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On two general nonlocal differential equations
problems of fractional orders
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Abstract
In this paper, we prove some local and global existence theorems for a fractional orders differential equations
with nonlocal conditions, also the uniqueness of the solution will be studied.
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1. Introduction
In this work, we consider an arbitrary (fractional) orders dif-
ferential equation of the form:

du
dt

= f (t,Dα u(t)), α ∈ (0, 1) (1.1)

with the nonlocal conditions

Iα u(t)|t = η = Iα u(t)|t = 1, η ∈ (0, 1) (1.2)

or

t1 − α u(t)|t = η = t1 − α u(t)|t = 1, η ∈ (0, 1) (1.3)

The nonlocal problems have been intensively studied by many
authors, for instance in [4], the authors proved the existence
of L1-solution of the nonlocal boundary value problem

Dβ u(t)+ f (t,u(φ(t))) = 0,β ∈ (1,2), t ∈ (0,1),

Iγ u(t)|t=0 = 0,γ ∈ (0,1],αu(η) = u(1),0 < η < 1,

0 < αηβ−1 < 1.

where the function f satisfies Caratheodory conditions and
the growth condition.
And, in [3], the authors proved by using the Banach contrac-
tion fixed point theorem, the existence of a unique solution of
the fractional-order differential equation:

CDα x(t) = c(t) f (x(t)) + b(t),

with the nonlocal condition:

x(0) +
m

∑
k=1

ak x(tk) = x0,

where x0 ∈ℜ and 0 < t1 < t2 < · · ·< tm < 1, and ak 6= 0 for
all k = 1,2, · · · ,m.
(Where CDα is the Caputo derivative).
Also, the nonlocal problems is studied in [5] - [7].

2. Preliminaries
Define L1(I) as the class of Lebesgue integrable functions on
the interval I = [a,b], where 0 ≤ a < b < ∞ and let Γ(.) be
the gamma function. Let C(U,X) be The set of all compact
operators from the subspace U ⊂ X into the Banach space X
and let Br = {u ∈ L1(I) : ||u||< r,r > 0} .

Definition 1.1 The fractional integral of the function f (.) ∈
L1(I) of order β ∈ R+ is defined by (see [8] - [11])

Iβ
a f (t) =

∫ t

a

(t − s)β − 1

Γ(β )
f (s) ds.
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Definition 1.2 The Riemann-Liouville fractional-order deriva-
tive of f (t) of order α ∈ (0,1) is defined as (see [8] - [11])

Dα
a f (t) =

d
dt

I1 − α
a f (t), t ∈ [a,b].

In this paper, we prove the existence of L1-solutions for prob-
lems (1.1) - (1.2) and (1.1) - (1.3). Also, we will study the
uniqueness of the solution.

Now, let us state the theorems which will be needed in the
paper.

Theorem 2.1. (Rothe Fixed Point Theorem) [1]

Let U be an open and bounded subset of a Banach space
E, let T ∈C(Ū ,E). Then T has a fixed point if the following
condition holds

T (∂U) ⊆ Ū .

Theorem 2.2. (Nonlinear alternative of Laray-Schauder
type) [1]

Let U be an open subset of a convex set D in a Banach
space E. Assume 0 ∈U and T ∈C(Ū ,E). Then either

(A1) T has a fixed point in Ū , or

(A2) there exists γ ∈ (0,1) and x ∈ ∂U such that x = γ T x.

Theorem 2.3. (Kolmogorov compactness criterion) [2]

Let Ω ⊆ Lp (0,1), 1 ≤ p < ∞. If

(i) Ω is bounded in Lp (0,1) and

(ii) xh → x as h → 0 uniformly with respect to x ∈ Ω,
then Ω is relatively compact in Lp (0,1), where

xh(t) =
1
h

∫ t+h

t
x(s) ds.

3. Main Results
Firstly, we will prove the equivalence of equation (1.1) with
the corresponding Volterra integral equation:

y(t) =
u0 t− α

Γ(1 − α)
+
∫ t

0

(t − s)− α

Γ(1 − α)
f (s,y(s)) ds, t ∈ (0,1).

(3.1)

Indeed: integrate both sides of (1.1), we get

u(t) − u0 = I f (t, Dα u(t)), (3.2)

Now, operating by I1−α on both sides of (3.2), then

I1−α u(t) − I1−α u0 = I2−α f (t, Dα u(t)). (3.3)

Differentiating both sides we get

Dα u(t) − u0 t− α

Γ(1 − α)
= I1−α f (t, Dα u(t)).

Take y(t) = Dα u(t), we get (3.1)
Conversely, operate by Iα on both sides of (3.3), and differen-
tiate twice we obtain (1.1).

Now define the operator T as

Ty(t) =
u0 t− α

Γ(1 − α)
+
∫ t

0

(t − s)− α

Γ(1 − α)
f (s,y(s)) ds, t ∈ (0,1).

To solve equation (3.1), we must prove that the operator T has
a fixed point.

