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Abstract
In this paper, we discuss the existence and uniqueness of solutions for a class of multi-term time-fractional
impulsive integro-differential equations with state dependent delay subject to some fractional order integral
boundary conditions. In our consideration, we apply the Banach, and Sadovskii fixed point theorems to obtain our
main results under some appropriate assumptions. An example is given at the end to illustrate the applications
of the established results.Fixed point theory of nonexpansive type single valued mappings provides techniques
for solving a variety of applied problems in mathematical sciences and engineering. The aim of this paper is to
prove the existence of coincidence points, coupled points and common coupled fixed points of nonexpansive
type conditions satisfied by single valued maps which include both continuous and discontinuous mappings on
Menger probabilistic metric spaces.
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1. Introduction
Fixed point theory plays a basic role in applications of many
branches of mathematics. The term metric fixed point theory
refers to those fixed point theoretic results in which geomet-
ric conditions on the underlying spaces and mappings play a
crucial role.

In 1922, a Polish mathematician Banach [1] proved a very
important result regarding contraction mapping, known as the
famous Banach contraction principle. This theorem provides
a technique for solving a variety of applied problems in math-
ematical science and engineering. Then after many authors
generalizes and extends the Banach contraction principle an

different ways.

It is well known that the probabilistic version of the clas-
sical Banach contraction principle was proved in 1972 by
Sehgal and Bharucha-Reid [19]. In 2010, a probabilistic ver-
sion of the Banach fixed point principle for general nonlinear
contractions was established by Jacek Jachymski [8]. Also,
the fixed point theorems in probabilistic metric spaces for
other contraction mappings were investigated by many au-
thors, see [3, 5, 7, 17, 18] the references therein.

Our work is arranged as follows: In preliminaries section,
we recall some basic definitions and fundamental results of
probabilistic metric spaces. In main results section, we try
to extend metric space theorems to the Menger probabilistic
metric space and establish some fixed point theorems for
nonexpansive type single valued mappings.

2. Preliminaries

Definition 2.1. [7] A function f : (−∞,∞)→ [0,1] is called a
distribution function, if it is nondecreasing and left continuous
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with infx∈R f (x) = 0. If in addition f (0) = 0, then f is called
a distance distribution function. Furthermore, a distance
distribution function f satisfying limt→∞ f (t) = 1 is called a
Menger distance distribution function.

The set of all Menger distance distribution functions is
denoted by Λ+.

Definition 2.2. [7] A triangular norm (abbreviated, T -norm)
is a binary operation4 on [0,1], which satisfies the following
conditions:
(a)4 is associative and commutative,
(b)4 is continuous,
(c)4(a,1) = a for all a ∈ [0,1],
(d) 4(a,b) ≤ 4(c,d) whenever a ≤ c and b ≤ d, for each
a,b,c,d ∈ [0,1].

Among the important examples of a T -norm we mention
the following two T -norms: 4p(a,b) = ab and 4m(a,b) =
min{a,b}. The T -norm4m is the strongest T -norm, that is,
4≤4m for every T -norm4.

Definition 2.3. [5] A triangular norm 4 is said to be of
H-type (Hadžić type) if a family of functions {4n(t)}+∞

n=1 is
equicontinuous at t = 1, that is,

∀ε ∈ (0,1),∃δ ∈ (0,1) : t > 1−δ ⇒4n(t)> 1− ε(n≥ 1),

where4n : [0,1]→ [0,1] is defined as follows:

41(t) =4(t, t), 4n(t) =4(t,4n−1(t)), n = 2,3, ... .

Obviously,4n(t)≤ t for any n ∈ N and t ∈ [0,1].

Definition 2.4. [18] A Menger probabilistic metric space
(abbreviated, Menger PM space) is a triple (X ,F,4) where
X is a nonempty set, 4 is a continuous T -norm and F is a
mapping from X ×X into Λ+ such that, if Fp,q denotes the
value of F at the pair (p,q),the following conditions hold:
(PM1) Fp,q(t) = 1 for all t > 0 if and only if p = q (p,q ∈ X),
(PM2) Fp,q(t) = Fq,p(t) for all t > 0 and p,q ∈ X,
(PM3) Fp,r(s+ t)≥4(Fp,q(s),Fq,r(t)) for all p,q,r ∈ X and
every s > 0, t > 0.

