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Abstract
In this paper, some exact expressions for the first reverse Zagreb alpha index, first reverse Zagreb beta index
and second reverse Zagreb index of corona product of two simple graphs are determined. Using this results we
obtained these indices for t−thorny graph and bottleneck graph.
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1. Introduction
Let G = (V (G),E(G)) be graph with vertex set V (G) and

edge set E(G). All the graphs considered in this paper are sim-
ple and connected. Graph theory has successfully provided
chemists with a variety of useful tools [1, 8, 10, 11], among
which are the topological indices. In theoretical chemistry,
assigning a numerical value to the molecular structure that
will closely correlate with the physical quantities and activi-
ties. Molecular structure descriptors (also called topological
indices) are used for modeling physicochemical, pharmaco-
logic, toxicologic, biological and other properties of chemical
compounds. Zagreb indices were introduced more than forty
years ago by Gutman and Trinajestic [9]. The Zagreb indices
are found to have applications in QSPR and QSAR studies as
well, see [3]. One of the recently introduced indices called
Reverse Zagreb indices by Ediz [5] and he obtained the max-
imum and minimum graphs with respect to the first reverse
Zagreb alpha index and minimum graphs with respect to the
first reverse Zagreb beta index and the second reverse Za-
greb index. Kulli [15, 16] defined first and second reverse

hyper-Zagreb indices of a graph and obtained first two reverse
Zagreb indices, the first two reverse hyper Zagreb indices and
their polynomials of rhombus silicate networks, moreover he
introduced the product connectivity reverse index of a graph G
and obtained it for silicate networks and hexagonal networks.

2. Preliminaries
In this section, we recall some definitions and basic results

of Zagreb index of graph which will be used throughout the
paper.

Definition 2.1. The first Zagreb index is defined as M1(G) =

∑
u∈V (G)

dG(u)2, where dG(u) denote the degree of the vertex

u in G. In fact, one can rewrite the first Zagreb index as
M1(G) = ∑

uv∈E(G)
(dG(u)+dG(v)).

Definition 2.2. The second Zagreb index is defined as M2(G)=

∑
uv∈E(G)

dG(u)dG(v), where dG(u), dG(v) denotes the degree of

the vertex u,v respectively in G.

Definition 2.3. Let G be a simple connected graph. Then the
total reverse vertex degree of G defined as T R(G) = ∑

a∈V (G)
ca,

where ca(G) = ∆G−dG(a)+1, known as reverse vertex de-
gree of a ∈ V (G), in shortly ca(G) = ca and ∆G denote the
largest of all degrees of vertices of G.

Definition 2.4. Let G be a simple connected graph. Then the
first reverse Zagreb alpha index of G defined as CMα

1 (G) =

∑
a∈V (G)

c2
a.
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Definition 2.5. Let G be a simple connected graph. Then the
first reverse Zagreb beta index of G defined as CMβ

1 (G) =

∑
ab∈E(G)

(ca + cb).

Definition 2.6. Let G be a simple connected graph. Then
the second reverse Zagreb index of G defined as CM2(G) =

∑
ab∈E(G)

cacb.

In [4], the chemical applications of these new indices
have been investigated. In [6], Ediz and Cancan obtained the
reverse Zagreb indices for Cartesian product of two simple
connected graphs. In this extend we obtain the value of this
index for corona product of graphs.

Graph operations play an important role in the study of
graph decompositions into isomorphic subgraphs. The corona
of two graphs was first introduced by Frucht and Harary in
[7]. Let G and H be two simple graphs. The corona prod-
uct G ◦H, is obtained by taking one copy of G and |V (G)|
copies of H; and by joining each vertex of the i-th copy of
H to the i-th vertex of G, where 1 ≤ i ≤ |V (G)| , see Figure
1. Let the vertex set of G and H denoted as {v1,v2, · · · ,vn1}
and {u1,u2, · · · ,un2} respectively. For 1≤ i≤ n1, denote H i

