		¢
Malaya Journal of Matematik	$\mathcal{M J M}$ an international journal of mathematical sciences with computer applications...	Mandoun

A Variant of Jensen's Inequalities

Abdallah El Farissi ${ }^{a, *}$, Benharrat Belaïdi ${ }^{b}$, and Zinelaâbidine Latreuch ${ }^{c}$,
${ }^{a, b, c}$ Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB),B. P. 227 Mostaganem-(Algeria).

Abstract

In this paper, we give an estimate from below and from above of a variant of Jensen's Inequalities for convex functions in the discrete and continuous cases.

Keywords: Convex functions, Jensen inequalities, Integral inequalities.

```
2000 MSC: 52A40, 52A41.
```

(C) 2012 MJM. All rights reserved.

1 Introduction and main results

Throughout this note, we write I and \check{I} for the intervals $[a, b]$ and (a, b) respectively. A function f is said to be convex on I if $\lambda f(x)+(1-\lambda) f(y) \geqslant f(\lambda x+(1-\lambda) y)$ for all $x, y \in I$ and $0 \leqslant \lambda \leqslant 1$. Conversely, if the inequality always holds in the opposite direction, the function is said to be concave on the interval. A function f that is continuous function on I and twice differentiable on I is convex on I if $f^{\prime \prime}(x) \geqslant 0$ for all $x \in \stackrel{\circ}{I}$ (concave if the inequality is flipped).

Let $x_{1} \leqslant x_{2} \leqslant \ldots \leqslant x_{n}$ be real numbers and $\lambda_{k}(1 \leqslant k \leqslant n)$ be positive weights associated with x_{k} and whose sum is unity. Then the famous Jensen's discrete and continuous inequalities [2] read:

Theorem A. [2] If φ is a convex function on an interval containing the x_{k}, then

$$
\begin{equation*}
\varphi\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \leqslant \sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right) . \tag{1.1}
\end{equation*}
$$

Theorem B. [2] Let φ be a convex function on $I \subset \mathbb{R}$, let $f:[c, d] \longrightarrow I$ and $p:[c, d] \longrightarrow(0,+\infty)$ be continuous functions on $[c, d]$. Then

$$
\begin{equation*}
\varphi\left(\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right) \leqslant \frac{\int_{c}^{d} p(x) \varphi(f(x)) d x}{\int_{c}^{d} p(x) d x} \tag{1.2}
\end{equation*}
$$

If φ is strictly convex, then inequality in (1.2) is strict.

In [3], S. M. Malamud gave some complements to the Jensen and Chebyshev inequalities and in [1], I. Budimir, S. S. Dragomir, J. E. Pečarić obtained some results which counterpart Jensen's discret inequality. Recently, A. McD . Mercer [4] studied a variant of the inequality (1.1) and have obtained:

Theorem C. 4] If φ is a convex function on an interval of positive real numbers containing the x_{k}, then

$$
\begin{equation*}
\varphi\left(x_{1}+x_{n}-\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \leqslant \varphi\left(x_{1}\right)+\varphi\left(x_{n}\right)-\sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right) . \tag{1.3}
\end{equation*}
$$

[^0]Our purpose in this paper is to give an estimate, from below and from above, of a variant of Jensen's discrete and continuous cases inequalities for convex functions. We obtain the following results:

Theorem 1.1. Assume that φ is a convex function on I containing the x_{k} and $\lambda_{k}(1 \leqslant k \leqslant n)$ are positive weights associated with x_{k} and whose sum is unity. Then

$$
\begin{gather*}
2 \varphi\left(\frac{a+b}{2}\right)-\sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right) \leqslant \varphi\left(a+b-\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \\
\leqslant \varphi(a)+\varphi(b)-\sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right) \tag{1.4}
\end{gather*}
$$

If φ is strictly convex, then inequalities in (1.4) are strict.

Remark 1.1. If $[a, b]=\left[x_{1}, x_{n}\right]$, then the result of Theorem C is given by the right-hand of inequalities (1.4).

Theorem 1.2. Let φ be a convex function on $I \subset \mathbb{R}$, let $f:[c, d] \longrightarrow I$ and $p:[c, d] \longrightarrow(0,+\infty)$ be continuous functions on $[c, d]$. Then

$$
\begin{align*}
2 \varphi\left(\frac{a+b}{2}\right)- & \frac{\int_{c}^{d} p(x) \varphi(f(x)) d x}{\int_{c}^{d} p(x) d x} \leqslant \varphi\left(a+b-\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right) \\
& \leqslant \varphi(a)+\varphi(b)-\frac{\int_{c}^{d} p(x) \varphi(f(x)) d x}{\int_{c}^{d} p(x) d x} \tag{1.5}
\end{align*}
$$

If φ is strictly convex, then inequalities in (1.5) are strict.

