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Abstract

This paper is devoted to build the existence of mild solutions of impulsive neutral stochastic functional integrodiffer-

ential equations (INSFIDEs) with infinite delay at abstract phase space in Hilbert spaces. Under the uniform Lipschitz

condition, we obtain the solution for INSFIDEs. Sufficient conditions for the existence results are derived with the help

of Krasnoselski-Schaefer type fixed point theorem. An example is provided to illustrate the theory.
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1 Introduction

Stochastic differential equations are well known to model problems from many areas of science and engi-
neering, wherein, quite often the future state of such systems depends not only on the present state but also on
its past history (delay) leading to stochastic functional differential equations and it has played an important
role in many ways such as option pricing, forecast of the growth of population, etc., [32, 36, 37]. Random
differential and integral equations play an important role in characterizing numerous social, physical, biological
and engineering problems and for more details reader may refer [16, 25] and reference therein.

From time in memory, the theory of nonlinear functional differential or integrodifferential equations has
become an active area of investigation due to their application in many physical phenomena. Several authors
[3, 7, 8, 22] have investigated the integrodifferential equations with or without impulsive conditions in Banach
spaces. Recently impulsive neutral differential and integrodifferential equations have generated considerable
interest among the researchers [20].

Impulsive dynamical systems exhibit the various evolutionary process, including those in engineering, biol-
ogy and population dynamics, undergo abrupt changes in their state at certain moments between intervals of
continuous evolution. Since many evolution process, optimal control models in economics, stimulated neutral
networks, frequency- modulated systems and some motions of missiles or aircrafts are characterized by the
impulsive dynamical behavior. Nowadays, there has been increasing interest in the analysis and synthesis of
impulsive systems due to their significance both in theory and applications. Thus the theory of impulsive
differential equations has seen considerable development. For instance, see the monograph of Lakshmikantham
et al. [35], Bainov and Simeonov [6] and Somoilenko and Perestuk [44] for the ordinary impulsive differential
system and [26, 27, 28, 29, 41, 42] for the partial differential and partial functional differential equations with
impulses and for more details reader may refer [2, 3, 4, 10, 11, 18, 19, 39, 45] and reference therein. The
stochastic differential equations combined with impulsive conditions with unbounded delay have been studied
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by few authors, [1, 5, 12, 15, 24, 40] and the papers of [8, 13, 14, 31, 33, 43], where the numerous properties of
their solutions are studied.

In [9] Balachandran et al. studied the existence for impulsive neutral evolution integrodifferential equations
with infinite delay and Krasnoselski-Schaefer type fixed point theorem, whereas A. Lin et al. [34] proved
on neutral impulsive stochastic integrodifferential equations with infinite delay via fractional operators and
Sadovskii fixed point theorem, and Yong Ren et al. [40] established the controllability of impulsive neutral
stochastic functional differential inclusions with infinite delay and Dhage’s fixed point theorem. Recently, Jing
Cui et al. [23] derived nonlocal Cauchy problem for some stochastic integrodifferential equations in Hilbert
spaces and Leray-Schauder nonlinear alternative fixed point theorem.

Inspired by the above mentioned works [9, 23, 34, 40], in this paper, we are interested in studying the
existence of solutions of the following impulsive neutral stochastic differential equations with infinite delay;

d[x(t)− g(t, xt)] = A
[
x(t) + e

(
t, xt,

∫ t

0

h1(t, s, xs)ds
)]
dt+ f(t, xt)dt+ σ

(
t, xt,

∫ t

0

h2(t, s, xs)ds
)
dw(t),

t ∈ J := [0, b], t 6= tk, k = 1, 2, . . . ,m, (1.1)

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . ,m, (1.2)

x0 = φ ∈ Bh, t ∈ J0 = (−∞, 0], (1.3)

where A is the infinitesimal generator of an analytic semigroup of bounded linear operator {T (t)}t≥0 in the
Hilbert space H. The history xt : (−∞, 0] → H,xt(s) = x(t+ s), s ≤ 0, belong to an abstract phase space Bh,
which will be described axiomatically in Section 2. Let K be the another separable Hilbert space with inner
product (·, ·)K and the norm ‖‖K . Suppose {w(t) : t ≥ 0} is a given K- valued Brownian motion or Wiener
process with a finite trace nuclear covariance operator Q ≥ 0 defined on a complete probability space (Ω,F , P )
equipped with a normal filtration {Ft}t≥0, which generated by the Wiener process w. We now employing the
same notation ‖·‖ for the norm L(K;H), where L(K;H) denotes the space of all bounded linear operator from
K into H. Here g, f : J×Bh → H, e : J×Bh×H → H, h1, h2 : J×J×Bh → H and σ : J×Bh×H → LQ(K,H)
are given functions, where LQ(K,H) denotes the space of all Q-Hilbert-Schmidt operator from K into H which
will be defined in Section 2. The initial data φ = {φ(t) : −∞ < t ≤ 0} is an F0-adapted, Bh- valued random
variable independent of the Wiener process w with finite second moment. Furthermore, the fixed times tk
satisfies 0 = t0 < t1 < t2 < · · · < tm < b, x(t+k ) and x(t−k ) denote the right and left limits of x(t) at t = tk.
And ∆x(tk) = x(t+k )− x(t−k ) represents the jump in the state x at time tk, where Ik determines the size of the
jump.

The outline of the paper is as follows. We review some basic facts about semigroups, the theory of SDEs, as
preliminaries in Section 2. Then, Section 3 is devoted to the development of our main existence results and our
basic tool include Krasnoselski-Schaefer fixed point theorem. Finally, the paper is conclude with an example
to illustrate the obtained results.

2 Preliminaries

Let (K, ‖ · ‖K) and (H, ‖ · ‖H) be the two separable Hilbert space with inner product 〈·, ·〉K and 〈·, ·〉H ,
respectively. We denote by L(K,H) be the set of all linear bounded operator from K into H, equipped with
the usual operator norm ‖ · ‖. In this article, we use the symbol ‖ · ‖ to denote norms of operator regardless of
the space involved when no confusion possibly arises.

Let (Ω,F , P,H) be the complete probability space furnished with a complete family of right continuous
increasing σ- algebra {Ft, t ∈ J} satisfying Ft ⊂ F . An H- valued random variable is an F- measurable
function x(t) : Ω → H and a collection of random variables S = {x(t, ω) : Ω → H \ t ∈ J} is called stochastic
process. Usually we write x(t) instead of x(t, ω) and x(t) : J → H in the space of S. Let {ei}∞i=1 be a complete
orthonormal basis of K. Suppose that {w(t) : t ≥ 0} is a cylindrical K-valued wiener process with a finite
trace nuclear covariance operator Q ≥ 0, denote Tr(Q) =

∑∞
i=1 λi = λ < ∞, which satisfies that Qei = λiei.