Definition 2.5. [18] A sequence {xn} in Menger PM space X
is said to converge to a point x in X (written as xn→ x), if for
every δ > 0 and λ ∈ (0,1), there is an integer N(δ ,λ ) > 0
such that Fxn,x > 1−λ , for all n≥ N(δ ,λ ). The sequence is
said to be Cauchy sequence if for each δ > 0 and λ ∈ (0,1),
there is an integer N(δ ,λ )> 0 such that Fxn,xm > 1−λ , for
all n,m≥ N(δ ,λ ). A Menger PM space (X ,F,4) is said to
be complete if every Cauchy sequence in X converges to a
point of X.

Let Φ denote all the functions ϕ : [0,∞)→ [0,∞) which
satisfy ϕ(t)< t and limn→∞ ϕn(t) = 0 for all t > 0.

Lemma 2.6. [11] Let (X ,F,4) be a Menger PM space and
ϕ ∈Φ. If Fp,q(ϕ(t)) = Fp,q(t), for all t > 0, then p = q.

Lemma 2.7. [11] Let n ≥ 1. If F ∈ Λ+, g1,g2, ...,gn : R→
[0,1] and for some ϕ ∈Φ,

F(ϕ(t))≥min{g1(t),g2(t), ...,gn(t),F(t)} f or all t > 0,

then F(ϕ(t))≥min{g1(t),g2(t), ...,gn(t)}, for all t > 0.

For ã = (x,y), b̃ = (u,v) ∈ X2, we introduce a distribution
function F̃ from X2 into Λ+ defined by

F̃ã,b̃(t) = min{Fx,u(t),Fy,v(t)} f or all t > 0.

Lemma 2.8. [11] If (X ,F,4) is a complete Menger PM
space, then (X2, F̃ ,4) is also a complete Menger PM space.

Let (X ,d) be a metric space. A map T : X → X is said to
be nonexpansive if d(T x,Ty)≤ d(x,y) for all x,y ∈ X . Ćirić
[2] investigated a class of nonexpansive type self maps T of
X and established some fixed point theorems for such type of
mappings.
Recently, Jhade et al. [10] gave the following nonexpansive
type condition. Let f ,T : X → X and

d(T x,Ty)≤ a(x,y)d( f x, f y)+b(x,y)max{
d( f x,T x),d( f y,Ty)}+ c(x,y)max{d( f x, f y),

d( f x,T x),d( f y,Ty)}+ e(x,y)max{d( f x, f y),

d( f x,T x),d( f y,Ty),d( f x,Ty)}. (2.1)

where a(x,y),b(x,y),c(x,y),e(x,y)≥ 0 and β = infx,y∈X e(x,y)>
0 whit supx,y∈X (a(x,y)+b(x,y)+ c(x,y)+2e(x,y)) = 1.

Jhade et al. [10] proved that a compatible pair of maps on
complete metric space satisfying (2.1) will have a coincidence
point if f is surjective or continuous. After that, in 2016, Jhade
et al. [9] extended the study of nonexpansive type condition
to the class of mappings which include both continuous and
discontinuous mappings by the condition of weak reciprocal
continuity.

In this paper, we use the following nonexpansive type
condition to the class of two self mappings f ,T on a Menger
PM space (X ,F,4) by continuity and weakly reciprocal con-
tinuity.

FT x,Ty(ϕ(t))≥ a(x,y)Ff x, f y(t)+b(x,y)min{Ff x,T x(t),

Ff y,Ty(t)}+ c(x,y)min{Ff x, f y(t),

Ff x,T x(t),Ff y,Ty(t)}, (2.2)

where a(x,y),b(x,y),c(x,y)≥ 0 with infx,y∈X (a(x,y)+b(x,y)+
c(x,y)) = 1.

Definition 2.9. Let f and g be two maps from X into Y . We
say f and g have a coincidence point, if there exists a point x
in X such that f x = gx.

Definition 2.10. Let f and g be two self maps on X. We say
x ∈ X is a common fixed point of f and g, if f x = gx = x.
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Definition 2.11. An element (x,y) ∈ X ×X is called a cou-
pled point of the mapping T : X×X → X, if T (x,y) = x and
T (y,x) = y.

Definition 2.12. An element (x,y)∈X×X is called a coupled
coincidence point of the mappings T : X×X→ X and g : X→
X if T (x,y) = gx and T (y,x) = gy.

Definition 2.13. An element (x,y) ∈ X ×X is called a com-
mon coupled fixed point of the mappings T : X×X → X and
g : X → X if T (x,y) = gx = x and T (y,x) = gy = y.

Definition 2.14. Let f and g be two self maps of a Menger
PM space (X ,F,4).Then f and g are said to be Menger
compatible if limn→∞ Ff gxn,g f xn(t) = 1 for all t > 0, whenever
{xn} is a sequence such that limn→∞ f xn = limn→∞ gxn = x ∈
X .