Corollary 1.1. Under the hypotheses of Theorem 1.1, we have

$$
\begin{align*}
& \left|\varphi\left(a+b-\sum_{k=1}^{n} \lambda_{k} x_{k}\right)+\sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right)\right| \\
& \leqslant \max \left\{2\left|\varphi\left(\frac{a+b}{2}\right)\right|,|\varphi(a)+\varphi(b)|\right\} . \tag{1.6}
\end{align*}
$$

Corollary 1.2. Under the hypotheses of Theorem 1.2, we have

$$
\begin{align*}
& \left|\varphi\left(a+b-\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right)+\frac{\int_{c}^{d} p(x) \varphi(f(x)) d x}{\int_{c}^{d} p(x) d x}\right| \\
& \quad \leqslant \max \left\{2\left|\varphi\left(\frac{a+b}{2}\right)\right|,|\varphi(a)+\varphi(b)|\right\} \tag{1.7}
\end{align*}
$$

In [5], S. Simić have obtained an upper global bound without a differentiability restriction on f. Namely, he proved the following:
Theorem D. [5] If φ is a convex function on I containing the x_{k} and $\lambda_{k}(1 \leqslant k \leqslant n)$ are positive weights associated with x_{k} and whose sum is unity, then

$$
\begin{equation*}
\sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right)-\varphi\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \leqslant \varphi(a)+\varphi(b)-2 \varphi\left(\frac{a+b}{2}\right) \tag{1.8}
\end{equation*}
$$

In the following, we improve this result by proving:

Theorem 1.3. If φ is a convex function on I containing the x_{k} and $\lambda_{k}(1 \leqslant k \leqslant n)$ are positive weights associated with x_{k} and whose sum is unity, then

$$
\begin{gather*}
0 \leqslant \mid \sum_{k=1}^{n} \lambda_{\sigma(k)} \varphi\left(a+b-x_{k}\right)-\varphi\left(a+b-\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \\
+\sum_{k=1}^{n} \lambda_{\sigma(k)} \varphi\left(x_{k}\right)-\varphi\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \left\lvert\, \leqslant \varphi(a)+\varphi(b)-2 \varphi\left(\frac{a+b}{2}\right)\right. \tag{1.9}
\end{gather*}
$$

holds for all permutation $\sigma(k)$ of $\{1,2, \ldots, n\}$.

Theorem 1.4. Let φ be a convex function on $I \subset \mathbb{R}$, let $f:[c, d] \longrightarrow I$ and $p:[c, d] \longrightarrow(0,+\infty)$ be continuous functions on $[c, d]$. Then

$$
\begin{gather*}
0 \leqslant \frac{\int_{c}^{d} p(x) \varphi(f(x)) d x}{\int_{c}^{d} p(x) d x}-\varphi\left(\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right) \\
\leqslant \frac{\int_{c}^{d} p(x) \varphi(a+b-f(x)) d x}{\int_{c}^{d} p(x) d x}-\varphi\left(a+b-\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right) \\
+\frac{\int_{c}^{d} p(x) \varphi(f(x)) d x}{\int_{c}^{d} p(x) d x}-\varphi\left(\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right) \leqslant \varphi(a)+\varphi(b)-2 \varphi\left(\frac{a+b}{2}\right) . \tag{1.10}
\end{gather*}
$$

Corollary 1.3. If φ is a convex function on $I \subset \mathbb{R}, f:[0,1] \longrightarrow I$ is a continuous function on $[0,1]$, then

$$
\begin{gather*}
0 \leqslant \int_{0}^{1} \varphi(f(x)) d x-\varphi\left(\int_{0}^{1} f(x) d x\right) \\
\leqslant \varphi\left(a+b-\int_{0}^{1} f(x) d x\right)-\int_{0}^{1} \varphi(a+b-f(x)) d x+\int_{0}^{1} \varphi(f(x)) d x \\
-\varphi\left(\int_{0}^{1} f(x) d x\right) \leqslant \varphi(a)+\varphi(b)-2 \varphi\left(\frac{a+b}{2}\right) \tag{1.11}
\end{gather*}
$$