Consider the following assumptions:

(a) f : (0,1)× R→ R be a function with the following
properties:

(i) for each t ∈ (0,1), f (t, .) is continuous,

(ii) for each y ∈ R, f (.,y) is measurable,

(iii) there exist two real functions t → a(t), t → b(t)
such that

| f (t,y)| ≤ a(t) + b(t) |y|, for each t ∈ (0,1), y∈ R,

where a(.) ∈ L1(0,1) and b(.) is measurable and
bounded.

Now, for the local existence of the solutions we have the
following theorem:

Theorem 3.1.

If assumptions (i) - (iii) are satisfied, such that

sup | b(t) |
Γ(2 − α)

< 1, (3.4)

then the fractional order integral equation (3.1) has a solution
y ∈ Br, where

r ≤
u0

Γ(2 − α) + 1
Γ(2 − α) || a ||

1 − sup | b(t) |
Γ(2 − α)

.
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Proof. Let u be an arbitrary element in Br. Then from the
assumptions (i) - (iii), we have

||Ty|| =
∫ 1

0
|Ty(t)| dt

≤
∫ 1

0

∣∣∣∣ u0

Γ(1 − α)
t−α

∣∣∣∣ dt

+
∫ 1

0
|
∫ t

0

(t − s)−α

Γ(1 − α)
f (s,y(s)) ds| dt

≤ u0 t1 − α

Γ(2 − α)

∣∣∣∣1
0

+
∫ 1

0

∫ 1

s

(t − s)−α

Γ(1 − α)
dt | f (s,y(s))| ds

≤ u0

Γ(2 − α)

+
∫ 1

0

(t − s)1 − α

Γ(2 − α)

∣∣∣∣1
s

(
|a(s)|+ |b(s)| |y(s)|

)
ds

≤ u0

Γ(2 − α)

+
∫ 1

0

(1 − s)1−α

Γ(2 − α)

(
|a(s)| + |b(s)| |y(s)|

)
ds

≤ u0

Γ(2 − α)

+
1

Γ(2 − α)

∫ 1

0

(
|a(s)| + |b(s)| |y(s)|

)
ds

≤ u0

Γ(2 − α)

+
1

Γ(2 − α)
||a|| + 1

Γ(2 − α)
sup |b(t)| ||y||.

therefore the operator T maps L1 into itself. Now, let y ∈ ∂Br,
that is, ||y||= r, then the last inequality implies

||Ty|| ≤ u0

Γ(2−α)
+

1
Γ(2−α)

||a||+ 1
Γ(2−α)

sup |b(t)| r.

Then T (∂Br)⊂ B̄r (closure of Br) if

r ≤ u0

Γ(2 − α)
+

1
Γ(2 − α)

||a|| + 1
Γ(2 − α)

sup |b(t)| r.

Therefore

r ≤
u0

Γ(2 − α) + 1
Γ(2 − α) ||a||

1 − sup |b(t)|
Γ(2 − α)

.

From inequality (3.4) we deduce that r > 0. Also, since

|| f || =
∫ 1

0
| f (s,y(s))| ds

≤
∫ 1

0

(
|a(s)| + |b(s)| |y(s)|

)
ds

≤ ||a|| + sup |b(t)| ||y||.

Then f in L1(0,1).
Further, from (assumption (i)) f is continuous in y and since

Iα maps L1(0,1) continuously into itself, then Iα f (t,y(t)) is
continuous in y. Since y is an arbitrary element in Br, then T
maps Br into L1(0,1) continuously.
Now, we will show that T is compact, by using Theorem 2.3.
So, let Ω be a bounded subset of Br. Then T (Ω) is bounded
in L1(0,1), i.e. condition (i) of Theorem 2.3 is satisfied. It
remains to show that (Ty)h → Ty in L1(0,1) when h→ 0,
uniformly.

||(Ty)h−Ty|| =
∫ 1

0
|(Ty)h(t) − (Ty)(t)| dt

=
∫ 1

0

∣∣∣∣1h
∫ t+h

t
(Ty)(s)ds− (Ty)(t)

∣∣∣∣ dt

≤
∫ 1

0

(
1
h

∫ t+h

t
|(Ty)(s)− (Ty)(t)|ds

)
dt

≤
∫ 1

0

1
h

∫ t+h

t

∣∣∣∣ u0

Γ(1 − α)
s−α

− u0

Γ(1 − α)
t−α

∣∣∣∣ ds dt

+
∫ 1

0

1
h

∫ t+h

t
|I1 − α f (s,y(s))

− I1 − α f (t,y(t))| ds dt.

Since f ∈ L1(0,1), then I1 − α f (.) ∈ L1(0,1). Moreover,
since t−α ∈ L1(0,1). Then, we have (see [12])

1
h

∫ t+h

t

∣∣∣∣ u0

Γ(1 − α)
s−α − u0

Γ(1 − α)
t−α

∣∣∣∣ ds → 0

and

1
h

∫ t+h

t
|I1 − α f (s,y(s)) − I1 − α f (t,y(t))| ds → 0

for a.e. t ∈ (0,1). Therefore, by Theorem 2.3, we have that
T (Ω) is relatively compact, that is, T is a compact operator.
Therefore, Theorem 2.1 with U = Br and E = L1(0,1) implies
that T has a fixed point. This completes the proof.

