular coordinate system of E4
1.

Since the above metric is an indefinite metric, we know that
a vector in E4

1 can have one of the three causal characters:
The arbitrary vector v is called a spacelike, a timelike, and a
null or lightlike vector if 〈v,v〉 > 0 or v = 0, 〈v,v〉 < 0, and
〈v,v〉 = 0 for v 6= 0, respectively. The norm of a vector v is
defined by ‖v‖=

√
|〈v,v〉| and two vectors v and w are called

orthogonal if 〈v,w〉= 0. A vector v satisfying 〈v,v〉=±1 is
called a unit vector. For an arbitrary curve α(s) in E4

1, the
curve is called a spacelike, a timelike and a null or lightlike
curve, if all of its velocity vectors α ′(s) are spacelike, timelike
and null or lightlike, respectively, [6].
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A hypersurface in the Minkowski space-time E4
1 is called

a spacelike or a timelike hypersurface if the induced metric
on the hypersurface is a positive definite Riemannian metric
or a Lorentzian metric, respectively. The normal vector on
the spacelike or the timelike hypersurface is a timelike or a
spacelike vector, respectively.

The ternary (or vector) product of the vectors u=
4
∑

i=1
uiei,

v =
4
∑

i=1
viei, and w =

4
∑

i=1
wiei in E4

1 is defined by

u⊗v⊗w =−

∣∣∣∣∣∣∣∣
−e1 e2 e3 e4
u1 u2 u3 u4
v1 v2 v3 v4
w1 w2 w3 w4

∣∣∣∣∣∣∣∣ ,
where {e1,e2,e3,e4} is the standard basis of E4

1. The equa-
tions;

e1⊗ e2⊗ e3 = e4, e2⊗ e3⊗ e4 = e1,

e3⊗ e4⊗ e1 = e2, e4⊗ e1⊗ e2 =−e3

are satisfied for the vectors ei, 1≤ i≤ 4, [11].
Let M be an orientable non-null hypersurface and α : I ⊂

R→M be a unit speed non-null curve in E4
1. Let {t,n,b1,b2}

be the moving Frenet frame along α . Then t, n, b1, and b2 are
the unit tangent, the principal normal, the first binormal, and
the second binormal vector fields, respectively. If k1, k2, and
k3 are the curvature functions of the unit speed non-null curve
α , then for the non-null frame vectors we have the following
Frenet equations:

t′ = εnk1n,
n′ = −εtk1t+ εb1k2b1,
b′1 = −εnk2n− εtεnεb1k3b2,
b′2 = −εb1k3b1,

where εt = 〈t, t〉, εn = 〈n,n〉, εb1 = 〈b1,b1〉, εb2 = 〈b2,b2〉
whereby εt,εn,εb1 ,εb2 ∈ {−1,1}, 1≤ i≤ 4 and εtεnεb1εb2 =
−1, [4].

Definition 2.1. i) Let A = [ai j] ∈Rm
n and B = [b jk] ∈Rn

p be
two matrices, where Rm

n and Rn
p are the real vector spaces

with the matrix addition and the scalar-matrix multiplica-
tion. Then, the Lorentzian matrix multiplication or shortly
L-multiplication of the matrices A and B is defined by

A .LB =
[
−ai1b1k +

n

∑
j=1

ai jb jk
]
.

The real vector space Rm
n with L-multiplication is denoted by

Lm
n .

ii) The matrix

In =


−1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 0



is called n×n L-identity matrix according to L-multiplication.
For every A ∈ Lm

n , Im.LA = A .LIn = A .

iii) An n×n matrix A is called L-invertible if there exists
an n×n matrix B such that A .LB = B.LA = In. Then B
is called the L-inversible of A and is denoted by A −1.

iv) The matrix A T = [a ji] ∈ Ln
m is called the transpose of

the matrix A = [ai j] ∈ Lm
n .

v) The matrix A ∈ Ln
n is called L-orthogonal matrix if

A −1 = A T ,[3].

3. Extended Darboux frame field in E4
1

Let M be an orientable non-null hypersurface, N be its non-
null unit normal vector field in E4

1, and α(s) be a non-null
Frenet curve parametrized by arc-length parameter s lying on
M. If the non-null unit tangent vector field of α is denoted by
T, and the non-null unit normal vector field of M restricted to
α is denoted by N, we have α ′(s) =T(s) and N(α(s)) =N(s).

As in Euclidean 4-space E4 [2], the extended Darboux
frame can be constructed in two different cases in Minkowski
space-time E4

1 according to whether the set {N,T,α ′′} is lin-
early independent or linearly dependent. Let us denote the
ED-frame field is the first kind and the second kind if the
set {N,T,α ′′} is linearly independent and linearly dependent,
respectively.

