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1. Introduction

In this work, we consider an arbitrary (fractional) orders dif-
ferential equation of the form:

d

o= FD*u(n), a € (0, 1) (1.1)
with the nonlocal conditions

Iu(t)l =g = I1%u(t)l; =1, n € (0, 1) (1.2)

or
U= =t %u(t) =1, m € (0, 1) (1.3)

The nonlocal problems have been intensively studied by many
authors, for instance in [4], the authors proved the existence
of Li-solution of the nonlocal boundary value problem

DPu(r) + f(t,u(¢(1)) = 0,8 € (1,2),1 € (0,1),
I"u(t)|—=0 = 0,y€ (0,1],au(n) =u(1),0<n <1,

0<anf<1.

where the function f satisfies Caratheodory conditions and
the growth condition.

And, in [3], the authors proved by using the Banach contrac-
tion fixed point theorem, the existence of a unique solution of
the fractional-order differential equation:

c(t) f(x(1)) + b(1),

with the nonlocal condition:

CDa X(l) =

x(0) + i ag x(ty) = xo,
=1

where xo € Rand 0 < t) <t < --- <ty <1, and g # 0 for
allk=1,2,--- ,m.

(Where ¢D¥ is the Caputo derivative).

Also, the nonlocal problems is studied in [5] - [7].

2. Preliminaries

Define L;(I) as the class of Lebesgue integrable functions on
the interval I = [a,b], where 0 < a < b < e and let I'(.) be
the gamma function. Let C(U,X) be The set of all compact
operators from the subspace U C X into the Banach space X
andlet B, ={ueLi(I):||lu|| <rr>0}.

Definition 1.1 The fractional integral of the function f(.) €
Li(I) of order B € R* is defined by (see [8] - [11])

t _Sﬁfl
B = [ S

T'(B) (s) ds.
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Definition 1.2 The Riemann-Liouville fractional-order deriva-

tive of f(¢) of order @ € (0, 1) is defined as (see [8] - [11])
D% f(t) = L (t), t € [a,b)]
a f - df a f , a,n|.

In this paper, we prove the existence of L;-solutions for prob-
lems (1.1) - (1.2) and (1.1) - (1.3). Also, we will study the
uniqueness of the solution.

Now, let us state the theorems which will be needed in the
paper.

Theorem 2.1. (Rothe Fixed Point Theorem) [1]

Let U be an open and bounded subset of a Banach space
E,letT € C(U,E). Then T has a fixed point if the following
condition holds

T(9U) C 0.

Theorem 2.2. (Nonlinear alternative of Laray-Schauder
type) [1]

Let U be an open subset of a convex set D in a Banach
space E. Assume 0 € U and T € C(U,E). Then either

(A1) T has a fixed point in U, or
(A2) there exists ¥ € (0,1) and x € dU such that x = y Tx.
Theorem 2.3. (Kolmogorov compactness criterion) [2]
LetQ C LP (0,1), 1 < p < oo If

(i) Qisbounded in L? (0, 1) and

(i) x, — xash — 0 uniformly with respecttox € Q,
then Q is relatively compact in L” (0,1), where

1 t+h
-

3. Main Results

Firstly, we will prove the equivalence of equation (1.1) with
the corresponding Volterra integral equation:

0 = s [ At s re o)
3.1
Indeed: integrate both sides of (1.1), we get
u®) — uy = I f(t, D* u(r)), (3.2)
Now, operating by I'~% on both sides of (3.2), then
1% — 1" %uy = PP% f(t, D* u(t)).  (3.3)
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Differentiating both sides we get

ugt— @

D% u(r) Th-a

= I'"% f(t, D* u(r)).

Take y(t) = D% u(r), we get (3.1)
Conversely, operate by I% on both sides of (3.3), and differen-
tiate twice we obtain (1.1).

Now define the operator T as

(s))ds, t€(0,1).

_ugt ¢ t(—s5)"¢
Ty([) - F(;) _ (X) +/0 F(l _ (X) f(say

To solve equation (3.1), we must prove that the operator 7' has

a fixed point.

Consider the following assumptions:

(a) f:(0,1) x R — R be a function with the following
properties:

(i) foreachr € (0,1), f(z,.) is continuous,
(ii) foreachy € R, f(.,y) is measurable,

(iil) there exist two real functions t — a(t),t — b(r)
such that

b(t) |y|, foreach e (0,1), yER,

[f(6y)] < alt) +

where a(.) € L1(0,1) and b(.) is measurable and
bounded.

Now, for the local existence of the solutions we have the
following theorem:

Theorem 3.1.

If assumptions (i) - (iii) are satisfied, such that

sup| b(t) |

|
o <" (3.4)

then the fractional order integral equation (3.1) has a solution
y € B,, where

L]

+ 1 a
g tmtallel
= l_sup\b<>\

r2 - a)
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Proof. Let u be an arbitrary element in B,. Then from the
assumptions (i) - (iii), we have

1Tyl = /0 ITy()] dt
- /01 %a)ﬂ dr
s S st asla
I/t()t1
= m
. // E e A1)l ds
< F(Z—a)
— 5 1—al
o [ (o ) a
ol Ty
X _g)l-a
o [ U o+ 0 )
< MW
- T2 - a)
v (1o + b b)) as
<
- T2 - a)
1 1
+ m [la]| + m sup [b(t)| |[y]]-

therefore the operator 7 maps L, into itself. Now, let y € 9B,
that is, ||y|| = r, then the last inequality implies
ug

1
M s =g " Te—a

|lal|+ sup [b(r)] .