the ith copy of H joined to the vertex vi and let the vertex
set of H i is {xi1,xi2, · · · ,xin2 }, denoted by V2 =V (H i) and let
V1 =V (G′), be the vertex set of G′, where G′ is a copy of G
which contained in G◦H. Coronas sometimes appear in chem-
ical literature as plerographs of the usual hydrogen-suppressed
molecular graphs known as kenographs, see [13] for more in-
formation. Different topological indices such as Wiener-type
indices [2], Szeged, vertex PI, first and second Zagreb in-
dices [18], weighted PI index [14], etc. of the corona product
of two graphs have already been studied. For convenience,
we partition the edge set of G ◦H into three sets as follow,
E1 = {viv j |vi, v j ∈ V (G′)}, E2 = {xirxis |xir, xis ∈ V (H i)}
and E3 = {vixir |vi ∈V (G′), xir ∈V (H i)}, where 1≤ i, j≤ n1
and 1 ≤ r,s ≤ n2. From the structure of the corona product
G and H (see Fig.1), one can easily observe the following
lemma and corollary.

Lemma 2.7. Let G and H be two connected graphs with n1
and n2 vertices, respectively. Then
(a) |V (G◦H)| = |V (G′)|+ |V (H i)| = n1 +n1n2
(b) |E(G◦H)| = |E(G′)|+ |V (G)||E(H)|+ |V (G)||V (H)| =
E1 +n1|E(H)|+n1n2

(c) dG◦H(a) =

{
dG(a)+n2, if a ∈V1

dH(a)+1, if a ∈V2.

Corollary 2.8. Let G and H be two connected graphs with n1
and n2 vertices, respectively. Then the ∆G◦H = ∆G+O(H) =
∆G +n2.

Proof. Let ∆G and ∆H be the largest degree of the respective
graph. Since ∆H < n2, then one can easily observed from the
structure of corona product of G◦H and from lemma 2.7 that
∆G◦H = ∆G +n2.

3. Main Results
In this section, we have obtain the reverse zagreb index

of corona two connected graphs using it we have deduced for
some standard graphs .

Proposition 3.1. Let G and H be two connected graphs with
n1 and n2 vertices, respectively. Then

cG◦H(a) =

{
ca(G) if a ∈V1

∆(G◦H)−dH(a)+1 if a ∈V2
(3.1)

Proof. By using lemma 2.7 and corollary 2.8, we have

cG◦H(a) = ∆G◦H −dG◦H(a)+1

=

{
∆G +n2− (dG(a)+n2)+1 if a ∈V1

∆G +n2− (dH(a)+1)+1 if a ∈V2

=

{
∆G−dG(a)+1 if a ∈V1

∆G +n2−dH(a) if a ∈V2

=

{
ca(G) if a ∈V1

∆(G◦H)−dH(a)+1 if a ∈V2

.

Theorem 3.2. Let G and H be two connected graphs with
n1,n2 vertices, respectively. Then CMα

1 (G◦H) =CMα
1 (G)+

n1

(
n2∆2

G◦H −4∆G◦HE(H)+M1(H)
)
.

Proof. Using Proposition 2.3, we have

CMα
1 (G◦H) = ∑

a∈V (G◦H)

c2
a

721



Reverse Zagreb indices of corona product of graphs — 722/724

= ∑
a∈V1

c2
a + ∑

a∈V2

c2
a

= ∑
a∈V1

(
∆G◦H −dG′(a)+1

)2
+ ∑

a∈V2

(
∆G◦H −dH i(a)+1

)2

= ∑
a∈V (G)

(
(∆G +n2)− (dG(a)+n2)+1

)2

+n1 ∑
a∈V (H)

(
(∆G +n2)− (dH(a)+1)+1

)2

= ∑
a∈V (G)

(
∆G−dG(a)+1

)2
(3.2)

+n1 ∑
a∈V (H)

(
(∆G +n2)−dH(a)

)2

= ∑
a∈V (G)

ca
2 +n1

(
∑

a∈V (H)

(∆G +n2)
2

−2 ∑
a∈V (H)

(∆G +n2)dH(a)+ ∑
a∈V (H)

d2
H(a)

)
= CMα

1 (G)+n1

(
n2∆

2
G◦H −2∆G◦H(2E(H))+M1(H)

)
= CMα

1 (G)+n1

(
n2∆

2
G◦H −4∆G◦HE(H)+M1(H)

)
.