In 1982, Sessa [20] introduced the notion of weak com-
mutativity condition for a pair of single valued maps. Later,
Jungek [12] generalized the concept of weak commutativity
by introducing the notion of compatibility of maps. Pant [13]
introduced point wise R-weakly commutativity of maps for
noncompatible maps.

Two self mappings f and g of a metric space (X ,d) are
called R-weakly commuting of type-(Ag) [16], if there ex-
ists some positive real number R such that d( f f x,g f x) ≤
Rd( f x,gx) for all x ∈ X . Similarly, two self mappings f and
g of a metric space (X ,d) are called R-weakly commuting of
type-(A f ) [16], if there exists some positive real number R
such that d( f gx,ggx)≤ Rd( f x,gx) for all x ∈ X .

We introduced the concept of weak commutativity condi-
tion for a pair of single valued maps in a Menger PM space
(X ,F,4), as follows[4];

Definition 2.15. Two self mappings f and g of a Menger
PM space (X ,F,4) are called R-weakly commuting of type-
(MAg), if there exists some real number R ≥ 1 such that
Ff f x,g f x(t)≥ RFf x,gx(t) for all t > 0 and x ∈ X.

In 1998, Pant [14] introduced the concept of reciprocal
continuity for the pair of single valued maps. In the following,
we have the same definition but in a Menger PM space X .

Definition 2.16. Two self mappings f and g of a Menger PM
space X are called reciprocal continuous , if limn→∞ g f xn =
gx and limn→∞ f gxn = f x, whenever {xn} is a sequence in X
such that limn→∞ f xn = limn→∞ gxn = x for some x ∈ X.

Note that a pair of mappings which is reciprocal continu-
ous need not be continuous even on their common fixed point
( see for example [14]).

Recently, Pant et al. [16] generalized reciprocal continuity
by introducing the notion of weakly reciprocal continuity for
a pair of single valued maps as follows but in metric space
(X ,d).

Definition 2.17. Two self mappings f and g of a Menger
PM space X are called weakly reciprocally continuous , if
limn→∞ g f xn = gx or limn→∞ f gxn = f x, whenever {xn} is a
sequence in X such that limn→∞ f xn = limn→∞ gxn = x for
some x ∈ X.

It seems important to note that reciprocal continuity im-
plies weak reciprocal continuity, but the converse is not true
as shown below;

Example 2.18. [4] Let X = [2,20] and d be a usual metric
in X. Define f ,g : X → X as follows:

f (x) =

{
2, i f x = 2 or x > 5
6, i f 2 < x≤ 5

and

g(x) =


2, i f x = 2
12, i f 2 < x≤ 5
x+1

3 , i f x > 5

Let H and D denote a Menger distribution functions de-
fined by:

H(x) =

{
0, i f t ≤ 0
1, i f t > 0

and

D(x) =

{
0, i f t ≤ 0
1− e−t , i f t > 0

For any t > 0, define a function F : X×X → Λ+ by

Fx,y(t) =

{
H(t), i f x = y
D( t

d(x,y) ), otherwise

Set 4(a,b) = min{a,b}. Then (X ,F,4) is a Menger
PM space. Then clearly f and g are weakly reciprocally
continuous on (X ,F,4), but not reciprocally continuous.

It seems to be noted that only weakly reciprocal continuity
does not guarantee the existence of common fixed point or
even coincidence point. For example see [9] on Menger PM
space of above example.

Theorem 2.19. [4] Let (X ,F,4) be a complete Menger PM
space with a T -norm4 of H-type, T, f are two weakly recip-
rocally continuous self maps of X satisfying (2.2) for some
ϕ ∈Φ with T (X)⊆ f (X), then T and f have a common fixed
point in X if either
(a) T and f are Menger compatible; or
(b) T and f are R-weakly commuting of type-(MA f ); or
(c) T and f are R-weakly commuting of type-(MAT ).
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3. Main Results
Definition 3.1. Let (X ,F,4) be a Menger PM space and
T : X ×X → X and g : X → X. Then T and g are Menger
compatible if

lim
n→∞

FgT (xn,yn),T (gxn,gyn)(t) = 1 f or all t > 0

and
lim
n→∞

FgT (yn,xn),T (gyn,gxn)(t) = 1 f or all t > 0

whenever {xn} and {yn} are sequences in X, such that

lim
n→∞

T (xn,yn) = lim
n→∞

gxn = x

and
lim
n→∞

T (yn,xn) = lim
n→∞

gyn = y

for all x,y ∈ X.

