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An accurate five-step trigonometrically-fitted
numerical scheme for approximating solutions of
second order ordinary differential equations with
oscillatory solutions
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Abstract
In this paper, class of second order ordinary differential equation with oscillatory solutions is considered. By
employing the trigonometric basis function, a continuous five-step scheme known as five-step trigonometrically
fitted scheme is derived to approximate solutions to the class of considered equation. Consistency and zero
stability of the developed method were proved. Stability and convergence properties of this new scheme were
also established. The scheme so obtained is used to solve standard initial value problems with oscillatory
solutions. From the numerical results obtained, it was revealed that the proposed method performs better than
some of the existing methods in the literature.
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1. Introduction
Differential equations arising from the modeling of phys-

ical phenomena, often do not have exact solutions. Hence,
the development of numerical methods to obtain approximate

solutions becomes necessary, to the extent that several numer-
ical methods such as finite difference methods, finite element
methods and finite volume methods, among others, have been
developed based on the nature and type of the differential
equation to be solved.

Here, we are concerned with solutions of second order
initial value problem of the form

y′′ = f (x,y,y′), y(a) = η0, y′(a) = η1 (1.1)

where f : R×Rm×Rm→Rm, and y,y0,y′ ∈R are given real
constants.

Many scholars such as Henrici[11], Jeltsch[13], Twizel
and Khaliq [16], Awoyemi[4], Simos[15], Yusuph and
Onumanyi[18], Adeniran, Odejide and Ogundare[2] have de-
voted lots of attention to the development of various methods
for solving directly (1.1) without reducing to system of first
order equations. Hairer and Wanner[10] developed Nystrom-
type methods for (1.1) in which conditions for the determi-
nation of the parameters of the method were listed. Gear[8],
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Hairer[11], Chawla and Sharma[6], independently developed
explicit and implicit Runge-Kutta Nystrom type methods. Dor-
mand and Prince[7] also developed two classes of embedded
Runge-Kutta- Nystrom methods for the direct solution of
(1.1).

Several numerical methods based on the use of polynomial
functions (Power series, Legendre, Chebyshev, e.t.c) have
been used as basis function to develop numerical methods
for direct solution of (1.1) using interpolation and collocation
procedure. However, it is well known that polynomial of
high degree tend to oscillate strongly and in many cases they
are liable to produce very poor approximations. Psihoyious
and Simos[14] developed a trigonometrically fitted predictor-
corrector method for numerical solution of IVPs with oscillat-
ing solutions. Numerical experiment showed that the method
is efficient. Vigo-Aguiar and Ramos[17] in their paper ti-
tled ” On the choice of the frequency in trigonometrically-
fitted method use the trigonometrically-fitted method to ob-
tain an approximate solution to some nonlinear oscillators
and also presented a strategy for the choice of frequency in
trigonometrically-fitted methods.

The main focus of this article is to employ trigonometric
function as basis function to develop a new five-step numerical
methods using interpolation and collocation procedure for the
direct solution of (1.1).

2. Development of the method
The main objective in this section is to construct a contin-

uous five-step trigonometrically fitted method. The method
has the form

yn+5 = α0yn +α1yn+1 +h2
5

∑
j=0

β j(u) fn+ j (2.1)

where u = wh, β j(u), j = 0,1 · · ·5 are the coefficients that
depend on the step-size and frequency. In order to derive (2.1),
we proceed by seeking to approximate the exact solution y(x)
on the interval [xn,xn+h] by interpolation function U(x) of the
form

U(x) = a0 +a1x+a2x2 +a3x3 +a4x4 +a5x5 (2.2)
+a6 sin(wx)+a7 cos(wx)

where a0, a1, a2, a3, a4, a5, a6 and a7 are coefficients that must
be uniquely determined. We then impose that interpolating
function (2.2) coincides with the exact solution at the end
point xn and xn+1 to obtain the equations

U(xn) = yn and U(xn+1) = yn+1. (2.3)

It is also demanded that the function (2.2) satisfies the
differential equation (1) at points xn+ j, j = 0,1, · · · ,5 to obtain
the following set of six equations:

U ′′(xn+ j) = fn+ j, j = 0,1, · · · ,5. (2.4)