So, actually ω(t) =
∑∞

i=1

√
λiωi(t)ei, where {ωi(t)}∞i=1 are mutually independent one-dimensional standard

Wiener processes. We assume that Ft = σ{ω(s) : 0 ≤ s ≤ t} is the σ-algebra generated by ω and Ft = F . Let
Ψ ∈ L(K,H) and define

‖Ψ‖2Q = Tr(ΨQΨ∗) =
∞∑

n=1

‖
√
λnΨen‖2.
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If ‖Ψ‖Q <∞, then Ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) denote the space of all Q-Hilbert-
Schmidt operators Ψ : K → H. The completion LQ(K,H) of L(K,H) with respect to the topology induced
by the norm ‖ · ‖Q where ‖Ψ‖2Q = 〈Ψ,Ψ〉 is a Hilbert space with the above norm topology.

The collections of all strongly measurable, square integrable, H-valued random variable, denoted by
L2(Ω,F , P,H) ≡ L2(Ω,H), is a Banach space equppied with norm ‖x(·)‖L2 = (E‖x(·, ω)‖2) 1

2 , where the
expectation, E is defined by Ex =

∫
Ω
x(ω)dP . Let C(J, L2(Ω,H)) be the Banach space of all continuous

map from J into L2(Ω,H) satisfying the condition supt∈J E‖x(t)‖2 < ∞. An important subspace is given by
L0

2(Ω,H) = {f ∈ L2(Ω,H) : f is F0 −measurable}.
Let A be the infinitesimal generator of an analytic semigroup T (t) in H. Suppose that 0 ∈ ρ(A) where ρ(A)

denotes the resolvent set of A and that semigroup T (·) is uniformly bounded that is to say, ‖T (t)‖ ≤ M1 for
some constant M1 ≥ 1 and for every t ≥ 0. Then for α ∈ (0, 1], it is possible to define the fractional power
operator ((−A)α) as a closed linear invertible operator on its domain D((−A)α). Furthermore, the subspace
D((−A)α) is dense in H and the expression

‖x‖α = ‖(−A)αx‖, x ∈ D((−A)α),

defines the norm on Hα = D((−A)α).
It should be pointed out that, to study of abstract impulsive functional differential systems with infinite

delay, the abstract phase space Bh(which is similar to that used in [46]) is very appropriate. Now we present
we present the abstract phase space Bh as given in [21].

Assume that h : (−∞, 0] → (0,+∞) is a continuous function with l =
∫ 0

−∞ h(s)ds < +∞. For any a > 0,
we define,

B = {ψ : [−a, 0] → X such that ψ(t) is bounded and measurable},

and equip the space B with the norm,

‖ψ‖[−a,0] = sup
s∈[−a,0]

‖ψ(s)‖, ∀ψ ∈ B.

Let us define,

Bh =
{
ψ : (−∞, 0] → H : (E‖ψ(θ)‖2) 1

2 is a bounded and measurable function on [−a, 0]

and
∫ 0

−∞
h(s) sup

s≤θ≤0
(E‖ψ(θ)‖2) 1

2 ds < +∞
}
.

If Bh is endowed with the norm,

‖ψ‖Bh
=
∫ 0

−∞
h(s) sup

s≤θ≤0
(E‖ψ(θ)‖2) 1

2 ds, for all ψ ∈ Bh,

then, it is easy to see that (Bh, ‖ · ‖Bh
) is a Banach space [30].

Now, we consider the space,

B′h =
{
x : (−∞, b] → H such that xk ∈ C(Jk,H) and there exist x(t+k )

and x(t−k )with x(t+k ) = x(t−k ), x0 = φ ∈ Bh, k = 1, 2, · · · ,m
}
,

where, xk is the restrictions of x to Jk = (tk, tk+1], k = 1, 2, · · · ,m. Set ‖ · ‖b be a seminorm in B′h defined by,

‖x‖b = ‖φ‖Bh
+ sup{(E‖x(s)‖2) 1

2 : s ∈ [0, b]}, x ∈ B′h.

Next, we recall some basic definitions and lemmas which are used throughout this paper.

Lemma 2.1. ([21]) Assume that x ∈ B′h, then for t ∈ J , xt ∈ Bh. Moreover,

l
(
E‖x(t)‖2

) 1
2 ≤ ‖xt‖Bh

≤ ‖x0‖Bh
+ l sup

s∈[0,t]

(
E‖x(s)‖2

) 1
2
,

where l =
∫ 0

−∞ h(t)dt < +∞.
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Lemma 2.2. ([17]) Let H be a Hilbert space and Φ1, Φ2 be the two operator on H such that

(a) Φ1 is a contraction and

(b) Φ2 is completely continuous.

Then either

(i) the operator equation Φ1x+ Φ2x = x has a solution or

(ii) the set G = {x ∈ H : λΦ1(x
λ ) + λΦ2x = x} is unbounded for λ ∈ (0, 1).

Lemma 2.3. ([27]) Let v(·), w(·) : [0, b] → [0,∞) be continuous function. If w(·) is nondecreasing and there
exist two constants θ ≥ 0 and 0 < α < 1 such that

v(t) ≤ w(t) + θ

∫ t

0

v(s)
(t− s)1−α

ds, t ∈ J,

then

v(t) ≤ eθn(Γ(α))ntnα/Γ(nα)
n−1∑
j=0

(θbα
α

)j

w(t),

for every t ∈ [0, b] and every n ∈ N such that nα > 1 and Γ(·) is the Gamma function.

Lemma 2.4. ([38]) Suppose the following properties are satisfied.

(i) Let 0 ≤ α ≤ 1. Then Hα is a banach space.

(ii) If 0 < β < α ≤ 1, then Hα ⊂ Hβ and the imbedding is compact whenever the resolvent operator of A is
compact.

(iii) For every 0 < α ≤ 1, there exists a positive constant Mα > 0 such that;

‖(−A)αT (t)‖ ≤ Mα

tα
, for all 0 < t ≤ b. (2.4)

Definition 2.1. A map F : J × Bh → H is said to be L2- Caratheodory if

(i) t→ F (t, v) is a measurable for each v ∈ Bh;

(ii) v → F (t, v) is continuous for almost all t ∈ J ;

(iii) for each q > 0, there exist hq ∈ L1(J,R+) such that

‖F (t, v)‖2 = sup
f∈F (t,v)

E‖f‖2 ≤ hq(t), forall ‖v‖2Bh
≤ q and for a.e. t ∈ J.