Theorem 3.2. Let (X ,F,4) be a Menger PM space with a
T -norm 4 of H-type, T, f are two self maps of X satisfying
(2.2) for some ϕ ∈Φ with T (X)⊆ f (X), then T and f have
a coincidence point in X if either
(a) X is complete and f is surjective ; or
(b X is complete and f is continuous and T and f are Menger
compatible; or
(c) f (X) is complete; or
(d) T (X) is complete.
Furthermore, the coincidence value is unique, i.e. f p = f q
whenever f p = T p and f q = T q (p,q ∈ X).

Proof. Let x0 ∈ X . Since T (X) ⊆ f (X), choose x1 so that
y1 = f x1 = T x0. In general, choose xn+1 such that yn+1 =
f xn+1 = T xn.
From (2.2), we have

FT xn,T xn+1(φ(t))≥ aFf xn, f xn+1(t)+bmin{
Ff xn,T xn(t),Ff xn+1,T xn+1(t)}+ cmin
{Ff xn, f xn+1(t),Ff xn,T xn(t),Ff xn+1,T xn+1(t)}
≥ aFf xn,T xn(t)+bmin{Ff xn,T xn(t),

Ff xn+1,T xn+1(t)}+ cmin{Ff xn,T xn(t),

Ff xn,T xn(t),Ff xn+1,T xn+1(t)},

where a,b,c are evaluated at (xn,xn+1). Suppose that for
some n , Ff xn+1,T xn+1(t) < Ff xn,T xn(t) for some t > 0. Then
substituting in the above inequality we have

FT xn,T xn+1(φ(t))≥ aFf xn,T xn(t)+(b+ c)

Ff xn+1,T xn+1(t)> (a+b+ c)

Ff xn+1,T xn+1(t)≥ FT xn,T xn+1(t),

a contradiction, because ϕ(t)< t for all t > 0. Therefore, for
all n we have

Ff xn+1,T xn+1(t)≥ Ff xn,T xn(t), f or all t > 0. (3.1)

Also, Following the inequality (2.2), we see that

Fyn+1,yn+2(φ(t))≥ (a+b+ c)min{Fyn,yn+1(t),Fyn+1,yn+2(t)}.

It follows from ϕ ∈ φ and Lemma (2.7) that for all t > 0,

Fyn+1,yn+2(φ(t))≥ (a+b+ c)Fyn,yn+1(t)≥ Fyn,yn+1(t).

Thus we have

Fyn+1,yn+2(φ
n+1(t))≥ Fy0,y1(t,) f or all t > 0.

For δ > 0 and ε ∈ (0,1), since limt→∞ Fy0,y1(t) = 1, there
is a t0 such that Fy0,y1(t0)> 1−ε . Also, by limn→∞ ϕn(t0) = 0,
there is a N0 such that ϕn(t0)< δ for n≥N0. Thus for n > N0
we obtain

Fyn+1,yn+2(δ )≥ Fyn+1,yn+2(ϕ
n+1(t0)))≥ Fy0,y1(t0)> 1− ε.

This means limn→∞ Fyn+1,yn+2(t) = 1 for all t > 0.
Next we should prove that the sequence {yn} is a Cauchy

sequence in X . It is necessary to prove that, for any δ > 0 and
ε ∈ (0,1), there is N(ε,δ ) such that

Fyn,ym(δ )> 1− ε f or all m > n≥ N(ε,δ ).

To this end, firstly, we can show the following inequality
by mathematical induction:

Fyn+k,yn(δ )≥4k(Fyn+1,yn(δ−ϕ(δ ))) f or all k≥ 1. (3.2)

As k = 1,

Fyn+1,yn(δ )≥ Fyn+1,yn(δ −ϕ(δ ))

=4(Fyn+1,yn(δ −ϕ(δ )),1)
≥4(Fyn+1,yn(δ −ϕ(δ )),Fyn+1,yn(δ −ϕ(δ )))

=41(Fyn+1,yn(δ −ϕ(δ ))).

Now we assume (3.2) holds for 1 ≤ k ≤ p. When k =
p+1,

Fyn+p+1,yn(δ )≥4(Fyn+1,yn(δ −ϕ(δ )),Fyn+1,yn+p+1(ϕ(δ ))).