Now, for the existence of global solution, we will prove the
following theorem :

Theorem 3.2.

Let the conditions (i) - (iii) be satisfied in addition to the
following condition:

(b) Assume that every solution y(.) ∈ L1(0,1) to the equa-
tion

y(t)= γ

(
uo

Γ(1 − α)
t− α +

∫ t

0

(t− s)−α

Γ(1 − α)
f (s,y(s)) ds

)
a.e. on (0,1), 0 < α < 1

satisfies ||y|| 6= r (r is arbitrary but fixed).
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Then the fractional order integral equation (3.1) has at least
one solution y ∈ L1(0,1).
Proof. Let y be an arbitrary element in the open set Br = {y :
||y||< r,r > 0}. Then from the assumptions (i) - (iii), we have

||Ty|| ≤ u0

Γ(2−α)
+

1
Γ(2−α)

||a||+ 1
Γ(2−α)

sup |b(t)| ||y||.

The above inequality means that the operator T maps Br into
L1. Moreover, we have

|| f || ≤ ||a|| + sup |b(t)| ||y||.

This estimation shows that f in L1(0,1).
Then from Theorem 3.1 we get that T maps Br into L1(0,1)
continuously, and the operator T is compact.
Set U = Br and D = E = L1(0,1), then from assumption
(b), we find that condition A2 of Theorem 2.2 does not hold.
Therefore, Theorem 2.2 implies that T has a fixed point. This
completes the proof.

4. Uniqueness of the solution
Theorem 4.1.

If the function f : (0,1)×R→ R satisfy assumption (ii)
of Theorem 3.1 and satisfy the following assumption

| f (t,y) − f (t,z)| ≤ L |y − z|, (4.1)

then the fractional order integral equation (3.1) has a unique
solution.
Proof. From assumption (4.1), we get

| f (t,y) − f (t,0)| ≤ L |y|,

but since

| f (t,y)| − | f (t,0)| ≤ | f (t,y) − f (t,0)| ≤ L |y|,

therefore

| f (t,y)| ≤ | f (t,0)| + L |y|,

i.e. assumptions (i) and (iii) of theorem 3.1 are satisfied.
Now, let y1(t) and y2(t) be any two solutions of equation (3.1),
then

|y2(t) − y1(t)| ≤ L
∫ t

0

(t − s)− α

Γ(1 − α)
|y2(s)− y1(s)| ds.

Therefore∫ 1

0
|y2(t)− y1(t)|dt ≤ L

∫ 1

0

∫ t

0

(t− s)−α

Γ(1−α)
|y2(s)− y1(s)|dsdt,

||y2− y1|| ≤ L
∫ 1

0

∫ 1

s

(t− s)−α

Γ(1−α)
dt|y2(s)− y1(s)|ds

≤ L
Γ(2−α)

||y2− y1||.

which implies that

y1(t) = y2(t).

Now for the existence and uniqueness of the solution of prob-
lems (1.1) - (1.2) and (1.1) - (1.3), we have the following two
theorems:

Theorem 4.2.

If the assumptions of theorem 4.1 are satisfied, then prob-
lem (1.1) - (1.2) has a unique solution.
Proof. Since

u(t) = u0 + I f (t,y(t)) from (3.2),

then from conditions (1.2), we get

u0 (η
α − 1) =

∫ 1

0
(1 − s)α f (s,y(s)) ds

−
∫

η

0
(η − s)α f (s,y(s)) ds,

u0 =
∫ 1

0
G(η , s) f (s,y(s)) ds,

where

G(η ,s) =


(1−s)α−(η−s)α

ηα − 1 0 ≤ s ≤ η ≤ 1,

(1−s)α

ηα − 1 0 ≤ η ≤ s ≤ 1.

Therefore,

u(t) =
∫ 1

0
G(η , s) f (s,y(s)) ds + I f (t,y(t)),

which completes the proof.

Theorem 4.3.

If the assumptions of theorem 4.1 are satisfied, then prob-
lem (1.1) - (1.3) has a solution.
Proof. Since

u(t) = u0 + I f (t,y(t)) from (3.2),

then from conditions (1.3), we get

u0(η
1−α −1) =

∫ 1

0
f (s,y(s))ds−

∫
η

0
η

1−α f (s,y(s))ds,

u0 =
∫ 1

0
G(η , s) f (s,y(s)) ds,

where

G(η ,s) =


−1 0 ≤ s ≤ η ≤ 1,

1
η1 − α − 1 0 ≤ η ≤ s ≤ 1.

Therefore,

u(t) =
∫ 1

0
G(η , s) f (s,y(s)) ds + I f (t,y(t)),

which completes the proof.
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