Definition 2.2. An Ft-adapted stochastic process x : (−∞, b] → H is called mild solution of the system (1.1)-

(1.3) if x0 = φ ∈ Bh satisfying x0 ∈ L0
2(Ω,H), for each s ∈ [0, b) the function AT (t−s)e

(
s, xs,

∫ s

0

h1(s, τ, xτ )dτ
)

is integrable and the following conditions hold:

(i) {xt : t ∈ J} is Bh valued and the restrictions of x(·) to the interval (tk, tk+1], k = 1, 2, . . . ,m is continuous;

(ii) ∆x(tk) = Ik(xtk
), k = 1, 2, . . . ,m;

(iii) for each t ∈ J, x(t) satisfies the following integral equation

x(t) = T (t)[φ(0)− g(0, φ)] + g(t, xt) +
∫ t

0

T (t− s)f(s, xs)ds+
∫ t

0

AT (t− s)g(s, xs)ds

+
∫ t

0

AT (t− s)e
(
s, xs,

∫ s

0

h1(s, τ, xτ )dτ
)
ds+

∫ t

0

T (t− s)σ
(
s, xs,

∫ s

0

h2(s, τ, xτ )dτ
)
dw(s) (2.5)

+
∑

0<tk<t

T (t− tk)Ik(x(t−k )), t ∈ J.
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3 Existence Results

In this section, we present and prove the existence results for the problem (1.1) − (1.3). In order to prove
the main theorem of this section, we list the following hypotheses:

(H1) The function f : J × Bh → X satisfies the following coditions:

(i) For x : (−∞, b] → H such that x0 ∈ Bh and x|J ∈ B′h, the function t → f(t, xt) is strongly
measurable. i.e., f(., xt) : J → H is a strongly measurable.

(ii) For each t ∈ J , the function f(t, .) : Bh → H is continuous.

(iii) There exists integrable function m(t) : J → [0,∞) and a continuous nondecreasing function Ω :
[0,∞) → (0,∞) such that,

E‖f(t, ψ)‖2 ≤ m(t)Ω1(E‖ψ‖2Bh
); (t, ψ) ∈ J × Bh.

(H2) A is the infinitesimal generator of a compact analytic semigroup and 0 ∈ ρ(A) such that

‖T (t)‖2 ≤M1, for all t ≥ 0 and ‖(−A)1−βT (t− s)‖2 ≤
M2

1−β

(t− s)2(1−β)
0 ≤ t ≤ b.

(H3) There exists a constant Mh1 ≥ 0, such that

∥∥∫ t

0

[h1(t, s, x)− h1(t, s, y)]
∥∥2 ≤Mh1‖x− y‖2Bh

.

(H4)) There exists constants 0 < β < 1, such that e is Hβ-valued, (−A)βe : J × Bh → H is completely
continuous,

(i) The function e : J × Bh × H → H for t ∈ J , x1, x2 ∈ Bh and y1, y2 ∈ H such that the function Me

satisfies the Lipschitz condition:

E‖(−A)βe(t, x1, y1)− (−A)βe(t, x2, y2)‖2 ≤Me[‖x1 − x2‖2Bh
+ ‖y1 − y2‖2].

Let c̃1 = b supt∈J ‖h1(t, s, 0)‖2, c̃2 = ‖(−A)β‖2 supt∈J ‖e(t, 0, 0)‖2, ‖(−A)−β‖2 = M0.

(ii) There exist constants 0 < β < 1, C0, c1, c2,Mg such that g is Hβ-valued, (−A)βg is continuous, and

E‖(−A)βg(t, x)‖2 ≤ c1‖x‖2Bh
+ c2, t ∈ J, x ∈ Bh,

E‖(−A)βg(t, x1)− (−A)βg(t, x2)‖2 ≤Mg‖x− y‖2Bh
, t ∈ J, x1, x2 ∈ Bh,with

C0 ≡ l2
{
MgM0 +

[
Mg +Me(1 +Mh1)

] (M1−βb
β)2

2β − 1

}
< 1.

(H5) There exist constants dk such that ‖Ik(x)‖2 ≤ dk, k= 1, 2, . . . , m, for each x ∈ H.

(H6) Foe each (t, s) ∈ J × J , the function h2(t, s, ·) : Bh → H is continuous for each x ∈ Bh, the function
h2(·, ·, x) : J × J → H is strongly measurable. There exists an integrable function m : J → [0,∞) and a
constant γ ≥ 0, such that

‖h2(t, s, x)‖2 ≤ γm(s)Ω3(‖x‖2Bh
),

where Ω3 : [0,∞) → (0,∞) is a continuous nondecreasing functions. Let us assume that the finite bound
of
∫ t

0
γm(s)ds is L0.

(H7) The function σ : J × Bh ×H → H satisfies the following Caratheodory conditions:

(i) t→ σ(t, x, y) is measurable for each (x, y) ∈ Bh ×H,

(ii) (x, y) → σ(t, x, y) is continuous for almost all t ∈ J .
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(H8) E‖σ(t, x, y)‖2 ≤ p(t)Ω2(‖x‖2Bh
+ ‖y‖2) for almost all t ∈ J and all x ∈ Bh, y ∈ H, where p ∈ L2(J,R+)

and Ω2 : R+ → (0,∞) is continuous and increasing with

m̂(s) ≤
∫ ∞

B0K1

ds

Ω1(s) + Ω2(s) + Ω3(s)
, where

N0 = 2l2
{

64‖(−A)−β‖2c1
}
, (3.6)

N1 = 2‖φ‖2Bh
+ 2l2F , (3.7)

N2 = 128l2bM2
1−β(c1 +Me(1 +Mh1)),

m̂(t) = max[B0K3m(t), B0K4p(t), γm(t)],

B0 = eKn
2 (Γ(2β−1))nbn2β−1/Γ(n(2β−1)

n−1∑
j=0

(K2b
2β−1

2β − 1

)j

,

N3 = 128l2M1, N4 = 128l2M1Tr(Q), (3.8)

K1 =
N1

(1−N0)
, K2 =

N2

(1−N0)
, K3 =

N3

(1−N0)
, K4 =

N4

(1−N0)
, (3.9)

F = 64M1‖φ‖2Bh
+ 64‖(−A)−β‖2M1(c1‖φ‖2Bh

+ c2) + 64‖(−A)−β‖2Mgc2

+ 64
M2

1−βc2b
2β

2β − 1
+ 64(Mec̃1 + c̃2)

M2
1−βb

2β

2β − 1
+ 64M1

m∑
k=1

dk. (3.10)

We consider the operator Φ : B′h → B′h defined by

Φx(t) =



φ(t), t ∈ (−∞, 0],

T (t)[φ(0)− g(0, φ)] + g(t, xt) +
∫ t

0

T (t− s)f(s, xs)ds

+
∫ t

0

AT (t− s)g(s, xs)ds

+
∫ t

0

AT (t− s)e
(
s, xs,

∫ s

0

h1(s, τ, xτ )dτ
)
ds

+
∫ t

0

T (t− s)σ
(
s, xs,

∫ s

0

h2(s, τ, xτ )dτ
)
dw(s)

+
∑

0<tk<t T (t− tk)Ik(x(t−k )), t ∈ J.