By the formulation (3.1), inequality

Fyn+p+1,yn+p+2(δ )≥ Fyn,yn+1(δ )

holds for all n. Then we have

Fyn+1,yn+p+1(ϕ(δ )) = FT xn,T xn+p(ϕ(δ ))

≥ aFf xn, f xn+p(δ )+bmin{Ff xn,T xn(δ ),

Ff xn+p,T xn+p(δ )}+ cmin{Ff xn, f xn+p(δ ),

Ff xn,T xn(δ ),Ff xn+p,T xn+p(δ )}= aFyn,yn+p(δ )

+bmin{Fyn,yn+1(δ ),Fyn+p,yn+p+1(δ )}+ c

min{Fyn,yn+p(δ ),Fyn,yn+1(δ ),Fyn+p,yn+p+1(δ )} ≥ a

4p(Fyn,yn+1(δ −ϕ(δ )))+bFyn,yn+1(δ −ϕ(δ ))+ c

min{4p(Fyn,yn+1(δ −ϕ(δ ))),Fyn,yn+1(δ −ϕ(δ ))}
≥ (a+b+ c)4p(Fyn,yn+1(δ −ϕ(δ ))

≥4p(Fyn,yn+1(δ −ϕ(δ ))).
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Then

Fyn,yn+p+1(δ )≥4(Fyn,yn+1(δ −ϕ(δ )),

Fyn+1,yn+p+1(ϕ(δ )))≥4(Fyn,yn+1(δ −ϕ(δ )),

4p(Fyn,yn+1(δ −ϕ(δ ))))

=4p+1(Fyn,yn+1(δ −ϕ(δ ))).

Thus

Fyn+k,yn(δ )≥4k(Fyn+1,yn(δ −ϕ(δ ))) f or all k ≥ 1.

Noting the T -norm 4 of H-type, for a given ε ∈ (0,1),
there exists λ ∈ (0,1) such that4n(t)> 1−ε for all n≥ 1 and
when t > 1−λ . On the other hand, by limn→∞ Fyn,yn+1(δ −
ϕ(δ )) = 1, there is a N1(ε,δ ) such that

Fyn,yn+1(δ −ϕ(δ ))> 1−λ , f or all n > N1(ε,δ ).

Thus

Fyn,yn+1(δ )> 1− ε, f or all k ≥ 1 and n > N1(ε,δ ).

This implies that the sequence {yn} is a Cauchy sequence
in X .

Case(a) : Let X is complete and f is surjective. So, by
the completeness of X , {yn} converges to a point p in X . So,
limn→∞ f xn+1 = limn→∞ T xn = p. Hence there exists a point
z in X such that p = f z.

From (2.2), we have

FT z,T xn(ϕ(t))≥ aFf z, f xn(t)+bmin{Ff z,T z(t),

Ff xn,T xn(t)}+ cmin{Ff z, f xn(t),

Ff z,T z(t),Ff xn,T xn(t)}.

Taking limit as n→ ∞, we get

FT z, f z(ϕ(t))≥ a+(b+ c)FT z, f z(t)

≥ (a+b+ c)FT z, f z(t)≥ FT z, f z(t),

by Lemma (2.6) and ϕ(t)< t for all t > 0,implies that f z =
T z.

Case(b) : Since X is complete,{yn} converges to a point
p in X . Suppose f is continuous and f and T are Menger com-
patible. Then since limn→∞ yn = p, we have limn→∞ f yn = f p.
Note that since limn→∞ f xn = limn→∞ T xn and f and T are
Menger compatible,
limn→∞ Ff T xn,T f xn(t) = 1.
From (2.2), we have

FT p,T f xn(ϕ(t))≥ aFf p, f f xn(t)+bmin{Ff p,T p(t),

Ff f xn,T f xn(t)}+ cmin{Ff p, f f xn(t),Ff p,T p(t),

Ff f xn,T f xn(t)} ≥ aFf p, f f xn(t)+(b+ c)min
{min{Ff p,T p(t),Ff f xn,T f xn(t)},
min{Ff p, f f xn(t),Ff p,T p(t),Ff f xn,T f xn(t)}}.

Note that

Ff f xn,T f xn(δ )≥4(Ff f xn, f T xn(ϕ(δ )),Ff T xn,T f xn(δ −ϕ(δ )))

for all δ > 0. Using the continuity of f and compatibility of f
and T , it follows that limn→∞ Ff f xn,T f xn(δ ) = 1 for all δ > 0.
Since limn→∞ f f xn = f p, it follows that limn→∞ T f xn = f p.

Taking limit as n→ ∞, we get

FT p, f p(ϕ(t))≥ a+(b+ c)FT p, f p(t)≥ FT p, f p(t),

implies that f p = T p.
Case(c) : In this case since { f xn} is a sequence in f (X)

and (X) is complete, limn→∞ yn = f xn = p for some p∈ f (X).
Let p = f z for some z ∈ f−1 p and the proof is complete by
case (a).