Corollary 1.4. If φ is a convex function on I containing the x_{k} and $\lambda_{k}(1 \leqslant k \leqslant n)$ are positive weights associated with x_{k} and whose sum is unity, then

$$
\begin{align*}
& 0 \leqslant \sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right)-\varphi\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \\
& \leqslant \sum_{k=1}^{n} \lambda_{k} \varphi\left(a+b-x_{k}\right)-\varphi\left(a+b-\sum_{k=1}^{n} \lambda_{k} x_{k}\right)+\sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right)-\varphi\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \\
& \leqslant \varphi(a)+\varphi(b)-2 \varphi\left(\frac{a+b}{2}\right) \tag{1.12}
\end{align*}
$$

Remark 1.2. If φ is a concave function, then the above inequalities are opposite.

2 Lemma

Towards proving these theorems we shall need the following lemma.

Lemma 2.1. Let φ be convex function on $I=[a, b]$. Then, we have

$$
\begin{equation*}
2 \varphi\left(\frac{a+b}{2}\right) \leqslant \varphi(a+b-x)+\varphi(x) \leqslant \varphi(a)+\varphi(b) \tag{2.1}
\end{equation*}
$$

Proof. Let φ be a convex function on I. Then, we have

$$
\begin{equation*}
\varphi\left(\frac{a+b}{2}\right)=\varphi\left(\frac{a+b-x+x}{2}\right) \leqslant \frac{1}{2}(\varphi(a+b-x)+\varphi(x)) \tag{2.2}
\end{equation*}
$$

If we choose $x=\lambda a+(1-\lambda) b(0 \leqslant \lambda \leqslant 1)$ in (2.2), then we obtain

$$
\begin{gather*}
\frac{1}{2}(\varphi(a+b-x)+\varphi(x)) \\
=\frac{1}{2}(\varphi(a+b-(\lambda a+(1-\lambda) b))+\varphi(\lambda a+(1-\lambda) b)) \\
=\frac{1}{2}(\varphi(\lambda b+(1-\lambda) a)+\varphi(\lambda a+(1-\lambda) b)) \tag{2.3}
\end{gather*}
$$

By using the convexity of φ, we get

$$
\begin{equation*}
\frac{1}{2}(\varphi(\lambda b+(1-\lambda) a)+\varphi(\lambda a+(1-\lambda) b)) \leqslant \frac{1}{2}(\varphi(a)+\varphi(b)) \tag{2.4}
\end{equation*}
$$

Thus, by (2.2), (2.3) and (2.4), we obtain

$$
\begin{equation*}
\varphi\left(\frac{b+a}{2}\right) \leqslant \frac{1}{2}(\varphi(a+b-x)+\varphi(x)) \leqslant \frac{1}{2}(\varphi(a)+\varphi(b)) \tag{2.4}
\end{equation*}
$$

3 Proof of Theorems

Proof of Theorem 1.1. Let φ be a convex function and let $\lambda_{k}(0 \leqslant k \leqslant n)$ be positive weights associated with x_{k} and whose sum is unity. Then, by using inequality (1.1), we have

$$
\begin{align*}
& \varphi\left(a+b-\sum_{k=1}^{n} \lambda_{k} x_{k}\right)=\varphi\left(\sum_{k=1}^{n} \lambda_{k}(a+b)-\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \\
& =\varphi\left(\sum_{k=1}^{n} \lambda_{k}\left(a+b-x_{k}\right)\right) \leqslant \sum_{k=1}^{n} \lambda_{k} \varphi\left(a+b-x_{k}\right) . \tag{3.1}
\end{align*}
$$

By Lemma 2.1, we get

$$
\begin{align*}
\varphi\left(\sum_{k=1}^{n} \lambda_{k}(a\right. & \left.\left.+b-x_{k}\right)\right) \leqslant \sum_{k=1}^{n} \lambda_{k}\left(\varphi(a)+\varphi(b)-\varphi\left(x_{k}\right)\right) \\
& =\varphi(a)+\varphi(b)-\sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right) \tag{3.2}
\end{align*}
$$

From (3.1) and (3.2), we obtain

$$
\varphi\left(a+b-\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \leqslant \varphi(a)+\varphi(b)-\sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right)
$$

which is the right-hand of inequalities in (1.4). Now, using Lemma 2.1, we obtain

$$
\begin{equation*}
2 \varphi\left(\frac{a+b}{2}\right)-\varphi\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \leqslant \varphi\left(a+b-\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \tag{3.3}
\end{equation*}
$$

