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Existence of mild solutions for impulsive fractional stochastic

equations with infinite delay
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Abstract

This paper is mainly concerned with the existence of mild solutions for a class of fractional stochastic
differential equations with impulses in Hilbert spaces. A new set of sufficient conditions are formulated and
proved for the existence of mild solutions by means of Sadovskii’s fixed point theorem. An example is given to
illustrate the theory.
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1 Introduction

The stochastic differential equations have been widely applied in science, engineering, biology, mathematical
finance and in almost all applied sciences. In the present literature, there are many papers on the existence
and uniqueness of solutions to stochastic differential equations (see [1, 2, 8] and references therein). More
recently, Chang et al. [4] investigated the existence of square-mean almost automorphic mild solutions to
nonautonomous stochastic differential equations in Hilbert spaces by using semigroup theory and fixed point
approach. Fu and Liu [8] discussed the existence and uniqueness of square-mean almost automorphic solutions
to some linear and nonlinear stochastic differential equations and in which they studied the asymptotic stability
of the unique square-mean almost automorphic solution in the square-mean sense.

Recently, fractional differential equations have found numerous applications in various fields of science and
engineering [11]. The existence of solutions for nonlinear fractional stochastic differential equations have been
studied by few authors [9, 18].

On the other hand, the theory of impulsive differential equations is emerging as an active area of investigation
due to the application in area such as mechanics, electrical engineering, medicine biology, and ecology, see
Benchohra and Henderson [3], Hernández et al. [10], Lin and Hu [13], Prato and Zabczyk [14]. As an adequate
model, impulsive differential equations are used to study the evolution of processes that are subject to sudden
changes in their states. However, to the best of our knowledge, it seems that little is known about impulsive
fractional stochastic equations with infinite delay and the aim of this paper is to fill this gap. We refer the
interested reader, for instance, to [18] and references therein for impulsive fractional stochastic equations.

Inspired by the mentioned work [18] in this paper, we are interested in studying the existence of mild solutions
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of the following impulsive fractional stochastic differential equations with infinite delay in the form
cDα

t [x(t) + g(t, xt)] = A
[
x(t) + g(t, xt)

]
+ f(t, xt, B1x(t)) + σ(t, xt, B2x(t))

dw(t)
dt

,

t ∈ J := [0, T ], T > 0, t 6= tk,

∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,
x(t) = φ(t), φ(t) ∈ Bh,

(1.1)

where cDα
t is the Caputo fractional derivative of order α, 0 < α < 1; x(.) takes the value in the separable

Hilbert space H; A : D(A) ⊂ H → H is the infinitesimal generator of an α-resolvent family Sα(t)t≥0. The
history xt : (−∞, 0] → H, xt(θ) = x(t + θ), θ ≤ 0, belongs to an abstract phase space Bh, which will be
described axiomatically in Section 2; g : J × Bh → H, f : J × Bh × H → H and σ : J × Bh × H → L0

2

are appropriate functions to be specified later; Ik : Bh → H, k = 1, 2, . . . ,m, are appropriate functions. The
terms B1x(t) and B2x(t) are given by B1x(t) =

∫ t

0
K(t, s)x(s)ds and B2x(t) =

∫ t

0
P (t, s)x(s)ds respectively,

where K,P ∈ C(D, IR+) are the set of all positive continuous functions on D = {(t, s) ∈ IR2 : 0 ≤ s ≤ t ≤
T}. Here 0 = t0 < t1 < . . . < tm < tm+1 = T , ∆x(tk) = x(t+k ) − x(t−k ), x(t+k ) = limh→0 x(tk + h) and
x(t−k ) = limh→0 x(tk − h) represent the right and left limits of x(t) at t = tk, respectively. The initial data
φ = {φ(t), t ∈ (−∞, 0]} is an F0-measurable, Bh-valued random variable independent of w with finite second
moments.

The paper is organized as follows. In section 2, we briefly present some basic notations and preliminaries.
In section 3, is devoted to the development of our main existence results and our basic tool include Sadovskii’s
fixed point theorem. Finally, the paper is conclude with an example to illustrate the obtained results.

2 Preliminaries and basic properties

Let H,K be two separable Hilbert spaces and L(K,H) be the space of bounded linear operators from K into
H. For convenience, we will use the same notation ‖.‖ to denote the norms in H,K and L(K,H), and use (., .)
to denote the inner product of H and K without any confusion. Let (Ω,F , {Ft}t≥0, IP) be a filtered complete
probability space satisfying the usual condition, which means that the filtration is a right continuous increasing
family and F0 contains all IP-null sets. w = (wt)t≥0 be a Q-Wiener process defined on (Ω,F , {Ft}t≥0, IP) with
the covariance operator Q such that trQ < ∞. We assume that there exists a complete orthonormal system
{ek}k≥1 in K, a bounded sequence of nonnegative real numbers λk such that Qek = λkek, k = 1, 2, . . . and a
sequence {βk}k≥1 of independent Brownian motions such that

(w(t), e)K =
∞∑

k=1

√
λk(ek, e)Kβk(t), e ∈ K, t ∈ [0, b].

Let L0
2 = L2(Q1/2K,H) be the space of all HilbertSchmidt operators from Q1/2K into H with the inner product

〈ψ, π〉L0
2

= tr[ψQπ?].

Assume that h : (−∞, 0] → (0,∞) with l =
∫ 0

−∞ h(t)dt <∞ a continuous function. We define the abstract
phase space Bh by

Bh =

{
φ : (−∞, 0] → H, for any a > 0, (IE|φ(θ)|2)1/2 is bounded and measurable

function on [−a, 0] with φ(0) = 0 and
∫ 0

−∞
h(s) sup

s≤θ≤0
(IE|φ(θ)|2)1/2ds <∞

}
.