1
r2-oa)
Then T(9dB,) C B, (closure of B,) if

r < “o + !
" I2-a) TIQ2-a

lall + sup [b(t)| -

1
re - a

Therefore

1"(270:) + r( ||"H

" \b<>|
e e

r <

From inequality (3.4) we deduce that » > 0. Also, since

[ 1rs.vtsp)as
0

/01 (“@I + lb() |y<s>|) ds

llall + sup[b(2)] {¥]]-

Then fin L;(0,1).
Further, from (assumption (i)) f is continuous in y and since

A1l

IN

IN
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I maps L;(0,1) continuously into itself, then I* f(¢,y(¢)) is
continuous in y. Since y is an arbitrary element in B, then T’
maps B, into L; (0, 1) continuously.
Now, we will show that T is compact, by using Theorem 2.3.
So, let Q be a bounded subset of B,. Then T(Q) is bounded
in L;(0,1), i.e. condition (i) of Theorem 2.3 is satisfied. It
remains to show that (Ty), — Ty in L;(0,1) when & — 0,
uniformly.

(Ty)n =Tyl =

[ e — @ a
!
< [ (G i - awis)a
Ll

1

t+h
L @ds— (1)) ar

uo

ra - oc)s

—a

IN

up t7
'l — a)

N ALY OTE)

SN (e y(0)] ds d.

| ds dt

Since f € L;(0,1), then I' = *f(.) € L;(0,1). Moreover,
since % € L1 (0, 1). Then, we have (see [12])
1 t+h U o U o
. 5 Y= ——— 1 % ds - 0
h /, r-a’ (1 — a) g

and

% ‘/ttJrh |[1 7af(s,y(s)) _ 7af(t,y(t))| ds — 0

for a.e. r € (0,1). Therefore, by Theorem 2.3, we have that
T(Q) is relatively compact, that is, T is a compact operator.
Therefore, Theorem 2.1 with U = B, and E = L (0, 1) implies
that T has a fixed point. This completes the proof.

Now, for the existence of global solution, we will prove the
following theorem :

Theorem 3.2.

Let the conditions (i) - (iii) be satisfied in addition to the
following condition:

(b) Assume that every solution y(.) € L;(0,1) to the equa-
tion

0= (gt [ g e ds)

ae.on (0,1),0 < o < 1
satisfies ||y|| # r (r is arbitrary but fixed).



On two general nonlocal differential equations problems of fractional orders — 481/482

Then the fractional order integral equation (3.1) has at least
one solution y € L; (0, 1).

Proof. Let y be an arbitrary element in the open set B, =
[l¥l| < r,r > 0}. Then from the assumptions (i) - (iii), we have

u
T+

M a lall+

e el T e O L

The above inequality means that the operator 7" maps B, into
L. Moreover, we have

A1 < Hlall + sup[b()] []y]]-

This estimation shows that f in L; (0, 1).

Then from Theorem 3.1 we get that T maps B, into L;(0,1)
continuously, and the operator T is compact.

Set U = B, and D = E = L;(0,1), then from assumption

{r:

(b), we find that condition A2 of Theorem 2.2 does not hold.

Therefore, Theorem 2.2 implies that T has a fixed point. This
completes the proof.

4. Uniqueness of the solution

Theorem 4.1.

If the function f : (0,1) X R — R satisfy assumption (if)
of Theorem 3.1 and satisfy the following assumption

|f(t’y) - f(l,Z)| <

then the fractional order integral equation (3.1) has a unique
solution.
Proof. From assumption (4.1), we get

Lly — 2], 4.1)

|f(tay) - f(t70)| S L ‘y‘ﬂ
but since

If&)| = f(#,0)] < [f(ty) — f(£,0)] < L],
therefore

|f(&,»)] < |f(@0)] + LIyl

i.e. assumptions (i) and (iii) of theorem 3.1 are satisfied.

which implies that

yi(t) = y2(t).

Now for the existence and uniqueness of the solution of prob-
lems (1.1) - (1.2) and (1.1) - (1.3), we have the following two
theorems:

Theorem 4.2.

If the assumptions of theorem 4.1 are satisfied, then prob-
lem (1.1) - (1.2) has a unique solution.
Proof. Since

u(t) = uo + I f(t,y())

then from conditions (1.2), we get

from (3.2),

1
wn® =1 = [ (=97 flsy() ds
n
= [ = 9% ) as,
1
w o= [ 6. Sl ds
where
U= g <s<p <1,
G(n,s) = .
UE o<n<s<i
Therefore,
1
u(t) = [ G, 5) fls.3(5)) ds + 1 £0.3(0))

which completes the proof.

Theorem 4.3.

If the assumptions of theorem 4.1 are satisfied, then prob-
lem (1.1) - (1.3) has a solution.
Proof. Since

u(t) = uo + 1 f(2,y(t))

then from conditions (1.3), we get

from (3.2),

— ‘l n —
Now, let y; (¢) and y» () be any two solutions of equation (3.1), up(n'~*—1) = ./0 f(s,y(s))ds—/o ' (5, (s))ds
then
1
f(f ) O _
a(t) — ni(t)] < L/ (t—s5)"*% 2(s) — 1 (s)] ds. uo /o G(n, s) f(s,y(s)) ds,
o I'(l —a)
where
Therefore 1 0<s<n<l
t—s)® G(n,s) =
/Iyz (O)dr - < // T = a P2() — 3 (o) ldsdr, e 0<n<s<L
—s5) @ Therefore,
w2 [ i) - 1
ut) = [ 60, flsy() ds + 1F30))

[[y2 = y1l]-

L
I'2—a)
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which completes the proof.
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