Since φ is a convex function, then from (3.3) and inequality (1.1), we deduce that

$$
\begin{gathered}
2 \varphi\left(\frac{a+b}{2}\right)-\sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right) \leqslant 2 \varphi\left(\frac{a+b}{2}\right)-\varphi\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \\
\leqslant \varphi\left(a+b-\sum_{k=1}^{n} \lambda_{k} x_{k}\right)
\end{gathered}
$$

which is the left-hand of inequalities in (1.4). This completes the proof of Theorem 1.1.
Proof of Theorem 1.2. Let φ be a convex function. Then, by using inequality (1.2), we have

$$
\begin{gather*}
\varphi\left(a+b-\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x)}\right)=\varphi\left(\frac{\int_{c}^{d} p(x)(a+b-f(x)) d x}{\int_{c}^{d} p(x)}\right) \\
\leqslant \frac{\int_{c}^{d} p(x) \varphi(a+b-f(x)) d x}{\int_{c}^{d} p(x) d x} \tag{3.4}
\end{gather*}
$$

By Lemma 2.1, we get

$$
\begin{gather*}
\frac{\int_{c}^{d} p(x) \varphi(a+b-f(x)) d x}{\int_{c}^{d} p(x) d x} \leqslant \frac{\int_{c}^{d} p(x)(\varphi(a)+\varphi(b)-\varphi(f(x))) d x}{\int_{c}^{d} p(x) d x} \\
=\varphi(a)+\varphi(b)-\frac{\int_{c}^{d} p(x) \varphi(f(x)) d x}{\int_{c}^{d} p(x) d x} \tag{3.5}
\end{gather*}
$$

From (3.4) and (3.5), we obtain

$$
\varphi\left(a+b-\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x)}\right) \leqslant \varphi(a)+\varphi(b)-\frac{\int_{c}^{d} p(x) \varphi(f(x)) d x}{\int_{c}^{d} p(x) d x}
$$

which is the right-hand inequalities in (1.5). Using now Lemma 2.1, we obtain

$$
\begin{equation*}
2 \varphi\left(\frac{a+b}{2}\right) \leqslant \varphi\left(\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right)+\varphi\left(a+b-\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right) \tag{3.6}
\end{equation*}
$$

This implies

$$
\begin{equation*}
2 \varphi\left(\frac{a+b}{2}\right)-\varphi\left(\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right) \leqslant \varphi\left(a+b-\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right) \tag{3.7}
\end{equation*}
$$

Since φ is a convex function, then from (3.7) and inequality (1.2), we deduce that

$$
\begin{gathered}
2 \varphi\left(\frac{a+b}{2}\right)-\frac{\int_{c}^{d} p(x) \varphi(f(x)) d x}{\int_{c}^{d} p(x) d x} \leqslant 2 \varphi\left(\frac{a+b}{2}\right)-\varphi\left(\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right) \\
\leqslant \varphi\left(a+b-\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right)
\end{gathered}
$$

The left-hand of inequalities in (1.5) is proved. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. By using Lemma 2.1, we obtain for all $x_{k} \in I$

$$
\begin{equation*}
2 \varphi\left(\frac{a+b}{2}\right) \leqslant \varphi\left(a+b-x_{k}\right)+\varphi\left(x_{k}\right) \leqslant \varphi(a)+\varphi(b) \tag{3.8}
\end{equation*}
$$

Multiplying (3.8) by $\lambda_{\sigma(k)}$ and adding, we get

$$
\begin{equation*}
2 \varphi\left(\frac{a+b}{2}\right) \leqslant \sum_{k=1}^{n} \lambda_{\sigma(k)} \varphi\left(a+b-x_{k}\right)+\sum_{k=1}^{n} \lambda_{\sigma(k)} \varphi\left(x_{k}\right) \leqslant \varphi(a)+\varphi(b) \tag{3.9}
\end{equation*}
$$

On other hand by Lemma 2.1, we have

$$
2 \varphi\left(\frac{a+b}{2}\right) \leqslant \varphi\left(a+b-\sum_{k=1}^{n} \lambda_{k} x_{k}\right)+\varphi\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \leqslant \varphi(a)+\varphi(b)
$$

This implies

$$
\begin{align*}
&-(\varphi(a)+\varphi(b)) \leqslant-\varphi\left(a+b-\sum_{k=1}^{n} \lambda_{k} x_{k}\right)-\varphi\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \\
& \leqslant-2 \varphi\left(\frac{a+b}{2}\right) \tag{3.10}
\end{align*}
$$

By addition from (3.9) and (3.10), we get our result.