Case(d) : In this case p ∈ T (X)⊆ f (X) and the proof is
complete by case (a).

Uniqueness : Let q be another coincidence point of f and
T , then by (2.2) with a,b,c evaluated at (p,q),

FT p,T q(ϕ(t))≥ aFf p, f q(t)+bmin{Ff p,T p(t),

Ff q,T q(t)}+ cmin{Ff p, f q(t),Ff p,T p(t),

Ff q,T q(t)} ≥ (a+ c)FT p,T q(t)+b

≥ FT p,T q(t).

This implies that T p = T q and f p = f q.

Corollary 3.3. Let (X ,F,4) be a complete Menger PM space
with a T -norm4 of H-type and T a self mapping of X satis-
fying (2.2) for some ϕ ∈Φ with f = I, the identity map on X.
Then T has a unique fixed point and at this fixed point T is
continuous.

Proof. The existence and uniqueness of the fixed point comes
from Theorem (3.2) by setting f = I. To prove continuity, let
{yn} ⊂ X with limn→∞ yn = p, p the unique fixed point of T .

Using (2.2), we have

FT p,Tyn(ϕ(t))≥ aFp,yn(t)+bmin{Fp,T p(t),

Fyn,Tyn(t)}+ cmin{Fp,yn(t),Fp,T p(t),Fyn,Tyn(t)}
≥ aFp,yn(t)+bFyn,Tyn(t)+ cmin{Fp,yn(t),

Fyn,Tyn(t)} ≥ (a+ c)Fp,yn(t)+bFyn,Tyn(t)

≥ (a+ c)Fp,yn(t)+b4(Fyn,p(t−ϕ(t)),

Fp,Tyn(ϕ(t)))≥ (a+ c)Fp,yn(t)+bFp,Tyn(ϕ(t)).

Hence

Fp,Tyn(ϕ(t))≥
a+ c
1−b

Fp,yn(t).

Taking limit n→ ∞, we get limn→∞ Tyn = p = T p.
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Corollary 3.4. Let (X ,F,4) be a Menger PM space with a
T -norm4 of H-type, T : X×X → X and f : X → X are two
mappings such that for some ϕ ∈Φ

FT (x,y),T (u,v)(ϕ(t))≥ amin{Ff x, f u(t),Ff y, f v(t)}
+bmin{Ff x,T (x,y)(t),Ff y,T (y,x)(t),

Ff u,T (u,v)(t),Ff v,T (v,u)(t)}+ cmin{Ff x, f u(t),

Ff y, f v(t),Ff x,T (x,y)(t),Ff y,T (y,x)(t),Ff u,T (u,v)(t),

Ff v,T (v,u)(t)}, (3.3)

where a,b,c≥ 0 and evaluated at (x,y),(u,v) with
infx,y,u,v∈X (a+ b+ c) = 1, with T (X ×X) ⊆ f (X). Then T
and f have a coupled coincidence point if either one of the
conditions (a) or (b) or (c) in Theorem (3.2) holds, or T (X×
X) is complete. Furthermore, the coupled coincidence value
is unique.

Proof. Let X̃ = X ×X . It follows from Lemma (2.8) that
(X̃ , F̃ ,4) is also a Menger PM space, where

F̃ã,b̃(t) := min{Fx,u(t),Fy,v(t)},

for ã = (x,y), b̃ = (u,v) ∈ X̃ .
The self mappings G,h : X̃ → X̃ are given by

Gã = (T (x,y),T (y,x)) f or all ã = (x,y) ∈ X̃ ,

and
hã = ( f x, f y) f or all ã = (x,y) ∈ X̃ .

Then a coupled coincidence point of T and f is a coinci-
dence point of G and h in X×X and vice versa.
On the other hand, for all t > 0 and ã = (x,y), b̃ = (u,v) ∈ X̃ ,
we have

FT (x,y),T (u,v)(ϕ(t))≥ amin{Ff x, f u(t),Ff y, f v(t)}
+bmin{Ff x,T (x,y)(t),Ff y,T (y,x)(t),Ff u,T (u,v)(t),

Ff v,T (v,u)(t)}+ cmin{Ff x, f u(t),Ff y, f v(t)+

Ff x,T (x,y)(t),Ff y,T (y,x)(t),Ff u,T (u,v)(t),Ff v,T (v,u)(t)}
= aF̃hã,hb̃(t)+bmin{min{Ff x,T (x,y)(t),Ff y,T (y,x)(t)},
min{Ff u,T (u,v)(t),Ff v,T (v,u)(t)}}+ cmin{min{
Ff x, f u(t),Ff y, f v(t)},min{Ff x,T (x,y)(t),Ff y,T (y,x)(t)},
min{Ff u,T (u,v)(t),Ff v,T (v,u)(t)}}
= aF̃hã,hb̃(t)+bmin{F̃hã,Gã(t), F̃hb̃,Gb̃(t)}+
cmin{F̃hã,hb̃(t), F̃hã,Gã(t), F̃hb̃,Gb̃(t)}.