Now, let us construct the ED-frame field of the first kind in
Case 1 and the second kind in Case 2 along the non-null Frenet
curve α in E4

1. As explained in [2], using the Gram-Schmidt
orthonormalization method, we have

E=
α ′′−〈α ′′,N〉N
||α ′′−〈α ′′,N〉N||

for Case 1 and

E=
α ′′′−〈α ′′′,N〉N−〈α ′′′,T〉T
||α ′′′−〈α ′′′,N〉N−〈α ′′′,T〉T||

for Case 2. If we define −D= N⊗T⊗E for both cases, we
obtain the orthonormal frame field {T,E,D,N} another from
Frenet frame field {T,n,b1,b2} along the curve α . With re-
spect to the orthonormal frame {T,E,D,N}, the vector fields
T′,E′,D′,N′ have the following decompositions:

T′ = ε1 〈T′,T〉T+ ε2 〈T′,E〉E+ ε3 〈T′,D〉D
+ε4 〈T′,N〉N,

E′ = ε1 〈E′,T〉T+ ε2 〈E′,E〉E+ ε3 〈E′,D〉D
+ε4 〈E′,N〉N,

D′ = ε1 〈D′,T〉T+ ε2 〈D′,E〉E+ ε3 〈D′,D〉D
+ε4 〈D′,N〉N,

N′ = ε1 〈N′,T〉T+ ε2 〈N′,E〉E+ ε3 〈N′,D〉D
+ε4 〈N′,N〉N,

where ε1 = 〈T,T〉, ε2 = 〈E,E〉, ε3 = 〈D,D〉, ε4 = 〈N,N〉
whereby ε1,ε2,ε3,ε4 ∈ {−1,1}. Besides, when εi =−1, then
ε j = 1 for all j 6= i, 1≤ i, j ≤ 4 and ε1ε2ε3ε4 =−1.
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Similar operations are performed in [2], we obtain 〈T′,D〉=
0 for Case 1 and 〈T′,E〉 = 〈T′,D〉 = 0 and 〈N′,D〉 = 0 for
Case 2. If we use 〈T′,N〉 = κn and denote 〈E′,N〉 = τ1

g ,
〈D′,N〉 = τ2

g , 〈T′,E〉 = κ1
g , 〈E′,D〉 = κ2

g , where κ i
g and τ i

g
are the geodesic curvature and the geodesic torsion of order
i, (i = 1,2), respectively, then the differential equations for
ED-frame field have the form for Case 1:

T′

E′

D′

N′

=


0 ε2κ1

g 0 ε4κn

−ε1κ1
g 0 ε3κ2

g ε4τ1
g

0 −ε2κ2
g 0 ε4τ2

g
−ε1κn −ε2τ1

g −ε3τ2
g 0




T
E
D
N

 ,

and for Case 2:
T′

E′

D′

N′

=


0 0 0 ε4κn
0 0 ε3κ2

g ε4τ1
g

0 −ε2κ2
g 0 0

−ε1κn −ε2τ1
g 0 0




T
E
D
N

 .

Now, let us consider the normal curvature, the geodesic
curvatures, and the geodesic torsions of the curve α and let us
give the geometrical results of these real valued functions. In
both cases, we know that κn = 〈T′,N〉 is the normal curvature
of the hypersurface in the direction of the tangent vector T.
Therefore, α is an asymptotic curve if and only if κn = 0
along α .

Theorem 3.1. Let us consider a unit speed non-null curve
α on an orientable non-null hypersurface M in Minkowski
space-time E4

1. Let M1 and M2 be the non-null hyperplanes at
α(s0) ∈M determined by {T(s0),D(s0),N(s0)} and {T(s0),
E(s0),N(s0)}, respectively. Denoting the transversal intersec-
tion curve of M1, M2, and M with β , then the first curvature
kβ

1 (s0) of β at the point β (s0) is given by kβ

1 (s0) = |κn(s0)|,
where κn is the normal curvature of the hypersurface M in the
direction of T.

Proof. According to the transversal intersection of three hy-
persurfaces, T is the tangent vector of the intersection curve β .
Using the similar calculations in [9], since the normal vectors
of the hypersurfaces are orthogonal at the point β (s0), for the
first curvature of β at β (s0) we find

kβ

1 (s0) =
√
|ε2(κ1

n )
2(s0)+ ε3(κ2

n )
2(s0)+ ε4(κ3

n )
2(s0)|,

where κ1
n = 〈T′,E〉, κ2

n = 〈T′,D〉, κ3
n = 〈T′,N〉. Then, we

obtain

kβ

1 (s0) =
√
|ε4(κn)2(s0)|.