If Bh is endowed with the norm

‖φ‖Bh
=
∫ 0

−∞
h(s) sup

s≤θ≤0
(IE|φ(θ)|2)1/2ds, φ ∈ Bh,

then (Bh, ‖.‖Bh
) is a Banach space [5].

We consider the space

Bb =

{
x : (−∞, T ] → H such that x|Jk

∈ C(Jk,H) and there exist

x(t+k ) and x(t−k ) with x(tk) = x(t−k ), x0 = φ ∈ Bh, k = 1, 2, . . . ,m

}
,
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where x|Jk
is the restriction of x to Jk = (tk, tk+1], k = 1, 2, . . . ,m. the function ‖.‖Bh

to be a seminorm in Bb,
it is defined by

‖x‖Bb
= ‖φ‖Bh

+ sup
0≤s≤T

(IE‖x(s)‖2)1/2, x ∈ Bb

Lemma 2.1 ([16]). Assume that x ∈ Bh; then for t ∈ J , xt ∈ Bh. Moreover,

l(IE‖x(t)‖2)1/2 ≤ l sup
0≤s≤T

(IE‖x(s)‖2)1/2 + ‖x0‖Bh
,

where l =
∫ 0

−∞ h(s)ds <∞.

Let us recall the following known definitions. For more details see [12].

Definition 2.1. The fractional integral of order α with the lower limit 0 for a function f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)
(t− s)1−α

ds, t > 0, α > 0

provided the right-hand side is pointwise defined on [0,∞), where Γ is the gamma function.

Definition 2.2. Riemann-Liouville derivative of order α with lower limit zero for a function f : [0,∞) → IR

can be written as

LDαf(t) =
1

Γ(n− α)
dn

dtn

∫ t

0

f(s)
(t− s)α+1−n

ds, t > 0, n− 1 < α < n. (2.2)

Definition 2.3. The Caputo derivative of order α for a function f : [0,∞) → IR can be written as

cDαf(t) = LDα

(
f(t)−

n−1∑
k=0

tk

k!
fk(0)

)
, t > 0, n− 1 < α < n. (2.3)

If f(t) ∈ Cn[0,∞), then

cDαf(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1fn(s)ds = In−αfn(s), t > 0, n− 1 < α < n

Obviously, the Caputo derivative of a constant is equal to zero. The Laplace transform of the Caputo
derivative of order α > 0 is given as

L{cDαf(t); s} = sαf̂(s)−
n−1∑
k=0

sα−k−1f (k)(0); n− 1 ≤ α < n.

Definition 2.4. A two parameter function of the Mittag-Leffler type is defined by the series expansion

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
=

1
2πi

∫
C

µα−βeµ

µα − z
dµ, α, β ∈ C,R(α) > 0,

where C is a contour which starts and ends at −∞ end encircles the disc |µ| ≤ |z|1/2 counter clockwise.

For short, Eα(z) = Eα,1(z). It is an entire function which provides a simple generalization of the exponent
function: E1(z) = ez and the cosine function: E2(z2) = cosh(z), E2(−z2) = cos(z), and plays a vital role in
the theory of fractional differential equations. The most interesting properties of the Mittag-Leffler functions
are associated with their Laplace integral∫ ∞

0

e−λttβ−1Eα,β(ωtα)dt =
λα−β

λα − ω
, Reλ > ω

1
α , ω > 0,

and for more details see [12].

Definition 2.5 ([23]). A closed and linear operator A is said to be sectorial if there are constants ω ∈ IR,
θ ∈ [π

2 , π], M > 0, such that the following two conditions are satisfied:

i. ρ(A) ⊂ Σθ,ω = {λ ∈ C : λ 6= ω, |arg(λ− ω)| < θ},
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ii. ‖R(λ,A)‖ = ‖(λ−A)−1‖ ≤ M
|λ−ω| , λ ∈ Σθ,ω.

Definition 2.6. Let A be a closed and linear operator with the domain D(A) defined in a Banach space H.
Let ρ(A) be the resolvent set of A. We say that A is the generator of an α-resolvent family if there exist ω ≥ 0
and a strongly continuous function Sα : IR+ → L(H), where L(H) is a Banach space of all bounded linear
operators from H into H and the corresponding norm is denoted by ‖.‖, such that {λα : Reλ > ω} ⊂ ρ(A) and

(λαI −A)−1x =
∫ ∞

0

eλtSα(t)xdt, Reλ > ω, x ∈ H, (2.4)

where Sα(t) is called the α-resolvent family generated by A.

Definition 2.7. Let A be a closed and linear operator with the domain D(A) defined in a Banach space H and
α > 0. We say that A is the generator of a solution operator if there exist ω ≥ 0 and a strongly continuous
function Sα : IR+ → L(H) such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−1(λαI −A)−1x =
∫ ∞

0

eλtSα(t)xdt, Reλ > ω, x ∈ H, (2.5)

where Sα(t) is called the solution operator generated by A.

The concept of the solution operator is closely related to the concept of a resolvent family. For more
details on α-resolvent family and solution operators, we refer the reader to [12].