(3.11)

From, hypothesis (H3)− (H4) and Lemma 2.4, the following inequality holds:

‖AT (t− s)e(s, xs,

∫ t

0

h1(s, τ, xτ )dτ)‖2 ≤ ‖(−A)1−βT (t− s)(−A)βe(s, xs,

∫ t

0

h1(s, τ, xτ )dτ)‖2

≤
M2

1−β

(t− s)2(1−β)

[
Me(1 +Mh1)‖xs‖2Bh

+Mec̃1 + c̃2].

Then, from the Bochner theorem, it follows that AT (t− s)e(s, xs,

∫ t

0

h1(s, τ, xτ )dτ) is integrable on [0, t). For

φ ∈ Bh, we defined φ̃ by

φ̃(t) =

{
φ(t), t ∈ (−∞, 0],

T (t)φ(0), t ∈ J,

and then, φ̃ ∈ B′h. Let x(t) = y(t) + φ̃(t), −∞ < t ≤ b. It is easy to see that x satisfies (2.5) if and only if y
satisfies y0 = 0 and

y(t) = −T (t)g(0, φ) + g(t, yt + φ̃t) +
∫ t

0

T (t− s)f(s, ys + φ̃s)ds

+
∫ t

0

AT (t− s)g(s, ys + φ̃s)ds

+
∫ t

0

AT (t− s)e
(
s, ys + φ̃t,

∫ s

0

h1(s, τ, yτ + φ̃τ )dτ
)
ds
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+
∫ t

0

T (t− s)σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃)dτ
)
dw(s)

+
∑

0<tk<t

T (t− tk)Ik(y(t−k ) + φ̃(t−k )).

Let B′′h = {y ∈ B′h : y0 = 0 ∈ Bh}. For any y ∈ B′′h, we have

‖y‖b = ‖y0‖Bh
+ sup

0≤s≤b
(E‖y(s)‖2) 1

2 = sup
0≤s≤b

(E‖y(s)‖2) 1
2 .

Thus, (B′′h, ‖ · ‖b) is a Banach space. Set

Bq = {y ∈ B′′h : ‖y‖b ≤ q} for some q ≥ 0,

then Bq ⊆ B′′h is uniformly bounded. Moreover, for y ∈ Bq, from Lemma 2.1, we have

E(‖yt + φ̃t‖2Bh
) ≤ 2(‖yt‖2Bh

+ φ̃t‖2Bh
)

≤ 2l2 sup
0≤s≤t

E‖y(s)‖2 + 2‖y0‖2Bh
+ 2l2 sup

0≤s≤t
E‖φ̃(s)‖2 + 2‖φ̃0‖2Bh

≤ 2l2(q2 +M1E‖φ(0)‖2) + 2‖φ‖2Bh

= q′. (3.12)

Define the operator Φ̃ : B′′h → B′′h by

Φ̃y(t) =



0, t ∈ (−∞, 0],

−T (t)g(0, φ) + g(t, yt + φ̃t) +
∫ t

0

T (t− s)f(s, ys + φ̃s)ds

+
∫ t

0

AT (t− s)g(s, ys + φ̃s)ds

+
∫ t

0

AT (t− s)e
(
s, ys + φ̃t,

∫ s

0

h1(s, τ, yτ + φ̃τ )dτ
)
ds

+
∫ t

0

T (t− s)σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃)dτ
)
dw(s)

+
∑

0<tk<t T (t− tk)Ik(y(t−k ) + φ̃(t−k )), t ∈ J.

Now, we decompose Φ̃ as Φ̃1 + Φ̃2 where

Φ̃1y(t) = −T (t)g(0, φ) + g(t, yt + φ̃t) +
∫ t

0

AT (t− s)g(s, ys + φ̃s)ds

+
∫ t

0

AT (t− s)e
(
s, ys + φ̃s,

∫ s

0

h1(s, τ, yτ + φ̃τ )dτ
)
ds, t ∈ J,

Φ̃2y(t) =
∫ t

0

T (t− s)σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, xτ + φ̃)dτ
)
dw(s) +

∫ t

0

T (t− s)f(s, ys + φ̃s)ds

+
∑

0<tk<t

T (t− tk)Ik(y(t−k ) + φ̃(t−k )), t ∈ J.

Obviously, the operator Φ having a fixed point is equivalent to Φ̃ having one. Now, we shall show that the
operator Φ̃1, Φ̃2 satisfy all the conditions of Lemma 2.2.

Theorem 3.1. If assumption (H1)− (H8) hold, then Φ̃1 is a contraction and Φ̃2 is completely continuous.

Proof. Let u, v ∈ B′′h. Then, we have to show that Φ̃1 is a contraction on B′′h, we have

E‖Φ̃1u(t)− Φ̃1v(t)‖2

≤ E‖g(t, ut + φ̃t)− g(t, vt + φ̃t)‖2 + E‖
∫ t

0

AT (t− s)
[
g(s, us + φ̃s)− g(s, vs + φ̃s)

]
ds‖2

+ E‖
∫ t

0

AT (t− s)
[
e
(
s, us + φ̃s,

∫ s

0

h1(s, τ, uτ + φ̃τ )dτ
)
− e
(
s, vs + φ̃s,

∫ s

0

h1(s, τ, vτ + φ̃τ )dτ
)]
ds‖2
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≤ 16
{
E‖g(t, ut + φ̃t)− g(t, vt + φ̃t)‖2 + E‖