Since ε4 =±1, we get kβ

1 (s0) = |κn(s0)|.

Theorem 3.2. Let α be a unit speed non-null curve on an
orientable non-null hypersurface M in E4

1. Let us denote the
non-null orthogonal projection curve of α onto the non-null
tangent hyperplane at α(s0) with β . Then the first curvature
kβ

1 (s0) of the projection curve β at the point β (s0) is equal to
εnκ1

g (s0), where κ1
g is the geodesic curvature of order 1 of M.

Proof. Since β is the orthogonal projection curve onto the
tangent hyperplane at α(s0) of α , we can write

β (s) = α(s)−〈α(s)−α(s0),N(s0)〉N(s0).

If we differentiate both sides of this equation three times
according to s, we find

β
′(s0) = α

′(s0) = T(s0),

β
′′(s0) = T′(s0) = ε2κ

1
g (s0)E(s0),

β ′′′(s0) =
{
−ε1ε2(κ

1
g )

2(s0)− ε1ε4(κn)
2(s0)

}
T(s0)

+
{

ε2(κ
1
g )
′(s0)− ε2ε4κn(s0)τ

1
g (s0)

}
E(s0)

+
{

ε2ε3κ1
g (s0)κ

2
g (s0)− ε3ε4κn(s0)τ

2
g (s0)

}
D(s0)

at the point β (s0) = α(s0). Then, we obtain

b2(s0) = εb1

β ′(s0)⊗β ′′(s0)⊗β ′′′(s0)

||β ′(s0)⊗β ′′(s0)⊗β ′′′(s0)||
= (0,0,0,εb1ε2),

b1(s0) =−εn
b2(s0)⊗β ′(s0)⊗β ′′(s0)

||b2(s0)⊗β ′(s0)⊗β ′′(s0)||
= (0,0,εnεb1 ,0),

n(s0) =
b1(s0)⊗b2(s0)⊗β ′(s0)

||b1(s0)⊗b2(s0)⊗β ′(s0)||
= (0,εnε2,0,0),

and

kβ

1 (s0) =
〈n(s0),β

′′(s0)〉
||β ′(s0)||2

= εnκ
1
g (s0).

Theorem 3.3. Let α be a unit speed non-null asymptotic
curve on an orientable non-null hypersurface M in E4

1. Let us
denote the non-null orthogonal projection curve of α onto the
non-null hyperplane determined by {T(s0),E(s0),N(s0)} at
α(s0) with γ . Then the first curvature kγ

1(s0) of the projection
curve γ at the point γ(s0) is given by kγ

1(s0) = εnκ1
g (s0).

Proof. If we write

γ(s) = α(s)−〈α(s)−α(s0),D(s0)〉D(s0)

and do the similar calculations at the proof of Theorem 3.2,
we find the desired result.

Now, let us take into consideration the non-null Frenet
frame {T,n,b1,b2} along the non-null curve α . Since n, b1,
b2, E, D, N are orthogonal to T, we can write

Y = A .LX, (3.1)

where

Y =

 n
b1
b2

 , X =

 E
D
N

 ,

A =

 sinhφ1 sinhφ2 sinhφ3
sinhψ1 sinhψ2 sinhψ3
sinhθ1 sinhθ2 sinhθ3


(3.2)
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Since the matrix A is an L−orthogonal matrix, we may write

I3.LX = A T .LY,

where

I3 =

 −1 0 0
0 1 0
0 0 1


3×3

.

Then we have

E=−sinhφ1n+ sinhψ1b1 + sinhθ1b2,
D=−sinhφ2n+ sinhψ2b1 + sinhθ2b2,
N=−sinhφ3n+ sinhψ3b1 + sinhθ3b2.

(3.3)

Therefore, if we use Frenet formula T′ = εnk1n and (3.3), we
get

κ
1
g =

〈
T′,E

〉
=−k1 sinhφ1 (3.4)

and

κn =
〈
T′,N

〉
=−k1 sinhφ3, (3.5)

where k1 is the first curvature of α .

Theorem 3.4. Let α be a unit speed non-null curve with arc-
length parameter s on an orientable non-null hypersurface M
in E4

1. If α is a geodesic curve on M, then

κn =−k1, κ
2
g =−k3, τ

1
g =−k2,

where ki (i = 1,2,3) denotes the i-th curvature functions of α .