Lemma 2.2 ([6]). If f satisfies the uniform Hölder condition with the exponent β ∈ (0, 1] and A is a sectorial
operator, then the unique solution of the Cauchy problem

cDα
t x(t) = Ax(t) + f(t, xt, Bx(t)), t > t0, t0 ≥ 0, 0 < α < 1,
x(t) = φ(t), t ≤ t0,

(2.6)

is given by

x(t) = Tα(t− t0)(x(t+0 )) +
∫ t

t0

Sα(t− s)f(s, xs, Fx(s))ds, (2.7)

where

Tα(t) = Eα,1(Atα) =
1

2πi

∫
B̂r

eλt λα−1

λα −A
dλ, (2.8)

Sα(t) = tα−1Eα,α(Atα) =
1

2πi

∫
B̂r

eλt 1
λα −A

dλ, (2.9)

here B̂r denotes the Bromwich path; Sα(t) is called the α-resolvent family and Tα(t) is the solution operator
generated by A.

The following result on the operator Sα(t) appeared and proved in [23].

Theorem 2.1. If α ∈ (0, 1) and A ∈ Aα(θ0, ω0) is a sectorial operator, then for any x ∈ H and t > 0, we have

‖Sα(t)‖ ≤ Ceωt(1 + tα−1), t > 0, ω > ω0,

where C is a constant depending only on θ and ω.

At the end of this section, we recall the fixed point theorem of Sadovskii [17] which is used to establish
the existence of the mild solution to the impulsive fractional system (1.1).

Theorem 2.2 ([17]). Let Φ be a condensing operator on a Banach space H, that is, Φ is continuous and
takes bounded sets into bounded sets, and µ(Φ(B)) ≤ µ(B) for every bounded set B of H with µ(B) > 0. If
Φ(N) ⊂ N for a convex, closed and bounded set N of H, then Φ has a fixed point in H (where µ(.) denotes
Kuratowski’s measure of noncompactness).
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3 The mild solution and existence

In this section, we consider the fractional impulsive system (1.1). We first present the definition of mild
solutions for the system based on the paper [7].

Definition 3.1. An H-valued stochastic process {x(t), t ∈ (−∞, T ]} is said to be a mild solution of the system
(1.1) if x0 = φ ∈ Bh satisfying x0 ∈ L0

2(Ω,H) and the following conditions hold.

i. x(t) is Ft adapted and measurable, t ≥ 0;

ii. xt is Bh-valued and the restriction of x(.) to the interval (tk, tk+1], k = 1, 2, . . . ,m is continuous;

iii. for each t ∈ J , x(t) satisfies the following integral equation

x(t) =



φ(t), t ∈ (−∞, 0],

Tα(t)[φ(0) + g(0, φ)]− g(t, xt) +
∫ t

0

Sα(t− s)f(s, xs, B1x(s))ds

+
∫ t

0

Sα(t− s)σ(s, xs, B2x(s))dw(s), t ∈ [0, t1],

Tα(t)[φ(0) + g(0, φ)] + Tα(t− t1)I1(x(t−1 ))− g(t, xt)
+Tα(t− t1)[g(t1, xt1 + I1(xt−1

))− g(t1, xt1)]

+
∫ t

0

Sα(t− s)f(s, xs, B1x(s))ds+
∫ t

0

Sα(t− s)σ(s, xs, B2x(s))dw(s), t ∈ (t1, t2],

...

Tα(t)[φ(0) + g(0, φ)] +
m∑

k=1

Tα(t− tk)Ik(x(t−k ))− g(t, xt)

+
m∑

k=1

Tα(t− tk)[g(tk, xtk
+ Ik(xt−k

))− g(tk, xtk
)]

+
∫ t

0

Sα(t− s)f(s, xs, B1x(s))ds+
∫ t

0

Sα(t− s)σ(s, xs, B2x(s))dw(s), t ∈ (tm, T ].

(3.1)

iv. ∆x|t=tk
= Ik(x(t−k )), k = 1, 2, . . . ,m the restriction of x(.) to the interval [0, T )\{t1, . . . , tm} is continu-

ous.

In order to explain our theorem, we need the following assumptions.

(H1): If α ∈ (0, 1) and A ∈ Aα(θ0, ω0), then for x ∈ H and t > 0 we have ‖Tα(t)‖ ≤ Meωt and ‖Sα(t)‖ ≤
Ceωt(1 + tα−1), ω > ω0. Thus we have

‖Tα(t)‖ ≤ M̃T and ‖Sα(t)‖ ≤ tα−1M̃S ,

where M̃T = sup
0≤t≤T

‖Tα(t)‖, and M̃S = sup
0≤t≤T

Ceωt(1 + t1−α) (fore more details, see [23]).

(H2): The function g : J × Bh → H is continuous and there exists some constant Mg > 0 such that

IE‖g(t, ψ1)− g(t, ψ2)‖2H ≤Mg‖ψ1 − ψ2‖2Bh
, (t, ψi) ∈ J × Bh, i = 1, 2,

IE‖g(t, ψ)‖2H ≤Mg

(
‖ψ‖2Bh

+ 1
)
.

(H3): The function f : J × Bh ×H → H satisfies the following properties:

i. f(t, ·, ·) : Bh × H → H is continuous for each t ∈ J and for each (ψ, x) ∈ Bh × H, f(·, ψ, x) : J → H is
strongly measurable;

ii. there exist two positive integrable functions µ1, µ2 ∈ L1([0, T ]) and a continuous nondecreasing function
Ξf : [0,∞) → (0,∞) such that for every (t, ψ, x) ∈ J × Bh ×H, we have

IE‖f(t, ψ, x)‖2H ≤ µ1(t)Ξf

(
‖ψ‖2Bh

)
+ µ2(t)IE‖x‖2H, lim inf

q→∞

Ξf (q)
q

= Λ <∞.
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iii. there exist two positive integrable functions µ1, µ2 ∈ L1([0, T ]) such that

IE‖f(t, ψ, x)− f(t, ϕ, y)‖2H ≤ µ1(t)‖ψ − ϕ‖2Bh
+ µ2(t)IE‖x− y‖2H,

for every (t, ψ, x) and (t, ϕ, y) ∈ J × Bh ×H.