.

Proposition 3.3. Let Pn be a path and Kn be a n independent
vertices, with n≥ 3. Then
(a) CMα

1 (Pn) = n+6, CMα
1 (Cn) = n and CMα

1 (Kn) = 0
(b) CMβ

1 (Pn) = 2n, CMβ

1 (Cn) = 2n and CMβ

1 (Kn) = 0
(c) CM2(Pn) = n+1, CM2(Cn) = n and CM2(Kn) = 0.

Lemma 3.4. Let Pn be a path and Cn be a cycle with n≥ 3.
Then T R(Pn) = n+2 and T R(Cn) = n.

The t−thorny graph of a given graph G is obtained as
G◦Kt , where Kt denotes the empty graph on t vertices [12].
Using Theorem 3.2 and Proposition 3.3, for the t−thorny
graph of a graph G, we have the following corollaries.

Corollary 3.5. Let G be a simple connected graph of order
n and size E(G). Then CMα

1 (G◦Kt) = CMα
1 (G)+n1t(∆G +

t)2.

Now by using Corollary 3.5 and Proposition 3.3, we
present two formulas for the reverse Zagreb indices of the
t−thorny path Pn ◦Kt and the t−thorny cycle Cn ◦Kt .

Corollary 3.6. Let G be a simple connected graph of order
n and size E(G). Then CMα

1 (G◦Kt) = CMα
1 (G)+n1t(∆G +

t)2.

Now by using Corollary3.6 and Proposition3.3, we present
two formulas for the reverse Zagreb indices of the t−thorny
path Pn ◦Kt and the t−thorny cycle Cn ◦Kt .

Corollary 3.7. For n ≥ 3, if G = Pn and H = Kt , we have
CMα

1 (Pn ◦Kt) = (n+6)+nt(2+ t)2.

Corollary 3.8. For n ≥ 3, if G = Cn and H = Kt , we have
CMα

1 (Cn ◦Kt) = n(t(2+ t)2 +1).

Interesting classes of graphs can also be obtained by spe-
cializing the first component in the corona product. For ex-
ample, for a graph G, the graph G◦K2 is called its bottleneck
graph. For the bottleneck graph of a graph G, we obtain the
following corollaries.

Corollary 3.9. Let G be a simple connected graph of order
n≥ 3. Then CMα

1 (G◦K2) = CMα
1 (G)+18n.

Using Corollary 3.9 and Proposition 3.3, the formulas for
the bottleneck graph of a cycle Cn ◦K2 and the bottleneck
graph of a path Pn ◦K2 are easily obtained.

Corollary 3.10. For n ≥ 3, if G = Cn, we have CMα
1 (Cn ◦

K2) = 19n.

Corollary 3.11. For n ≥ 3, if G = Pn, we have CMα
1 (Pn ◦

K2) = 19n+6.

Theorem 3.12. For a connected graph G and H with n1,n2

vertices respectively, then CMβ

1 (G◦H) =CMβ

1 (G)

+n1

(
2∆G◦HE(H)−M1(H)

)
+n1n2∆G◦H−2n1E(H)+n2T R(G).