∫ t

0

AT (t− s)[g(s, us + φ̃s)− g(s, vs + φ̃s)]ds‖2

+ E‖
∫ t

0

AT (t− s)
[
e
(
s, us + φ̃s,

∫ s

0

h1(s, τ, uτ + φ̃τ )dτ
)
− e
(
s, vs + φ̃s,

∫ s

0

h1(s, τ, vτ + φ̃τ )dτ
)]
ds‖2

}
≤ 16

{
Mg‖(−A)−β‖2E‖ut − vt‖2Bh

+MgE‖ut − vt‖2Bh

(M1−βb
β)2

2β − 1

+
(M1−βb

β)2

2β − 1
Me[E‖ut − vt‖2Bh

+Mh1E‖ut − vt‖2Bh
]
}

≤ 16
{
MgM0 +

[
Mg +Me(1 +Mh1)

] (M1−βb
β)2

2β − 1

}
E‖ut − vt‖2Bh

≤ 16
{
MgM0 +

[
Mg +Me(1 +Mh1)

] (M1−βb
β)2

2β − 1

}[
2l2 sup

s∈[0,t]

E‖u(s)− v(s)‖2 + 2‖u0‖2Bh
+ 2‖v0‖2Bh

]
≤ 32l2

{
MgM0 +

[
Mg +Me(1 +Mh1)

] (M1−βb
β)2

2β − 1

}
E‖u(s)− v(s)‖2

≤ sup
s∈[0,b]

C0E‖u(s)− v(s)‖2.

Since, ‖u0‖2Bh
= 0, ‖v0‖2Bh

= 0. Taking the supremum over t,

‖Φ̃1u− Φ̃1v‖2 ≤ C0‖u− v‖2,

and so, by assumption 0 ≤ C0 ≤ 1, we see that Φ̃1 is a contraction on B′′h.
Now, we show that the operator Φ̃2 is completely continuous. First, we show that Φ̃2 maps bounded sets

into bounded sets in B′′h. It is enough to show that there exists a positive constants r such that for each
y ∈ Bq = {y ∈ B′′h : ‖y‖2b ≤ q} one has E‖Φ̃2y‖2b ≤ r. Now for t ∈ J ,

Φ̃2y(t) =
∫ t

0

T (t− s)f(s, ys + φ̃s)ds+
∫ t

0

T (t− s)σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)

+
∑

0<tk<t

T (t− tk)Ik(y(t−k ) + φ̃(t−k )), t ∈ J.

Therefore, by the assumption, for each t ∈ J , we have

E‖Φ̃2y(t)‖2 ≤ 9M1

∫ b

0

m(s)Ω1(E‖ys + φ̃s‖2Bh
)ds+ 9M1Tr(Q)

∫ t

0

p(s)Ω2

(
E‖ys + φ̃s‖2Bh

+
∫ s

0

γm(τ)Ω3(E‖yτ + φ̃τ‖2Bh
)dτ
)
ds+ 9M1

m∑
k=1

dk

≤ 9M1Ω1(q′)
∫ b

0

m(s)ds+ 9M1Tr(Q)Ω2(q′ + L0Ω3(q′))
∫ b

0

p(s)ds+ 9M1

m∑
k=1

dk

= r.

Then, for each y ∈ Φ̃2y(Bq), we have ‖Φ̃2y‖2b ≤ r.
Next, we show that Φ̃2 maps bounded set into equicontinuous sets of B′′h.

Let 0 < τ1 < τ2 ≤ b. Then for each y ∈ Bq = {y ∈ B′′h : ‖y‖b ≤ q} and y ∈ Φ̃2y. Then for each t ∈ J , we have

Φ̃2y(t) =
∫ t

0

T (t− s)f(s, ys + φ̃s)ds+
∫ t

0

T (t− s)σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)

+
∑

0<tk<t

T (t− tk)Ik(y(t−k ) + φ̃(t−k )), t ∈ J.

Let τ1, τ1 ∈ J − {t1, t2, · · · , tm}. Then, we have

E‖Φ̃2y(τ2)− Φ̃2y(τ1)‖2

≤ 9E‖
∫ τ1−ε

0

[T (τ2 − s)− T (τ1 − s)]f(s, ys + φ̃s)ds‖2
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+ 9E‖
∫ τ1

τ1−ε

[T (τ2 − s)− T (τ1 − s)]f(s, ys + φ̃s)ds‖2

+ 9E‖
∫ τ2

τ1

[T (τ2 − s)]f(s, ys + φ̃s)ds‖2

+ 9E‖
∫ τ1−ε

0

[T (τ2 − s)− T (τ1 − s)]σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)‖2

+ 9E‖
∫ τ1

τ1−ε

[T (τ2 − s)− T (τ1 − s)]σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)‖2

+ 9E‖
∫ τ2

τ1

[T (τ2 − s)]σ
(
s, ys + φ̃s,

∫ s

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)‖2

+ 9E‖
∑

0<tk<τ1

‖[T (τ2 − tk)− T (τ1 − tk)]Ik(y(t−k ) + φ̃(t−k ))‖2

+ 9E‖
∑

τ1≤tk<τ2

‖T (τ2 − tk)Ik(y(t−k ) + φ̃(t−k ))‖2

≤ 9
∫ τ1−ε

0

E‖T (τ2 − s)− T (τ1 − s)‖2hq′(s) + 9
∫ τ1

τ1−ε

E‖T (τ2 − s)− T (τ1 − s)‖2hq′(s)ds

+ 9
∫ τ2

τ1

E‖T (τ2 − s)‖2hq′(s)ds+ 9bTr(Q)
∫ τ1−ε

0

E‖T (τ2 − s)− T (τ1 − s)‖2p(s)Ω2(q′)ds

+ 9bTr(Q)
∫ τ1

τ1−ε

E‖T (τ2 − s)− T (τ1 − s)‖2p(s)Ω2(q′)ds

+ 9bTr(Q)
∫ τ2

τ1

E‖T (τ2 − s)‖2p(s)Ω2(q′)ds+ 9
∑

0<tk<τ1

E‖T (τ2 − tk)− T (τ1 − tk)‖2dk

+ 9M1

∑
τ1≤tk<τ2

dk.

The right-hand side of the above inequality is independent of y ∈ Bq tends to zero as τ2− τ1 → 0, and for ε
sufficiently small, since the compactness of {T (t)}t≥0 implies the continuity in the uniform operator topology.
Thus the set {Φ̃2y : y ∈ Bq} is equicontinuous. Here we consider only the case 0 < τ1 ≤ τ2 ≤ b, since the other
cases τ1 ≤ τ2 ≤ 0 0r τ1 ≤ 0 ≤ τ2 ≤ b are very simple.