(H4): The function σ : J × Bh ×H → L0
2 satisfies the following properties:

i. σ(t, ·, ·) : Bh ×H → L0
2 is continuous for each t ∈ J and for each (ψ, x) ∈ Bh ×H, σ(·, ψ, x) : J → L0

2 is
strongly measurable;

ii. there exist two positive integrable functions ν1, ν2 ∈ L1([0, T ]) and a continuous nondecreasing function
Ξσ : [0,∞) → (0,∞) such that for every (t, ψ, x) ∈ J × Bh ×H, we have

IE‖σ(t, ψ, x)‖2L0
2
≤ ν1(t)Ξσ

(
‖ψ‖2Bh

)
+ ν2(t)IE‖x‖2H, lim inf

q→∞

Ξσ(q)
q

= Υ <∞.

iii. there exist two positive integrable functions ν1, ν2 ∈ L1([0, T ]) such that

IE‖σ(t, ψ, x)− σ(t, ϕ, y)‖2L0
2
≤ ν1(t)‖ψ − ϕ‖2Bh

+ ν2(t)IE‖x− y‖2H,

for every (t, ψ, x) and (t, ϕ, y) ∈ J × Bh ×H.

(H5): The function Ik : H → H is continuous and there exists Θ > 0 such that

Θ = max
1≤k≤m, x∈Bq

{IE‖Ik(x)‖2H},

where Bq = {y ∈ B0
b , ‖y‖2B0

b
≤ q, q > 0}.

The set Bq is clearly a bounded closed convex set in B0
b for each q and for each y ∈ Bq. From Lemma 2.1, we

have

‖yt + z̄t‖2Bh
≤ 2(‖yt‖2Bh

+ ‖z̄t‖2Bh
)

≤ 4

(
l2 sup

0≤t≤T
IE‖y(t)‖2H + ‖y0‖2Bh

)
+ 4

(
l2 sup

0≤t≤T
IE‖y(t)‖2H + ‖z̄0‖2Bh

)
≤ 4(‖φ‖2Bh

+ l2q).

(3.2)

The main object of this paper is to explain and prove the following theorem.

Theorem 3.1. Assume that the assumptions (H1)-(H5) hold. Then the impulsive stochastic fractional system
(1.1) has a mild solution on (−∞, T ] provided that

C̃ + 16Mgl
2 + 7M̃2

ST
2α
[ η1
α2

+
η2

T (2α− 1)

]
< 1 (3.3)

and

l2Mg + M̃2
ST

2α
[ϑ1

α2
+

ϑ2

T (2α− 1)

]
< 1, (3.4)

C̃ is a positive constant depending only on M̃T ,Mg and l.
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Proof. Consider the operator P : Bb → Bb defined by

P(t) =



φ(t), t ∈ (−∞, 0],

Tα(t)[φ(0) + g(0, φ)]− g(t, xt) +
∫ t

0

Sα(t− s)f(s, xs, B1x(s))ds

+
∫ t

0

Sα(t− s)σ(s, xs, B2x(s))dw(s), t ∈ [0, t1],

Tα(t)[φ(0) + g(0, φ)] + Tα(t− t1)I1(x(t−1 ))− g(t, xt)
+Tα(t− t1)[g(t1, xt1 + I1(xt−1

))− g(t1, xt1)]

+
∫ t

0

Sα(t− s)f(s, xs, B1x(s))ds+
∫ t

0

Sα(t− s)σ(s, xs, B2x(s))dw(s), t ∈ (t1, t2],

...

Tα(t)[φ(0) + g(0, φ)] +
m∑

k=1

Tα(t− tk)Ik(x(t−k ))− g(t, xt)

+
m∑

k=1

Tα(t− tk)[g(tk, xtk
+ Ik(xt−k

))− g(tk, xtk
)]

+
∫ t

0

Sα(t− s)f(s, xs, B1x(s))ds+
∫ t

0

Sα(t− s)σ(s, xs, B2x(s))dw(s), t ∈ (tm, T ].

(3.5)

We shall show that P has a fixed point, which is then a mild solution for the impulsive system (1.1).
For φ ∈ Bh, define

z̄(t) =
{
φ(t), t ∈ (−∞, 0];
0, t ∈ J.

Then z̄ ∈ Bb. Let x(t) = y(t) + z̄(t), t ∈ (−∞, T ]. It is easy to check that x satisfies (1.1) if and only if y0 = 0
and

y(t) =



Tα(t)[φ(0) + g(0, φ)]− g(t, yt + z̄t) +
∫ t

0

Sα(t− s)f(s, ys + z̄s, B1(y(s) + z̄(s)))ds

+
∫ t

0

Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s)))dw(s), t ∈ [0, t1],

Tα(t)[φ(0) + g(0, φ)] + Tα(t− t1)I1(y(t−1 ))− g(t, yt + z̄t)
+Tα(t− t1)[g(t1, yt1 + z̄t1 + I1(yt−1

+ z̄t−1
))− g(t1, yt1 + z̄t1)]

+
∫ t

0

Sα(t− s)f(s, ys + z̄s, B1(y(s) + z̄(s)))ds

+
∫ t

0

Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s)))dw(s), t ∈ (t1, t2],

...