Proof. Using Proposition 2.3, we have CMβ

1 (G◦H)
= ∑ab∈E1

(ca + cb)+∑ab∈E2
(ca + cb)+∑ab∈E3

(ca + cb). Let
us calculate each summation separately, for the edge set E1,
we have ∑ab∈E1

(ca + cb)

= ∑
ab∈E1

(
(∆G◦H −dG′(a)+1)+(∆G◦H −dG′(b)+1)

)
= ∑

ab∈E(G)

((∆G+n2−(dG(a)+n2)+1)

+(∆G+n2−(dG(b)+n2)+1)

)
= ∑

ab∈E(G)

(
(∆G−dG(a)+1)+(∆G−dG(b)+1)

)
= ∑

ab∈E(G)

(ca + cb)

= CMβ

1 (G).

Now for the edge set E2, we have ∑ab∈E2
(ca + cb)

= ∑
ab∈E2

(
(∆G◦H −dH i(a)+1)+(∆G◦H −dH i(b)+1)

)
= n1 ∑

ab∈E(H)

((∆G+n2−(dH (a)+1)+1)

+(∆G+n2−(dH (b)+1)+1)

)
= n1 ∑

ab∈E(H)

(
2(∆G◦H)− (dH(a)+dH(b))

)
= n1

(
2∆G◦HE(H)−M1(H)

)
.

Finally for the edge set E3, we have ∑ab∈E3
(ca + cb)

= ∑
ab∈E3

a ∈H i, b∈G′

(
(∆G◦H −dH i(a)+1)+(∆G◦H −dG′(b)+1)

)
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= ∑
ab∈E3

a ∈V (H), b∈V (G)

((∆G+n2−(dH (a)+1)+1)

+(∆G+n2−(dG(b)+n2)+1)

)
= ∑

ab∈E3
a ∈V (H), b∈V (G)

(
(∆G +n2−dH(a))+(∆G−dG(b)+1)

)

= ∑
ab∈E3

a ∈V (H), b∈V (G)

(∆G +n2−dH(a)) +

∑
ab∈E3

a ∈V (H), b∈V (G)

(∆G−dG(b)+1)

= ∑
ab∈E3

a ∈V (H), b∈V (G)

(∆G +n2)−

∑
ab∈E3

a ∈V (H), b∈V (G)

dH(a)+n2 ∑
ab∈E3

b∈V (G)

(∆G−dG(b)+1)

= n1n2∆G◦H −n1(2E(H))+n2 ∑
b∈V (G)

cb

= n1n2∆G◦H −2n1E(H)+n2T R(G).

Hence, we have CMβ

1 (G◦H)=CMβ

1 (G)+n1

(
2∆G◦HE(H)−

M1(H)
)
+n1n2∆G◦H −2n1E(H)+n2T R(G).

Using Theorem 3.12, Proposition 3.3 and Lemma 3.4, we
have the following corollaries

Corollary 3.13. For n≥ 3, if G = Pn and H = K2, we have
CMβ

1 (Pn ◦K2) = 4(4n+1).

Corollary 3.14. For n≥ 3, if G = Pn and H = Kt , we have
CMβ

1 (Pn ◦Kt) = n(t2 +3t +2)+2t.

Corollary 3.15. For n≥ 3, if G = Cn and H = Kt , we have
CMβ

1 (Cn ◦Kt) = n(t2 +3t +2).

Theorem 3.16. For a connected graph G and H with n1,n2

vertices respectively, then CM2(G◦H)=CM2(G)+n1

(
∆2

G◦HE(H)−

∆G◦HM1(H)+M2(H)
)
+
(

n2∆G◦H −2E(H)
)

T R(G).

Proof. Using Proposition 3.1, we have

CM2(G◦H) = ∑
ab∈EG◦H

(cacb)

= ∑
ab∈E1

(cacb)+ ∑
ab∈E2

(cacb)+ ∑
ab∈E3

(cacb).

Let us calculate each summation separately, for the edge

set E1 we have ∑ab∈E1
(cacb)

= ∑
ab∈E1

(
(∆G◦H −dG′(a)+1)(∆G◦H −dG′(b)+1)

)
= ∑

ab∈E(G)

((∆G+n2−(dG(a)+n2)+1)

(∆G+n2−(dG(b)+n2)+1)

)
= ∑

ab∈E(G)

(
(∆G−dG(a)+1)(∆G−dG(b)+1)

)
= ∑

ab∈E(G)

(cacb)

= CM2(G).