Next, we show that Φ̃2 : B′′h → B′′h is continuous.
Let {y(n)(t)}∞n=0 ⊆ B′′h, with y(n) → y in B′′h. Then, there is a number q ≥ 0 such that |y(n)(t)| ≤ q for all

n and a.e. t ∈ J , so y(n) ∈ Bq and y ∈ Bq. Using (3.12), we have ‖y(n)
t + φ̃t‖2Bh

≤ q′, t ∈ J . By Definition 2.1,
(H8), Ik, k = 1, 2, · · · ,m, is continuous

f(t, y(n)
t + φ̃t) → f(t, yt + φ̃t),

σ
(
t, y

(n)
t + φ̃t,

∫ t

0

h2(s, τ, y(n)
τ + φ̃τ )dτ

)
→ σ

(
t, yt + φ̃t,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
,

for each t ∈ J , and since

E‖f(t, y(n)
t + φ̃t)− f(t, yt + φ̃t)‖2 ≤ 2αq′(t),

E‖σ
(
t, y

(n)
t + φ̃t,

∫ t

0

h2(s, τ, y(n)
τ + φ̃τ )dτ

)
− σ

(
t, yt + φ̃t,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
‖2 ≤ 2p(t)Ω2(q′).

By the dominated convergence theorem that,

E‖Φ̃2y
(n) − Φ̃2y‖2 = sup

t∈J
E
∥∥∥∫ t

0

T (t− s)
[
σ
(
t, y(n)

s + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)

− σ
(
t, ys + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)]
dw(s)

+
∫ t

0

T (t− s)
[
f(t, y(n)

s + φ̃s)− f(t, ys + φ̃s)
]
ds

+
∑

0≤tk<t

T (t− tk)
[
Ik(yn(t−k ) + φ̃(t−k ))− Ik(y(t−k ) + φ̃(t−k ))

]∥∥∥2
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≤M1Tr(Q)
∫ t

0

E‖σ
(
t, y(n)

s + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)

− σ
(
t, ys + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
‖2ds

+M1

∫ t

0

E‖f(t, y(n)
s + φ̃s)− f(t, ys + φ̃s)‖2ds

+
∑

0≤tk<t

‖T (t− tk)‖2E‖Ik(yn(t−k ) + φ̃(t−k ))− Ik(y(t−k ) + φ̃(t−k ))‖2

→ 0 as n→∞.

Thus, Φ̃2 is continuous.
Next, we show that Φ̃2 maps Bq into a precompact set in H. Let 0 < t ≤ b be fixed and ε be a real number

satisfying 0 < ε ≤ t. For y ∈ Bq, we define

(Φ̃ε
2y)(t) =

∫ t−ε

0

T (t− s)σ
(
t, ys + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)

+
∫ t−ε

0

T (t− s)f(t, ys + φ̃s)ds+
∑

0≤tk<t−ε

T (t− tk)Ik(y(t−k ) + φ̃(t−k ))

= T (ε)
∫ t−ε

0

T (t− s− ε)σ
(
t, ys + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
dw(s)

+ T (ε)
∫ t−ε

0

T (t− s− ε)f(t, ys + φ̃s)ds

+ T (ε)
∑

0≤tk<t−ε

T (t− tk − ε)Ik(y(t−k ) + φ̃(t−k )).

Since T (t) is a compact operator, the set Vε(t) = {(Φ̃ε
2y)(t) : y ∈ Bq} is relatively compact in H for every ε,

for every 0 < ε < t. Moreover, for each y ∈ Bq, we have

E‖(Φ̃2y)(t)− (Φ̃ε
2y)(t)‖2

≤
∫ t

t−ε

‖T (t− s)‖2E‖σ
(
t, ys + φ̃s,

∫ t

0

h2(s, τ, yτ + φ̃τ )dτ
)
‖2dw(s)

+
∫ t

t−ε

‖T (t− s)‖2E‖f(t, ys + φ̃s)‖2ds+
∑

t−ε≤tk<t

‖T (t− tk)‖2E‖Ik(y(t−k ) + φ̃(t−k ))‖2

≤M1Tr(Q)
∫ t

t−ε

p(s)Ω2(q′)d(s) +M1

∫ t

t−ε

αq′(s)ds+M1

∑
t−ε≤tk<t

dk.

Therefore,

E‖(Φ̃2y)(t)− (Φ̃ε
2y)(t)‖2 → 0, as ε→ 0.

and there are precompact sets arbitrarily close to the set {(Φ̃2y)(t) : y ∈ Bq}. Thus, the set {(Φ̃ε
2y)(t) : y ∈ Bq}

is precompact in H. Therefore, from Arzela- Ascoli theorem, the operator Φ̃2 is completely continuous.
In order to study the existence results for the problem (1.1)-(1.3), we consider the following nonlinear

operator equation,

x(t) = λT (t)[φ(0)− g(0, φ)] + λg(t, xt) + λ

∫ t

0

AT (t− s)g(s, xs)ds

+ λ

∫ t

0

T (t− s)f(s, xs)ds+ λ

∫ t

0

AT (t− s)e(s, xs,

∫ s

0

h1(s, τ, xτ )dτ)ds

+ λ

∫ t

0

T (t− s)σ(s, xs,

∫ s

0

h2(s, τ, xτ )dτ)dw(s)

+ λ
∑

0<tk<t

T (t− tk)Ik(x(t−k )), t ∈ J, (3.13)

for some 0 < λ < 1. The following lemma proves that an a priori bound exists for the solution of the above
equation.



36 C. Parthasarathy et al. / Existence results for ...

Theorem 3.2. If hypothesis (H1) − (H8) are satisfied, then there exist an a priori bound K ≥ 0 such that
‖xt‖2Bh

≤ K, t ∈ J , where K depends only on b and on the function Ω1,Ω2, m̂ and Ω3.

Proof. From (3.13), we have

E‖x(t)‖2 ≤ 64M1‖φ‖2Bh
+ 64‖(−A)−β‖2M1(c1‖φ‖2Bh

+ c2)

+ 64‖(−A)‖−β‖2Mg(c1‖xt‖2Bh
+ c2) + 64

[∫ t

0

M2
1−βbc1

(t− s)2(1−β)
‖xs‖2Bh

ds+
M2

1−βc2b
2β

2β − 1

]

+ 64M1

∫ t

0

m(s)Ω1(‖xs‖2Bh
)ds+ 64(Mec̃1 + c̃2)

M2
1−βb

2β

2β − 1

+ 64bM2
1−βMe(1 +Mh1)

∫ t

0

‖xs‖2Bh

(t− s)2(1−β)
ds

+ 64M1Tr(Q)
∫ t

0

p(s)Ω2

(
‖xs‖2Bh

+
∫ s

0

γm(τ)Ω3(‖xτ‖2)dτ
)
ds+ 64 M1

m∑
k=1

dk.