Tα(t)[φ(0) + g(0, φ)] +
m∑

k=1

Tα(t− tk)Ik(y(t−k ))− g(t, yt + z̄t)

+
m∑

k=1

Tα(t− tk)[g(tk, ytk
+ z̄tk

+ Ik(yt−k
+ z̄t−k

))− g(tk, ytk
+ z̄tk

)]

+
∫ t

0

Sα(t− s)f(s, ys + z̄s, B1(y(s) + z̄(s)))ds

+
∫ t

0

Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s)))dw(s), t ∈ (tm, T ].

Set

B0
b = {y ∈ Bb, y0 = 0 ∈ Bh}.

Thus, for any y ∈ B0
b we have

‖y‖b = ‖y0‖Bh
+ sup

0≤s≤T

(
IE‖y(s)‖2

) 1
2

= sup
0≤s≤T

(
IE‖y(s)‖2

) 1
2
.

Therefore, (B0
b , ‖ · ‖b) is a Banach space.



T. Guendouzi et al. / Existence of mild solutions ... 37

Consider the map Π on B0
b defined by

(Πy)(t) =



Tα(t)[φ(0) + g(0, φ)]− g(t, yt + z̄t) +
∫ t

0

Sα(t− s)f(s, ys + z̄s, B1(y(s) + z̄(s)))ds

+
∫ t

0

Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s)))dw(s), t ∈ [0, t1],

Tα(t)[φ(0) + g(0, φ)] + Tα(t− t1)I1(y(t−1 ))− g(t, yt + z̄t)
+Tα(t− t1)[g(t1, yt1 + z̄t1 + I1(yt−1

+ z̄t−1
))− g(t1, yt1 + z̄t1)]

+
∫ t

0

Sα(t− s)f(s, ys + z̄s, B1(y(s) + z̄(s)))ds

+
∫ t

0

Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s)))dw(s), t ∈ (t1, t2],

...

Tα(t)[φ(0) + g(0, φ)] +
m∑

k=1

Tα(t− tk)Ik(y(t−k ))− g(t, yt + z̄t)

+
m∑

k=1

Tα(t− tk)[g(tk, ytk
+ z̄tk

+ Ik(yt−k
+ z̄t−k

))− g(tk, ytk
+ z̄tk

)]

+
∫ t

0

Sα(t− s)f(s, ys + z̄s, B1(y(s) + z̄(s)))ds

+
∫ t

0

Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s)))dw(s), t ∈ (tm, T ].

It is clear that the operator P has a fixed point if and only if Π has a fixed point. So let us prove that Π has
a fixed point. Now, we decompose Π as Π = Π1 + Π2, where

(Π1y)(t) =



0, t ∈ [0, t1],
Tα(t− t1)I1(y(t−1 ))
+Tα(t− t1)[g(t1, yt1 + z̄t1 + I1(yt−1

+ z̄t−1
))− g(t1, yt1 + z̄t1)], t ∈ (t1, t2],

...
m∑

k=1

Tα(t− tk)Ik(y(t−k ))

+
m∑

k=1

Tα(t− tk)[g(tk, ytk
+ z̄tk

+ Ik(yt−k
+ z̄t−k

))− g(tk, ytk
+ z̄tk

)], t ∈ (tm, T ],

(Π2y)(t) = Tα(t)g(0, φ)− g(t, yt + z̄t) +
∫ t

0

Sα(t− s)f(s, ys + z̄s, B1(y(s) + z̄(s)))ds

+
∫ t

0

Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s)))dw(s), t ∈ J.

In order to use Theorem 2.2 we will verify that Π1 is compact and continuous while Π2 is a contraction
operator. For the sake of convenience, we divide the proof into several steps.

Step1. We show that there exists a positive number q such that Π(Bq) ⊂ Bq. If this is not true, then for
each q > 0, there exists a function yq(·) ∈ Bq, but Π(yq) /∈ Bq, that is IE‖(Πyq)(t)‖2H > q. An elementary
inequality can show that, for t ∈ [0, t1]

q ≤ IE‖Π(yq)(t)‖2H

≤ 4IE‖Tα(t)g(0, φ)‖2H + 4IE‖g(t, yq
t + z̄t‖2H + 4IE

∥∥∥∥∥
∫ t

0

Sα(t− s)f(s, yq
s + z̄s, B1(yq(s) + z̄(s)))ds

∥∥∥∥∥
2

H

+4IE

∥∥∥∥∥
∫ t

0

Sα(t− s)σ(s, yq
s + z̄s, B2(yq(s) + z̄(s)))dw(s)

∥∥∥∥∥
2

H

= 4
4∑

i=1

Ii.

(3.6)
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Let us now estimate each term above Ii, i = 1, . . . , 4. By Lemma 2.1 and assumptions (H1)-(H2), we have

I1 ≤ M̃2
T IE‖g(0, φ)‖2H ≤ M̃2

TMg(‖φ‖2Bh
+ 1), (3.7)

I2 ≤Mg

(
‖yq

t + z̄t‖2Bh
+ 1
)
≤Mg

[
4
(
‖φ‖2Bh

+ l2q
)

+ 1
]
. (3.8)

Together with assumption (H3) and (3.2), we have

I3 ≤
∫ t

0

‖Sα(t− s)‖ds
∫ t

0

‖Sα(t− s)‖IE‖f(s, yq
s + z̄s, B1(yq(s) + z̄(s)))‖2Hds

≤ M̃2
S

∫ t

0

(t− s)α−1ds

∫ t

0

(t− s)α−1
[
µ1(s)Ξf

(
‖yq

s + z̄s‖2Bh

)
+ µ2(s)IE‖B1(yq(s) + z̄(s))‖2H

]
ds

≤ M̃2
S

Tα

α

∫ t

0

(t− s)α−1
[
Ξf

(
4(‖φ‖2Bh

+ l2q)
)
µ∗1 +B∗1µ

∗
2 sup

0≤s≤T
IE‖yq(s) + z̄(s)‖2H

]
ds

≤ M̃2
S

T 2α

α2

[
Ξf

(
4(‖φ‖2Bh

+ l2q)
)
µ∗1 +B∗1µ

∗
2q
]
,

(3.9)

where B∗1 = sup
t∈[0,T ]

∫ t

0

K(t, s)ds <∞, µ∗1 = sup
s∈[0,t]

µ1(s), µ∗2 = sup
s∈[0,t]

µ2(s).