Proof of Theorem 1.4. By using Lemma 2.1, we obtain for all $f(x) \in I$

$$
\begin{equation*}
2 \varphi\left(\frac{a+b}{2}\right) \leqslant \varphi(a+b-f(x))+\varphi(f(x)) \leqslant \varphi(a)+\varphi(b) \tag{3.11}
\end{equation*}
$$

Multiplying (3.11) by $p(x)$ and integrating over $[c, d]$, we get

$$
\begin{gather*}
2 \varphi\left(\frac{a+b}{2}\right) \leqslant \frac{\int_{c}^{d} p(x) \varphi(a+b-f(x)) d x}{\int_{c}^{d} p(x) d x}+\frac{\int_{c}^{d} p(x) \varphi(f(x)) d x}{\int_{c}^{d} p(x) d x} \\
\leqslant \varphi(a)+\varphi(b) \tag{3.12}
\end{gather*}
$$

On other hand by Lemma 2.1, we have

$$
\begin{gather*}
2 \varphi\left(\frac{a+b}{2}\right) \leqslant \varphi\left(a+b-\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right)+\varphi\left(\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right) \\
\leqslant \varphi(a)+\varphi(b) \tag{3.13}
\end{gather*}
$$

This implies

$$
\begin{align*}
&-(\varphi(a)+\varphi(b)) \leqslant-\varphi(a+b\left.-\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right)-\varphi\left(\frac{\int_{c}^{d} p(x) f(x) d x}{\int_{c}^{d} p(x) d x}\right) \\
& \leqslant-2 \varphi\left(\frac{a+b}{2}\right) \tag{3.14}
\end{align*}
$$

By addition from (3.13) and (3.14), we get our result.

4 Applications

Let $x_{k} \in[a, b](b>a>0), \lambda_{k} \in[0,1]$ such that $\sum_{k=1}^{n} \lambda_{k}=1$. Then, by Theorem 1.1 and Theorem 1.3 for $\varphi(x)=-\ln x$, we obtain respectively

$$
\sqrt{a b} \leqslant \sqrt{\frac{A^{\prime} G+A G^{\prime}}{2}} \leqslant \frac{a+b}{2}
$$

and

$$
1 \leqslant \sqrt{\frac{A}{G} \frac{A^{\prime}}{G^{\prime}}} \leqslant \frac{\frac{a+b}{2}}{\sqrt{a b}}
$$

where $A=\sum_{k=1}^{n} \lambda_{k} x_{k}, G=\prod_{k=1}^{n} x_{k}^{\lambda_{k}}, A^{\prime}=a+b-\sum_{k=1}^{n} \lambda_{k} x_{k}$ and $G^{\prime}=\prod_{k=1}^{n}\left(a+b-x_{k}\right)^{\lambda_{k}}$.

References

[1] I. Budimir, S. S. Dragomir, J. E. Pečarić, Further reverse results for Jensen's discrete inequality and applications in information theory, JIPAM. J. Inequal. Pure Appl. Math. 2 (2001), no. 1, Article 5, 14 pp.
[2] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and new inequalities in analysis. Mathematics and its Applications (East European Series), 61. Kluwer Academic Publishers Group, Dordrecht, 1993.
[3] S. M. Malamud, Some complements to the Jensen and Chebyshev inequalities and a problem of W. Walter, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2671-2678.
[4] A. McD. Mercer, A Variant of Jensen's inequality, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 4, Article 73, 2 pp .
[5] S. Simić, Jensen's inequality and new entropy bounds, Appl. Math. Lett. 22 (2009), no. 8, 1262-1265.

Received: April 17, 2013; Accepted: June 28, 2013
UNIVERSIITY $\mathbb{P R E S S}$

[^0]: * Corresponding author.

 E-mail addresses: ${ }^{a}$ elfarissi.abdallah@yahoo.fr (Abdallah El Farissi), ${ }^{b}$ belaidi@univ-mosta.dz (Benharrat Belaïdi) and ${ }^{c}$ z.latreuch@gmail.com (Zinelaâbidine Latreuch)