Now, we consider the function µ defined by

µ(t) = sup
0≤s≤t

E‖x(s)‖2, 0 ≤ t ≤ b.

From, Lemma 2.1 and the above inequality, we have

E‖x(t)‖2 = 2‖φ‖2Bh
+ 2l2 sup

0≤s≤t
(E‖x(s)‖2).

Therefore, we get

µ(t) ≤ 2‖φ‖2Bh
+ 2l2

{
F + 64‖(−A)−β‖2c1µ(t) + 64bM2

1−βc1

∫ t

0

µ(s)
(t− s)2(1−β)

ds

+ 64 M1

∫ t

0

m(s)Ω1µ(s)ds+ 64‖(−A)−β‖2Me(1 +Mh1)µ(t)

+ 64bM2
1−βMe(1 +Mh1)

∫ t

0

µ(s)
(t− s)2(1−β)

ds

+ 64 M1Tr(Q)
∫ t

0

p(s)Ω2

(
µ(s) +

∫ s

0

γm(τ)Ω3(µ(τ))dτ
)
ds
}
,

where F is given in (3.10). Thus, we have

µ(t) ≤ K1 +K2

∫ t

0

µ(s)
(t− s)2(1−β)

ds+K3

∫ t

0

m(s)Ω1µ(s)ds

+K4

∫ t

0

p(s)Ω2

(
µ(s) +

∫ s

0

γm(τ)Ω3(µ(τ))dτ
)
ds,

where K1,K2,K3 are given in (3.9). By Lemma 2.3, we have

µ(t) ≤ B0

(
K1 +K3

∫ t

0

m(s)Ω1µ(s)ds

+K4

∫ t

0

p(s)Ω2

(
µ(s) +

∫ s

0

γm(τ)Ω3µ(τ)dτ
)
ds

)
,

where

B0 = eKn
2 (Γ(2β−1))nbn2β−1/Γ(n(2β−1)

n−1∑
j=0

(K2b
2β−1

2β − 1

)j

.

Let us take the right-hand side of the above inequality as v(t). Then v(0) = B0K1, µ(t) ≤ v(t), 0 ≤ t ≤ b, and

v′(t) ≤ B0

[
K3m(t)Ω1µ(t) +K4p(t)Ω2

(
µ(t) +

∫ t

0

γm(s)Ω3(µ(s))ds
)]
.
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Since, ψ is nondecreasing,

v′(t) ≤ B0

[
K3m(t)Ω1v(t) +K4p(t)Ω2

(
v(t) +

∫ t

0

γm(s)Ω3(v(s))ds
)]
.

Let w(t) = v(t) +
∫ t

0

γm(s)Ω3(v(s))ds. Then w(0) = v(0) and v(t) ≤ w(t).

w′(t) = v′(t) + γm(t)Ω3(v(t))

≤ B0K3m(t)Ω1(w(t)) +B0K4p(t)Ω2(w(t)) + γm(t)Ω3(w(t))

≤ m̂(t)[Ω1(w(t)) + Ω2(w(t)) + Ω3(w(t))].

This implies that, ∫ w(t)

w(0)

ds

Ω1(s) + Ω2(s) + Ω3(s)
≤
∫ b

0

m̂(s) ≤
∫ ∞

B0K1

ds

Ω1(s) + Ω2(s) + Ω3(s)
.

This implies that v(t) <∞. So the inequality shows that there is a constant K such that v(t) ≤ K, t ∈ J . So,
‖xt‖2Bh

≤ µ(t) ≤ v(t) ≤ K, t ∈ J , where K depends only on b and on the functions Ω1,Ω2,Ω3 and m̂.

Theorem 3.3. Assume that the hypotheses (H1)− (H8) hold. Then problem (1.1)-(1.3) has at least one mild
solution on J .

Proof. Let us take the set,

G(Φ̃) = {y ∈ B′′h : y = λΦ̃1(
y

x
) + λΦ̃2y, for some λ ∈ (0, 1)}. (3.14)

Then, for any y ∈ G(Φ̃), we have by Theorem 3.2 that ‖xt‖2Bh
≤ K, t ∈ J , and hence

‖y‖2b = ‖y0‖2Bh
+ sup{E‖y(t)‖2 : 0 ≤ t ≤ b}

= sup{E‖y(t)‖2 : 0 ≤ t ≤ b}

≤ sup{E‖x(t)‖2 : 0 ≤ t ≤ b}+ sup{‖φ̃(t)‖2 : 0 ≤ t ≤ b}
≤ sup{l−‖xt‖2Bh

: 0 ≤ t ≤ b}+ sup{‖T (t)φ(0)‖2 : 0 ≤ t ≤ b}
≤ l−K +M1‖φ(0)‖2.

This implies that G is bounded on J. Consequently, by the Krasnoselski-Schaefer type fixed point theorem the
operator Φ̃ has a fixed point y∗ ∈ B′′h. Since x(t) = y∗(t) + φ̃(t), t ∈ (−∞, b], x is a fixed point of the operator
Φ which is a mild solution of problem (1.1)-(1.3).

4 Example

In this, we present the application for the problem (1.1)-(1.3), we consider the following impulsive neutral
stochastic partial integrodifferential equation of the form

∂

∂t

[
v(t, y)−

∫ t

−∞

∫ π

0

a(s− t, η, y)dηds
]

=
∂2

∂y2

[
v(t, y) +

∫ t

0

a1(t, y, s− t)P1(v(s, y))ds

+
∫ t

0

∫ s

−∞
k(s− τ)P2(v(τ, y))dτ

]
ds+ k0(y)v(t, y) +

∫ t

0

a2(t, y, s− t)Q1(v(s, y))ds

+
∫ t

0

∫ s

−∞
k(s− τ)Q2(v(τ, y))dτdβ(s), y ∈ [0, π], t ∈ [0, b], t 6= tk. (4.1)

v(t, 0) = v(t, π) = 0, t ≥ 0, (4.2)

v(t, y) = φ(t, y), t ∈ (−∞, 0], y ∈ [0, π], (4.3)

∆v(ti)(y) =
∫ ti

−∞
qi(ti − s)v(s, y)ds, y ∈ [0, π], (4.4)
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where 0 < t1 < · · · < tn < b are prefixed numbers and ψ ∈ Bh and β(t) is a one-dimensional standard Wiener
process. Let us take H = L2[0, π] with the norm ‖ · ‖. Define A : H → H by A(t)z = −a(t, y)z′′ with domain,

D(A) = {z(·) ∈ H : z, z′, are absolutely continuous, z′′ ∈ H, z(0) = z(π) = 0},

Then

Az =
∞∑

n=1

n2 〈z, zn〉 zn, z ∈ D(A),

where zn(s) =
√

2
π sin(ns), n = 1, 2, · · · is the orthonormal set of eigenvector of A. It is well known that A is

the infinitesimal generator of an analytic semigroup T (t), t ≥ 0 in H and is given by

T (t)z =
∞∑

n=1

exp−n2t 〈z, zn〉 zn, z ∈ H.