A similar argument involves assumption (H4), we obtain

I4 ≤
∫ t

0

‖Sα(t− s)‖2IE‖σ(s, yq
s + z̄s, B2(yq(s) + z̄(s)))‖2L0

2
ds

≤ M̃2
S

∫ t

0

(t− s)2(α−1)
[
Ξσ

(
4(‖φ‖2Bh

+ l2q)
)
ν∗1 +B∗2ν

∗
2 sup

0≤s≤T
IE‖yq(s) + z̄(s)‖2H

]
ds

≤ M̃2
S

T 2α−1

2α− 1

[
Ξσ

(
4(‖φ‖2Bh

+ l2q)
)
ν∗1 +B∗2ν

∗
2q
]
,

(3.10)

where B∗2 = sup
t∈[0,T ]

∫ t

0

P (t, s)ds <∞, ν∗1 = sup
s∈[0,t]

ν1(s), ν∗2 = sup
s∈[0,t]

ν2(s).

Combining these estimates (3.6)-(3.10) yields

q ≤ IE‖Π(yq)(t)‖2H
≤ L0 + 16Mgl

2q + 4M̃2
S

T 2α

α2

[
Ξf

(
4(‖φ‖2Bh

+ l2q)
)
µ∗1 +B∗1µ

∗
2q
]

+4M̃2
S

T 2α−1

2α− 1

[
Ξσ

(
4(‖φ‖2Bh

+ l2q)
)
ν∗1 +B∗2ν

∗
2q
]
,

(3.11)

where
L0 = 4M̃2

TMg

(
‖φ‖2Bh

+ 1
)

+ 4Mg

(
1 + 4‖φ‖2Bh

)
.

Dividing both sides of (3.11) by q and taking q →∞, we obtain

16Mgl
2 + 4M̃2

S

T 2α

α2

[
4Λµ∗1 +B∗1µ

∗
2

]
+ 4M̃2

S

T 2α−1

2α− 1

[
4Υν∗1 +B∗2ν

∗
2

]
= 16Mgl

2 + 4M̃2
ST

2α
[ η1
α2

+
η2

T (2α− 1)

]
≥ 1,

which is a contradiction to our assumption in (3.3).
For t ∈ (t1, t2], we have

q ≤ IE‖Π(yq)(t)‖2H
≤ 7‖Tα(t− t1)‖2IE‖I1(yq(t−1 ))‖2H + 7‖Tα(t− t1)‖2IE‖g(t1, yq

t1 + z̄t1 + I1(y
q

t−1
+ z̄t−1

))‖2H
+7‖Tα(t− t1)‖2IE‖g(t1, yq

t1 + z̄t1)‖2H + 7IE‖Tα(t)g(0, φ)‖2H + 7IE‖g(t, yq
t + z̄t‖2H

+4IE

∥∥∥∥∥
∫ t

0

Sα(t− s)f(s, yq
s + z̄s, B1(yq(s) + z̄(s)))ds

∥∥∥∥∥
2

H

+7IE

∥∥∥∥∥
∫ t

0

Sα(t− s)σ(s, yq
s + z̄s, B2(yq(s) + z̄(s)))dw(s)

∥∥∥∥∥
2

H

.

(3.12)
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Using assumptions (H1)-(H5) we obtain

IE‖Π(yq)(t)‖2H
≤ L1 + 70M̃2

TMgl
2q + 28Mgl

2q + 7M̃2
S

T 2α

α2

[
Ξf

(
4(‖φ‖2Bh

+ l2q)
)
µ∗1 +B∗1µ

∗
2q
]

+7M̃2
S

T 2α−1

2α− 1

[
Ξσ

(
4(‖φ‖2Bh

+ l2q)
)
ν∗1 +B∗2ν

∗
2q
]
,

where
L1 = 7M̃2

T

(
Θ +Mg

[
1 + 6(‖φ‖2Bh

+ l2Θ)
])

+ 7M̃2
TMg

(
1 + ‖φ‖2Bh

)
+ 7Mg

(
1 + 4‖φ‖2Bh

)
.

A Similar argument gives

70M̃2
TMgl

2 + 28Mgl
2 + 7M̃2

S

T 2α

α2

[
4Λµ∗1 +B∗1µ

∗
2

]
+ 7M̃2

S

T 2α−1

2α− 1

[
4Υν∗1 +B∗2ν

∗
2

]
= 70M̃2

TMgl
2 + 28Mgl

2 + 7M̃2
ST

2α
[ η1
α2

+
η2

T (2α− 1)

]
≥ 1,

which is a contradiction to our assumption in (3.3).
Similarly for t ∈ (ti, ti+1], i = 1, 2, . . . ,m, we obtain

C̃ + 16Mgl
2 + 7M̃2

S

T 2α

α2

[
4Λµ∗1 +B∗1µ

∗
2

]
+ 7M̃2

S

T 2α−1

2α− 1

[
4Υν∗1 +B∗2ν

∗
2

]
= C̃ + 16Mgl

2 + 7M̃2
ST

2α
[ η1
α2

+
η2

T (2α− 1)

]
≥ 1,

with η1 = 4Λµ∗1 + B∗1µ
∗
2, η2 = 4Υν∗1 + B∗2ν

∗
2 and C̃ is a positive constant depending only on M̃T ,Mg and l.