Similarly

FT (y,x),T (v,u)(ϕ(t))≥ aF̃hã,hb̃(t)+bmin{F̃hã,Gã(t),

F̃hb̃,Gb̃(t)}+ cmin{F̃hã,hb̃(t), F̃hã,Gã(t), F̃hb̃,Gb̃(t)}.

Thus

F̃Gã,Gb̃(ϕ(t))≥ aF̃hã,hb̃(t)+bmin{F̃hã,Gã(t),

F̃hb̃,Gb̃(t)}+ cmin{F̃hã,hb̃(t), F̃hã,Gã(t), F̃hb̃,Gb̃(t)}.

If X is complete, it follows from Lemma (2.8) that (X̃ , F̃ ,4)
is also a complete Menger PM space. Also, it is easy to see
that all conditions in Theorem (3.2), hold for two self map-
pings G and h on X ×X . Thus, following Theorem (3.2),
we see that T and f have a coupled coincidence point, that
is, there exist p,q ∈ X such that T (p,q) = f p and T (q, p) =
f q.

Following similar arguments as in proof of Corollary (3.3)
and (3.4), we can deduce the next result. we omit the details
of the proof.

Corollary 3.5. Let (X ,F,4) be a complete Menger PM space
with a T -norm4 of H-type, T : X×X→ X is a mapping such
that for some ϕ ∈Φ,

FT (x,y),T (u,v)(ϕ(t))≥ amin{Fx,u(t),Fy,v(t)}+
bmin{Fx,T (x,y)(t),Fy,T (y,x)(t),Fu,T (u,v)(t),

Fv,T (v,u)(t)}+ cmin{Fx,u(t),Fy,v(t),Fx,T (x,y)(t),

Fy,T (y,x)(t),Fu,T (u,v)(t),Fv,T (v,u)(t)},

where a,b,c≥ 0 and evaluated at (x,y),(u,v) with
infx,y,u,v∈X (a+b+c) = 1. Then T has a unique coupled point
and at this coupled point T is continuous.

Now, we introduce the new concept of weakly commuting
of two mappings T : X×X → X and g : X → X on a Menger
PM space X .

Definition 3.6. Let (X ,F,4) be a Menger PM space and
T : X ×X → X and g : X → X. Then T and g are called
R-weakly commuting of type-(MAg), if there exists some real
number R≥ 1 such that

FT (T (x,y),T (y,x)),gT (x,y)(t)≥ RFT (x,y),gx(t)

and
FT (T (y,x),T (x,y)),gT (y,x)(t)≥ RFT (y,x),gy(t)

for all t > 0 and (x,y) ∈ X×X.

Definition 3.7. Let (X ,F,4) be a Menger PM space and
T : X ×X → X and g : X → X. Then T and g are called R-
weakly commuting of type-(MAT ), if there exists some real
number R≥ 1 such that

FT (gx,gy),ggx(t)≥ RFT (x,y),gx(t)

and
FT (gy,gx),ggy(t)≥ RFT (y,x),gy(t)

for all t > 0 and (x,y) ∈ X×X.

Definition 3.8. Let (X ,F,4) be a Menger PM space and T :
X×X→X and g : X→X. Then T and f are called reciprocal
continuous , if limn→∞ f T (xn,yn) = f x, limn→∞ f T (yn,xn) =
f y and limn→∞ T ( f xn, f yn) = T (x,y), whenever {(xn,yn)} is
a sequence in X×X such that limn→∞ T (xn,yn)= limn→∞ f xn =
x and limn→∞ T (yn,xn) = limn→∞ f yn = y for some (x,y) ∈
X×X.
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Note that a pair of mappings which is reciprocal continu-
ous need not be continuous even on their common fixed point
(see for example [14]).

We generalize reciprocal continuity by introducing the
notion of weakly reciprocal continuity for a pair of single
valued maps as follows.