For every z ∈ H, (−A)
1
2 z =

∑∞
n=1

1
n 〈z, zn〉 zn, and ‖(−A)

1
2 ‖2 = 1. The operator (−A)

1
2 is given by

(−A)
1
2 z =

∞∑
n=1

n 〈z, zn〉 zn,

on the space D((−A)
1
2 ) = {z ∈ H :

∑∞
n=1 n 〈z, zn〉 zn ∈ H}. Since, the analytic semigroup T (t) is compact

[38], there exists a constant M1 ≥ 0 such that ‖T (t‖2 ≤M1 and satisfies (H2).

Now, we give a special Bh- space. Let h(s) = e2s, s ≤ 0, then l =
∫ 0

−∞
h(s)ds =

1
2

and let

‖φ‖Bh
=
∫ 0

−∞
h(s) sup

s≤θ≤0
E
(
‖φ(θ)‖2

) 1
2
ds.

It follows from [30], that (Bh, ‖ · ‖Bh
) is a Banach space.

Hence, for (t, φ) ∈ [0, b]× Bh, where φ(θ)(y) = φ(θ, y), (θ, y) ∈ (−∞, 0]× [0, π]. Set

v(t)(y) = v(t, y), g(t, φ)y =
∫ 0

−∞

∫ φ

0

a(s− t, η, y)dηds,

f(t, φ)(y) = k0(y)φ(t, y),

b(t, φ,B1φ)(y) =
∫ 0

−∞
a1(t, y, θ)P1(φ(θ)(y))dθ +B1φ(y),

and

σ(t, φ,B2φ)(y)) =
∫ 0

−∞
a2(t, y, θ)Q1(φ(θ)(y))dθ +B2φ(y),

where

B1φ(y) =
∫ t

0

∫ 0

−∞
k(s− θ)P2(φ(θ)(y))dθds,

B2φ(y) =
∫ t

0

∫ 0

−∞
k(s− θ)Q2(φ(θ)(y))dθdβ(s).

Then, the above equation can be written in the abstract form as system (1.1)-(1.3). The function a1, k and P1, P2

are assumed to satisfy the conditions of [27] and qi : R→ R are continuous and di =
∫ 0

−∞
h(s)q2i (s)ds <∞ for

i = 1, 2, · · · , n. Moreover, e([0, b]×Bh×L2) ⊆ D((−A)
1
2 ) and ‖(−A)

1
2 e(t, φ1, u1)(y)−(−A)

1
2 e(t, φ2, u2)(y)‖2 ≤

Me[‖φ1 − φ2‖2Bh
+ |u1 − u2|2] for some constants Me > 0 depending on a1, k, P1, P2 and |u1 − u2|2 = ‖B1φ1 −

B1φ2‖2 ≤Mh1‖φ1 − φ2‖2Bh
for Mh1 > 0 such that 1

2Me(1 +Mh1)(1 + 2C 1
2

√
e) < 1.

Suppose further that :
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(i) The function a2(t, y, θ) is continuous in [0, b] × [0, π] × (−∞, 0] and a2(t, y, θ) ≥ 0,
∫ 0

−∞
a2(t, y, θ)dθ =

p1(t, y) <∞.

(ii) The function k(t− s) is continuous in [0, b] and k(t− s) ≥ 0,
∫ t

0

∫ 0

−∞
k(s− θ)dθds = p2(t) <∞.

(iii) The function Qi(·), i = 1, 2 are continuous and for each (θ, y) ∈ (−∞, 0] × [0, π], 0 ≤ Qi(v(θ)(y)) ≤

Φ(
∫ 0

−∞
e2s‖v(s, ·)‖L2ds), where Φ : [0,+∞) → (0,+∞) is a continuous and nondecreasing function.

Now, we can see that,

E|σ(t, φ,B2φ)|L2

=
[ ∫ π

0

(∫ 0

−∞
a2(t, y, θ)Q1(φ(θ)(y))dθ +B2φ(θ)(y)

)2

dy
] 1

2

≤
√

2
[ ∫ π

0

(∫ 0

−∞
a2(t, y, θ)Φ

(∫ 0

−∞
e2s‖φ(s), (·)‖L2ds

)
dθ
)2

dy
] 1

2

+
√

2
[ ∫ π

0

(∫ t

0

∫ 0

−∞
k(τ − θ)Φ

(∫ 0

−∞
e2s‖φ(s), (·)‖L2ds

)
dθdβ(τ)

)2

dy
] 1

2

≤
√

2
[ ∫ π

0

(∫ 0

−∞
a2(t, y, θ)Φ

(∫ 0

−∞
e2s sup

s∈[θ,0]

‖φ(s)‖L2ds
)
dθ
)2

dy
] 1

2

+
√

2 Tr(Q)
[ ∫ π

0

(∫ t

0

∫ 0

−∞
k(τ − θ)Φ

(∫ 0

−∞
e2s sup

s∈[θ,0]

‖φ(s)‖L2ds
)
dθdτ

)2

dy
] 1

2

=
√

2
[ ∫ π

0

(∫ 0

−∞
a2(t, y, θ)dθ

)2

dy
] 1

2
Φ(‖φ‖2h)

+
√

2 Tr(Q)
[ ∫ π

0

(∫ t

0

∫ 0

−∞
k(s− θ)dθds

)2

dy
] 1

2
Φ(‖φ‖2h)

=
√

2

([∫ π

0

(p1(t, y))2dy
] 1

2
+ Tr(Q)

[ ∫ π

0

(p2(t, y))2dy
] 1

2

)
Φ(‖φ‖2h)

=
√

2[p̄1(t) +
√
πTr(Q)p̄2(t)]Φ(‖φ‖2h).

Since, Φ : [0,+∞) → [0,+∞) is continuous and nondecreasing functions, we can take p(t) =
√

2[p̄1(t) +√
πTr(Q)p̄2(t)] and Ω2(r) = Ω3(r) = Φ(r) in (H8). If (H5), (H7) and the bounds in (H8) are satisfied then

equations (4.1)-(4.4) have a mild solution on [0, b].
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