This is a contradiction to our assumption in (3.3).
Thus, for some positive number q, Π(Bq) ⊂ Bq.

Step 2. The map Π1 is continuous on Bq.
Let {yn}∞n=1 be a sequence in Bq with lim yn → y ∈ Bq. Then for t ∈ (ti, ti+1], we have

IE‖(Π1y
n)(t)− (Π1y)(t)‖

≤ 3
i∑

k=1

‖Tα(t− tk)‖2
[
IE‖Ik(yn(t−k ))− Ik(y(t−k ))‖2H+

IE‖g(tk, yn
tk

+ z̄tk
+ Ik(yn

t−k
+ z̄t−k

))− g(tk, ytk
+ z̄tk

+ Ik(yt−k
+ z̄t−k

))‖2H

+IE‖g(tk, yn
tk

+ z̄tk
)− g(tk, ytk

+ z̄tk
)‖2H

]
.

Since the functions g, Ii, i = 1, 2, . . . ,m are continuous, hence limn→∞ IE‖Π1y
n − Π1y‖2 = 0 which implies

that the mapping Π1 is continuous on Bq.

Step 3. Π1 maps bounded sets into bounded sets in Bq.
Let us prove that for q > 0 there exists a δ > 0 such that for each y ∈ Bq, we have IE‖(Π1y)(t)‖2H ≤ δ for

t ∈ (ti, ti+1], i = 0, 1, . . . ,m. We have

IE‖(Π1y)(t)‖2H ≤ 3
i∑

k=1

‖Tα(t− tk)‖2
[
IE‖Ik(y(t−k ))‖2H + IE‖g(tk, ytk

+ z̄tk
)‖2H

+IE‖g(tk, ytk
+ z̄tk

+ Ik(yt−k
+ z̄t−k

))‖2H

]

≤ 3mM̃2
T

[
Θ
(
1 + 6Mgl

2
)

+ 2Mg + 10Mg

(
‖φ‖2Bh

+ l2q
)]

:= δ,

which proves the desired result.
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Step 4. The set {Π1y, y ∈ Bq} is an equicontinuous family of functions on J .
Let u, v ∈ (ti, ti+1], ti ≤ u < v ≤ ti+1, i = 0, 1, . . . ,m, y ∈ Bq. We have

IE‖(Π1y)(v)− (Π1y)(u)‖2H

≤ 3
i∑

k=1

‖Tα(v − tk)− Tα(u− tk)‖2
[
IE‖Ik(y(t−k ))‖2H + IE‖g(tk, ytk

+ z̄tk
)‖2H

+IE‖g(tk, ytk
+ z̄tk

+ Ik(yt−k
+ z̄t−k

))‖2H

]

≤ 3

[
Θ
(
1 + 6Mgl

2
)

+ 2Mg + 10Mg

(
‖φ‖2Bh

+ l2q
)] i∑

k=1

‖Tα(v − tk)− Tα(u− tk)‖2.

Since Tα is strongly continuous and it allows us to conclude that limu→v ‖Tα(v− tk)− Tα(u− tk)‖2 = 0 for all
k = 1, 2, . . . ,m, which implies that the set {Π1y, y ∈ Bq} is equicontinuous. Finally, combining Step 1 to Step
4 together with Ascoli’s theorem, we conclude that the operator Π1 is compact.

Step 5. Π2 is contractive. Let y, y∗ ∈ Bq and t ∈ (ti, ti+1], i = 0, 1, . . . ,m. Then

IE‖(Π2y)(t)− (Π2y
∗)(t)‖2H

≤ 3‖g(t, yt + z̄t)− g(t, y∗t + z̄t)‖2H

+3IE

∥∥∥∥∥
∫ t

0

Sα(t− s)
[
f(s, ys + z̄s, B1(y(s) + z̄(s)))− f(s, y∗s + z̄s, B1(y∗(s) + z̄(s)))

]
ds

∥∥∥∥∥
2

H

+3IE

∥∥∥∥∥
∫ t

0

Sα(t− s)
[
σ(s, ys + z̄s, B2(y(s) + z̄(s)))− σ(s, y∗s + z̄s, B2(y∗(s) + z̄(s)))

]
dw(s)

∥∥∥∥∥
2

H

≤ 3‖g(t, yt + z̄t)− g(t, y∗t + z̄t)‖2H + 3
∫ t

0

‖Sα(t− s)‖ds
∫ t

0

‖Sα(t− s)‖

×IE‖f(s, ys + z̄s, B1(y(s) + z̄(s)))− f(s, y∗s + z̄s, B1(y∗(s) + z̄(s)))‖2Hds

+3
∫ t

0

‖Sα(t− s)‖2IE‖σ(s, ys + z̄s, B2(y(s) + z̄(s)))− σ(s, y∗s + z̄s, B2(y∗(s) + z̄(s)))‖2L0
2
ds