Proof. Since α is a geodesic curve, by the proper orientation
of the hypersurface with N(s) = n(s), Case 2 is valid. In
this case, E and D coincide with b1 and b2, respectively. So,
the frame {T,E,D,N} coincides with the frame {T,b1,b2,n}.
Using (3.1) and (3.2), since

〈n,E〉= 0, 〈n,D〉= 0, 〈n,N〉= ε4,
〈b1,E〉= ε2, 〈b1,D〉= 0, 〈b1,N〉= 0,
〈b2,E〉= 0, 〈b2,D〉= ε3, 〈b2,N〉= 0

we obtain

φ1(s) = φ2(s) = ψ2(s) = ψ3(s) = θ1(s) = θ3(s) = 0 (3.6)

and

sinhφ3(s) =−sinhψ1(s) = sinhθ2(s) = 1 (3.7)

along α . Substituting (3.7) into (3.5), we find

κn =−k1.

On the other hand, since

E′ = k1εT sinhφ1T+
(
−φ ′1 coshφ1− k2εn sinhψ1

)
n

+
(
ψ ′1 coshψ1− k2εb1 sinhφ1− k3εb1 sinhθ1

)
b1

+
(
θ ′1 coshθ1− k3εTεnεb1 sinhψ1

)
b2

we obtain

κ2
g = 〈E′,D〉= φ ′1 coshφ1 sinhφ2εn

+ψ ′1 coshψ1 sinhψ2εb1 +θ ′1 coshθ1 sinhθ2εb2

+k2
(

sinhψ1 sinhφ2− sinhφ1 sinhψ2
)

+k3
(

sinhψ1 sinhθ2− sinhθ1 sinhψ2
) (3.8)

and

τ1
g = 〈E′,N〉= φ ′1 coshφ1 sinhφ3εn+ψ ′1 coshψ1 sinhψ3εb1

+θ ′1 coshθ1 sinhθ3εb2 + k2
(

sinhψ1 sinhφ3− sinhφ1 sinhψ3
)

+k3
(

sinhψ1 sinhθ3− sinhθ1 sinhψ3
)
.

(3.9)

Substituting (3.6) and (3.7) into (3.8) and (3.9), we get

κ
2
g =−k3

and

τ
1
g =−k2.

Theorem 3.5. Let α be a unit speed non-null curve with arc-
length parameter s on an orientable non-null hypersurface M
in E4

1. If α is an asymptotic curve on M, then

κ
1
g = k1, κ

2
g = k2 sinhψ2, τ

1
g = k2 sinhψ3,

τ
2
g = ψ

′
2 coshψ2 sinhψ3εb1 +θ

′
2 coshθ2 sinhθ3εb2 +

k3
(

sinhψ2 sinhθ3− sinhθ2 sinhψ3
)
,

where ki (i = 1,2,3) denotes the i-th curvature functions of α .

Proof. Since α is an asymptotic curve, then κn = 0. In this
case, T′ = εnk1n= ε2κ1

gE, i.e. n and E are linearly dependent.
So Case 1 is valid. Using (3.1) and (3.2), since

〈n,E〉=−ε2 sinhφ1, 〈n,D〉= 0,
〈b1,E〉= 0, 〈b1,D〉= ε3 sinhψ2,
〈b2,E〉= 0, 〈b2,D〉= ε3 sinhθ2,

〈n,N〉= 0,
〈b1,N〉= ε4 sinhψ3,
〈b2,N〉= ε4 sinhθ3

we have

sinhφ1(s)=−1, φ2(s)= φ3(s)=ψ1(s)= θ1(s)= 0 (3.10)

along α . Substituting (3.10) into (3.4), (3.8) and (3.9) yield

κ
1
g = k1,

κ
2
g = k2 sinhψ2,
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and

τ
1
g = k2 sinhψ3.

Besides, since

D′ = k1εT sinhφ2T+
(
−φ ′2 coshφ2− k2εn sinhψ2

)
n

+
(
ψ ′2 coshψ2− k2εb1 sinhφ2− k3εb1 sinhθ2

)
b1

+
(
θ ′2 coshθ2− k3εTεnεb1 sinhψ2

)
b2

we get

τ2
g = 〈D′,N〉= φ ′2 coshφ2 sinhφ3εn

+ψ ′2 coshψ2 sinhψ3εb1
+θ ′2 coshθ2 sinhθ3εb2

+k2
(

sinhψ2 sinhφ3− sinhφ2 sinhψ3
)

+k3
(

sinhψ2 sinhθ3− sinhθ2 sinhψ3
)
.

Using (3.10) yields

τ2
g = ψ ′2 coshψ2 sinhψ3εb1

+θ ′2 coshθ2 sinhθ3εb2

+k3
(

sinhψ2 sinhθ3− sinhθ2 sinhψ3
)
.
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Extension of the Darboux frame into Euclidean 4-
space and its invariants, Turkish Journal of Mathematics
41(2017), 1628-1639.
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