Definition 3.9. Let (X ,F,4) be a Menger PM space and
T : X ×X → X and g : X → X. Then T and f are called
weakly reciprocal continuous , if limn→∞ f T (xn,yn) = f x
and limn→∞ f T (yn,xn) = f y or limn→∞ T ( f xn, f yn) = T (x,y),
whenever {(xn,yn)} is a sequence in X×X such that limn→∞ T (xn,yn)=
limn→∞ f xn = x and limn→∞ T (yn,xn) = limn→∞ f yn = y for
some (x,y) ∈ X×X.

Theorem 3.10. Let (X ,F,4) be a complete Menger PM
space with a T -norm 4 of H-type, T : X ×X → X and f :
X → X are two weakly reciprocally continuous mappings sat-
isfying (3.3) for some ϕ ∈Φ with T (X ×X)⊆ f (X), then T
and f have a common coupled fixed point in X×X if either
(a) T and f are Menger compatible; or
(b) T and f are R-weakly commuting of type-(MA f ); or
(c) T and f are R-weakly commuting of type-(MAT ).

Proof. It follows from proof of Corollary (3.4), that G,h :
X̃→ X̃ are two self mappings on X̃ =X×X such that common
coupled fixed point of T and f is a common fixed point G and
h in X×X and vice versa.

On the other hand, following similar argument as in proof
of corollary (3.4), we have

F̃Gã,Gb̃(ϕ(t))≥ aF̃hã,hb̃(t)+bmin{F̃hã,Gã(t),

F̃hb̃,Gb̃(t)}+ cmin{F̃hã,hb̃(t), F̃hã,Gã(t), F̃hb̃,Gb̃(t)}.

for all t > 0 and ã = (x,y), b̃ = (u,v) ∈ X̃ .
It is easy to see that G and h are weakly reciprocally con-

tinuous self maps of X̃ ( and Menger compatible), if T and f
are weakly reciprocally continuous (and Menger compatible).

Also, if T and f are R-weakly commuting of type-(MA f )
(or type-(MAT )), we can prove that G and h are R-weakly
commuting of type-(MAh) (or type-(MAG)).

Thus, from Theorem (2.19)[4], we see that T and f have
common coupled fixed point. i.e., T (p,q) = f p = p and
T (q, p) = f q = q for some (p,q) ∈ X×X .
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[7] O. Hadzić, Z. Ovcin, Fixed point theorems in fuzzy met-
ric and probabilistic metric spaces, Zb. Rad. Prir.-Mat.
Fak., Ser. Mat., 24, (1994) 197-209.

[8] J. Jachymski, On probabilistic ϕ-contractions on Menger
spaces, Nonlinear Anal., 73, (2010) 2199-2203.

[9] P.K. Jhade and A.S. Saluja, Common fixed points theorem
for nonexpansive type single valued mappings, Int. J.
Nonlinear Anal. Appl., 7 (2016) No.1, 45-51.

[10] P.K. Jhade, A.S. Saluja and R. Kushwah, Coincidence
and fixed points of nonexpansive type multivalued and
single valued maps, European J. Pure Appl. Math., 4
(2011) 330-339.

[11] Jun Wu, Some fixed-point theorems for mixed monotone
operators in partially ordered probabilistic metric spaces,
Fixed Point Theory Appl., 49 (2011).

[12] G. Jungck, Compatible mappings and common fixed
point, Intern. J. Math. Math. Sci., 9 (1986) 771-779.

[13] R.P. Pant, Common fixed points of non-commuting map-
pings, J. Math. Anal. Appl., 188 (1994) 436-440.

[14] R.P. Pant, Common fixed points for contractive maps, J.
Math. Anal. Appl., 1226 (1998) 251-258.

[15] R.P. Pant, R.K. Bisht and D. Arora, Weak reciprocal
continuity and fixed point theorems, Ann. Univ. Ferrara,
57 (2011) 181-190.

[16] H.K. Pathak, Y.J. Cho and S.M. Kang, Remark on R-weak
commuting mappings and common fixed point theorems,
Bull. Korean Math. Soc., 34 (1997) 247-257.

[17] B. Samet, M. Rajovic, et al., Common fixed-point results
for nonlinear contractions in ordered partial metric spaces,
Fixed Point Theory Appl., 71 (2011).

[18] B. Schweizer, A. Sklar, Probabilistic Metric Spaces,
North-Holland, New York (1983).

[19] VM. Sehgal, AT. Bharucha-Reid, Fixed points of con-
traction mappings on PM-spaces, Math. Syst. Theory, 6,
(1972) 97-102.

[20] S. Sessa, On a weak commutativity condition of map-
pings in fixed point consideration, Publ. Inst. Math.,
32(1982) 129-153.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

505

http://www.malayajournal.org

	Introduction
	Preliminaries
	Main Results
	References