Now for the edge set E2, we have ∑ab∈E2
(cacb)

= ∑
ab∈E2

(
(∆G◦H −dH i(a)+1)(∆G◦H −dH i(b)+1)

)
= n1 ∑

ab∈E(H)

((∆G+n2−(dH (a)+1)+1)

(∆G+n2−(dH (b)+1)+1)

)
= n1 ∑

ab∈E(H)

(
(∆G◦H −dH(a))(∆G◦H)−dH(b))

)
= n1

(
∑

ab∈E(H)

(
∆

2
G◦H −∆G◦H(dH(a)+dH(b))+dH(a)dH(b)

))
= n1

(
∑

ab∈E(H)

∆
2
G◦H −∆G◦H ∑

ab∈E(H)

(dH(a)+dH(b))+

∑
ab∈E(H)

dH(a)dH(b)
)

= n1

(
∆

2
G◦HE(H)−∆G◦HM1(H)+M2(H)

)
.

Finally for the edge set E3, we have ∑ab∈E3
(cacb)

= ∑
ab∈E3

a ∈H i, b∈G′

(
(∆G◦H −dH i(a)+1)(∆G◦H −dG′(b)+1)

)

= ∑
ab∈E3

a ∈V (H), b∈V (G)

((∆G+n2−(dH (a)+1)+1)

(∆G+n2−(dG(b)+n2)+1)

)

= ∑
ab∈E3

a ∈V (H), b∈V (G)

(
(∆G +n2−dH(a))(∆G−dG(b)+1)

)

= ∑
ab∈E3

a ∈V (H), b∈V (G)

(
(∆G +n2−dH(a))(cb)

)
= ∑

ab∈E3
a ∈V (H), b∈V (G)

cb∆G◦H − ∑
ab∈E3

a ∈V (H), b∈V (G)

dH(a)cb

= n2∆G◦H ∑
b∈V (G)

cb− ∑
a∈V (H)

dH(a) ∑
b∈V (G)

cb

=
(

n2∆G◦H − ∑
a∈V (H)

dH(a)
)

∑
b∈V (G)

cb

=
(

n2∆G◦H −2E(H)
)

T R(G).
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Hence, we have CM2(G◦H) =CM2(G)+n1

(
∆2

G◦HE(H)−

∆G◦HM1(H)+M2(H)
)
+
(

n2∆G◦H −2E(H)
)

T R(G).

As a direct consequence of Theorem 3.16 and using Propo-
sition 3.3. we have the following corollaries

Corollary 3.17. For n≥ 3, if G = Pn and H = K2, we have
CM2(Pn ◦K2) = 16n+3.

Corollary 3.18. For n≥ 3, if G = Pn and H = Kt , we have
CM2(Pn ◦Kt) = (n+1)+(n+2)(t +2)t.

Corollary 3.19. For n≥ 3, if G = Cn and H = Kt , we have
CM2(Cn ◦Kt) = n(t +1)2.

4. Conclusion
In this paper, we have obtained the exact value of the first

reverse Zagreb alpha index, first reverse Zagreb beta index and
second reverse Zagreb index of corona product of two simple
graphs and we have derived these indices for t-thorny graph
and bottleneck graph of path and cycle. It would be interesting
to study mathematical properties of these modified indices
and report their chemical relevance and formulas for some
important graph classes. In particular, some exact expressions
for the first reverse Zagreb alpha index, first reverse Zagreb
beta index and second reverse Zagreb index of other graph
operations (such as the composition, join, disjunction and
symmetric difference of graphs, bridge graphs and Kronecker
product of graphs) can be derived similarly.
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[12] D. J. Klein, T. Doslić, and D. Bonchev, Vertex-weightings
for distance moments and thorny graphs, Discrete Applied
Mathematics, 155(17)(2007), 2294–2302.
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