≤ 3Mg‖yt − y∗t ‖2Bh
+ 3M̃2

S

∫ t

0

(t− s)α−1ds

∫ t

0

(t− s)α−1

×
[
µ1(s)‖ys − y∗s‖2Bh

+ µ2(s)IE‖B1(y(s) + z̄(s))−B1(y∗(s) + z̄(s))‖2H
]
ds

+3M̃2
S

∫ t

0

(t− s)2(α−1)
[
ν1(s)‖ys − y∗s‖2Bh

+ ν2(s)IE‖B2(y(s) + z̄(s))−B2(y∗(s) + z̄(s))‖2H
]
ds

≤ 3Mg‖yt − y∗t ‖2Bh
+ 3M̃2

S

Tα

α

∫ t

0

(t− s)α−1

×
[
µ∗1l

2 sup IE‖y(s)− y(s)∗‖2H + µ∗2B
∗
1 sup IE‖y(s)− y(s)∗‖2H

]
ds

+3M̃2
S

∫ t

0

(t− s)2(α−1)
[
ν∗1 l

2 sup IE‖y(s)− y(s)∗‖2H + ν∗2B
∗
2 sup IE‖y(s)− y(s)∗‖2H

]
ds

≤ 3

(
l2Mg + M̃2

ST
2α
[

1
α2 (µ∗1l

2 + µ∗2B
∗
1) + 1

T (2α−1) (ν
∗
1 l

2 + ν∗2B
∗
2)
])
‖y − y∗‖2B0

b

= 3

(
l2Mg + M̃2

ST
2α
[

ϑ1
α2 + ϑ2

T (2α−1)

])
‖y − y∗‖2B0

b
.

So Π2 is a contraction by our assumption in (3.4). Hence, by Sadovskii’s fixed point theorem we can conclude
that the problem (1.1) has at least one solution on (−∞, T ]. This completes the proof of the theorem.

4 An example

In this section, we consider an example to illustrate our main theorem. We examine the existence of solutions
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for the following fractional stochastic partial differential equation of the form

Dq
t [u(t, x) +

∫ t

−∞
a(t, x, s− t)Q1(u(s, x))ds] =

∂2

∂x2
[u(t, x) +

∫ t

−∞
a(t, x, s− t)Q1(u(s, x))ds]

+
∫ t

−∞
H(t, x, s− t)Q2(u(s, x))ds+

∫ t

0

k(s, t)e−u(s,x)ds

+

[∫ t

−∞
V (t, x, s− t)Q3(u(s, x))ds+

∫ t

0

p(s, t)e−u(s,x)ds

]
dβ(t)
dt

,

x ∈ [0, π], t ∈ [0, b], t 6= tk
u(t, 0) = 0 = u(t, π), t ≥ 0
u(t, x) = φ(t, x), t ∈ (−∞, 0], x ∈ [0, π],

∆u(ti)(x) =
∫ t

−∞
qi(ti − s)u(s, x)ds, x ∈ [0, π],

(4.1)

where β(t) is a standard cylindrical Wiener process in H defined on a stochastic space (Ω, {Ft},F , IP); Dq
t

is the Caputo fractional derivative of order 0 < q < 1; 0 < t1 < t2 < . . . < tn = T are prefixed numbers;
a,Q1,H,Q2, V,Q3 are continuous; φ ∈ Bh.
Let H = L2([0, π]) with the norm ‖ · ‖. Define A : H → H by Ay = y′′ with the domain

D(A) = {y ∈ H; y, y′ are absolutely continuous, y′′ ∈ H and y(0) = y(π) = 0}.

Then, Ay =
∞∑

n=1

n2(y, yn)yn, y ∈ D(A), where yn(x) =
√

2
π sin(nx), n = 1, 2, . . ., is the orthogonal set of

eigenvectors of A. It is well known that A is the infinitesimal generator of an analytic semigroup (T (t))t≥0 in
H is given by

T (t)y =
∞∑

n=1

e−n2t(y, yn)yn, for all y ∈ H, t > 0.

It follows from the above expressions that (T (t))t≥0 is a uniformly bounded compact semigroup, so that,
R(λ,A) = (λ−A)−1 is a compact operator for all λ ∈ ρ(A).
Let h(s) = e2s, s < 0, then l =

∫ 0

−∞ h(s)ds = 1
2 and define

‖φ‖Bh
=
∫ 0

−∞
h(s) sup

s≤θ≤0

(
IE|φ(θ)|2

)1/2

ds.

Hence for (t, φ) ∈ [0, T ]× Bh, where φ(θ)(y) = φ(θ, y), (θ, y) ∈ (−∞, 0]× [0, π]. Set u(t)(x) = u(t, x),

g(t, φ)(x) =
∫ 0

−∞
a(t, x, θ)Q1(φ(θ)(x))dθ,

f(t, φ,B1u(t))(x) =
∫ 0

−∞
H(t, x, θ)Q2(φ(θ)(x))dθ +B1u(t)(x),

σ(t, φ,B2u(t))(x) =
∫ 0

−∞
V (t, x, θ)Q3(φ(θ)(x))dθ +B2u(t)(x),

Ii(φ)(x) =
∫ 0

−∞
qi(−θ)φ(θ)(x)dθ,

where B1u(t) =
∫ t

0
k(s, t)e−u(s,x)ds and B2u(t) =

∫ t

0
p(s, t)e−u(s,x)ds. Then with these settings the equations

in (4.1) can be written in the abstract form of Eq. (1.1). All conditions of Theorem 3.1 are now fulfilled, so
we deduce that the system (4.1) has a mild solution on (−∞, T ].

5 Conclusion

We have studied the existence of mild solutions for a class of impulsive fractional stochastic differential
equations in Hilbert spaces, which is new and allow us to develop the existence of various fractional differential
equations and stochastic fractional differential equations. An example is provided to illustrate the applicability
of the new result. The results presented in this paper extend and improve the corresponding ones announced
by Dabas et al [6], Dabas and Chauhan [7], Shu et al [23], Sakthivel et al [18] and others.
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