

https://doi.org/10.26637/MJM0603/0004

A-perfect lattice

Seema Bagora^{1*}

Abstract

In the Paper [3] authors define the concept of *A*-perfect Group. Inspired by [3], we give a new concept of *A*-perfect lattice. If $g \in L$ and $\alpha \in A$, then the element $[g; \alpha] = g^{-1}\alpha(g)$ is an auto commutator of g and α , if is taken to be an inner automorphism, then the autocommutator sublattice is the derived sublattice L' of L. A lattice L is said to be perfect if L = L'. Here, the perception of A-perfect lattices would be introduced. A lattice L would be known as *A*-perfect, if L = K(L).

Keywords

Perfect lattice, *A*-perfect group, finite abelian group.

AMS Subject Classification

03G10, 11E57.

¹ Department of Applied Mathematics, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Gram Baroli, Sanwer Road, Indore (M.P.) 453331 India. *Corresponding author: ¹ bagoraseema@gmail.com

Article History: Received 21 March 2018; Accepted 19 April 2018

©2018 MJM.

 \square

Contents

1	Introduction48	3
2	Some Important Results48	3
	References	4

1. Introduction

In 1877, Korkine and Zolotareff [3] introduced the concept of a Perfect Lattice. According to them, a perfect lattice (or perfect form) is a lattice in an Euclidean vector space, that is completely determined by the set *S* of its minimal vectors in the sense that there is only one positive definite quadratic form taking value 1 at all points of *S*. Inspired by the results of Korkine and Zolotareff [3], in this paper we give the concept of *A*-perfect lattice.

Let *L* be a lattice and $A = \operatorname{Aut}(L)$ represent the lattice of automorphisms of *L*. If $g \in L$ and $\alpha \in A$, then the element $[g; \alpha] = g^{-1}\alpha(g)$ is an auto commutator of *g* and α . Now, we define the auto commutator sublattice of *L* as $K(L) = [L;A] = g^{-1}\alpha(g), g \in L, \alpha \in A$ which is a characteristic sublattice of *L*. Particularly, if α is taken to be an inner automorphism, then the autocommutator sublattice is the derived sublattice *L'* of *L*. A lattice *L* is said to be perfect if L = L'. Here, the perception of *A*-perfect lattices will be introduced.

Definition 1.1. A lattice L would be known as A-perfect, if L = K(L).

2. Some Important Results

Theorem 2.1. Let H and T be two lattices. Suppose, the following conditions are satisfied:

(i)
$$K(H) \times K(T) \subseteq K(H \times T)$$
;

(ii) H and T are such that (|H|; |T|) = 1.

Then, $K(H) \times K(T) = K(H \times T)$.

Proof. (i) For $\alpha \in Aut(H)$ and $\beta \in Aut(T)$ we define the automorphism of lattice $H \times T$, given by

$$(\boldsymbol{\alpha} \times \boldsymbol{\beta}(h,t)) = \boldsymbol{\alpha}(t)\boldsymbol{\beta}(t) \quad \forall h \in H, t \in T.$$

It is easy to check that $[h; \alpha]; [t; \beta] = [(h;t); \alpha \times \beta]$. This implies the result.

(ii) It is sufficient to prove $K(H \times T) \subseteq K(H) \times K(T)$. It is easy to check that $\lambda/H \in Aut(H)$ and $\lambda/T \in Aut(T)$, for all $\lambda \in Aut(H \times T)$. Now

$$[(h;\lambda t);\lambda] = ([h;\lambda H];[t;\lambda/T]), \forall h \in H, t \in T, \operatorname{Aut}(H \times T).$$

This implies the result.

Theorem 2.2. For all nonnegative integers $n > m_1 \ge m_2 \ge \dots \ge m_k$.

Corollary 2.3. If G is a finite abelian group of odd order, then G is A-perfect.

Proof. L is a direct product of finitely many $Z_{p'}$, where *p* is an odd prime number and $t \ge 1$. Hence, the result is true due to previous theorem.

Theorem 2.4. For all nonnegative integers $n > m_1 \ge m_2 \ge \cdots \ge m_k$

$$K(Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}}) = Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}}.$$

Theorem 2.5. For all nonnegative integers $n > m_1 \ge m_2 \ge \cdots \ge m_k$

$$K(Z_{2^n} \times Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}}) = Z_{2^n} \times Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}}.$$

Proof. We define the automorphisms $\alpha, \alpha', \beta_1, \dots, \beta_k$ of the lattice *L* given by:

$$\begin{aligned} \alpha(a,b,c_1,...,c_k) &= (a+b,c_1,...,c_k) \\ \alpha'(a,b,c_1,...,c_k) &= (a,a+b,c_1,...,c_k) \\ \beta_1(a,b,c_1,...,c_k) &= (a,b,a+c_1,c_2,...,c_k) \\ &\vdots \end{aligned}$$

 $\beta_k(a,b,c_1,\ldots,c_k) = (a,b,c_1,c_2,\ldots,a+c_k).$

for all $a, b \in \{0, 1, 2, \dots, 2^n - 1\}$ and $c_i \in \{0, 1, 2, \dots, 2^{m_i} - 1\}$, $1 \le i \le k$. Clearly,

$$(a,0,...,0) = [(0,a,0,...,0),\alpha], (0,b,0,...,0)$$

= $[(b,0,...,0),\alpha']$
 $(0,0,c_1,0,...,0) = [(c_1,0,...,0),\beta_1]$
 $(0,0,0,c_2,0,...,0) = [(c_2,0,...,0),\beta_2]$
 \vdots
 $(0,0,...,0,c_2) = [(c_k,0,...,0),\beta_k].$

These imply that

$$K(Z_{2^n} \times Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}})$$

$$\supseteq Z_{2^n} \times Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}}.$$

Theorem 2.6. A finite abelian lattice L is A-perfect if and only if

$$L\approx Z_{2^n}\times Z_{2^{m_1}}\times\cdots\times Z_{2^{m_k}}\times M.$$

for some nonnegative integers $n > m_1 \ge m_2 \ge \cdots \ge m_k$, where *M* is a finite lattice of odd order.

Proof. The necessary condition follows from Theorem 2.5. Now, for the reverse conclusion, we assume that *L* is not a product of $Z_{2^n} \times Z_{2^{m_1}} \times \cdots \times Z_{2^{m_k}} \times M$, so it is $Z_{2^t} \times Z_{2^{s_1}} \times \cdots \times Z_{2^{s_k}} \times N$ where *N* is a finite abelian lattice of odd order. Theorem 2.1 implies that

$$K(Z_{2^{t}} \times Z_{2^{s_{1}}} \times \cdots \times Z_{2^{s_{k}}} \times N)$$

= $K(Z_{2^{t}} \times Z_{2^{s_{1}}} \times \cdots \times Z_{2^{s_{k}}}) \times K(N).$

Now, the lattice *L* is not *A*-perfect due to previous. It completes the proof. \Box

Acknowledgment

Author is thankful to Dr. Satish Shukla for his kind support and guidance for research work.

References

- C. Chis, M. Chis, and G. Silberberg, Abelian groups as autocommutator group, Arch. Math. (Basel), 90 no. 6 (2008) 490–492.
- [2] P. Hegarty, The absolute centre of a group, J. Algebra, 169 no. 3 (1994) 929–935.
- [3] M.M. Nasrabadi and A Gholamian, on finite A-perfect abelian Groups, International Journal of group theory, 1, no.3 (2012) 11–14.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