Equations (2.3) and (2.4) leads to a system of eight equations
which is solved by any linear system solvers such as Cram-
mer’s rule to obtain a j, j = 0,1, . . . ,7. The a j’s obtained are
then substituted into (2.2) to obtain the continuous form of
the method

U(x) = α0yn +α1yn+1 +h2
5

∑
j=0

β j(u) fn+ j (2.5)

where w is the frequency, α j and β j are continuous coef-
ficients. The continuous method (2.5) is used to generate
the main method of the form (2.1). That is, we evaluate at
x = xn+5 and letting u = wh, we obtain our main method

yn+5 = α0yn +α1yn+1 +h2
5

∑
j=0

β j(u) fn+ j (2.6)

with coefficients

α0 =
−48+96q−48q2

12(q2−2q+1)
;

α1 =
60+60q2−120q
12(q2−2q+1)

;

β0 =
−29u2q−48q2 +36q+12−u2

12(q2−2q+1)
;

β1 =
−6u2q+58u2q2 +180q2−120q−60

12(q2−2q+1)

+
68u2

12(q2−2q+1)
;

β2 =
16u2q2−182u2q−240q2 +120q

12(q2−2q+1)

+
120−14u2

12(q2−2q+1)
;

β3 =
12u2q+34u2q2 +120q2−120+74u2

12(q2−2q+1)
;

β4 =
12u2q2−29u2cos(u)−60q+60−13u

12(q2−2q+1)
;

β5 =
−6u2q+24q−12+6u2−12q2

12(q2−2q+1)

where variable q = cosu.
We remark that by evaluating (2.5) at other points x =

xn+4, x = xn+3, x = xn+2, additional methods are derived
namely: evaluating at x = xn+4 gives

yn+4 = α̂0yn + α̂1yn+1 +h2
5

∑
j=0

β̂ j(u) fn+ j (2.7)

with

α̂0 =
−36+72q−36q2

12(q2−2q+1)
,

α̂1 =
48−96q+48q2

12(q2−2q+1)
,
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β̂0 =
12−36q2 +24q−22u2q−2u2

12(q2−2q+1)
,

β̂1 =
−60−84q+144q2 +44u2q2

12(q2−2q+1)
,

+
u2q+57u2

12(q2−2q+1)

β̂2 =
120−216q2 +96q−148u2q

12(q2−2q+1)
,

+
6u2q2−26u2

12(q2−2q+1)

β̂3 =
−120−24q+144q2 +46u2q

12(q2−2q+1)
,

+
24u2q2 +62u2

12(q2−2q+1)

β̂4 =
60−24q−36q2−2u2q2

12(q2−2q+1)
,

− 22u2q+24u2

12(q2−2q+1)

β̂5 =
−12+12q+u2q+5u2

12(q2−2q+1)
;

and evaluation of (2.5) at x = xn+3 gives

yn+3 = α̌0yn + α̌1yn+1 +h2
5

∑
j=0

β̌ j(u) fn+ j (2.8)

with

α̌0 =
96q−48q2−48
24(q2−2q+1)

,

α̌1 =
72q2−144q+72
24(q2−2q+1)

,

β̌0 =
12−u2−48q2 +36q−29u2q

24(q2−2q+1)
,

β̌1 =
−72+72u2 +192q2−120q

24(q2−2q+1)
,

+
58u2q2 +2u2q
24(q2−2q+1)

β̌2 =
−46u2 +168+120q−288q2

24(q2−2q+1)
,

− 182u2q
24(q2 +2q+1)

β̌3 =
−192+82u2 +192q2 +92u2q

24(q2−2q+1)
,

+
18u2q2

24(q2−2q+1)

β̌4 =
108−45u2−48q2−60q−4u2q2

24(q2−2q+1)
,

− 29u2q
24(q2−2q+1)

and

β̌5 =
−24+10u2 +24q+2u2q

24(q2−2q+1)
.

Again, evaluating (2.5) at x = xn+2 gives

yn+2 = ά0yn + ά1yn+1 +h2
5

∑
j=0

β́ j(u) fn+ j (2.9)

with

ά0 =
48q−24q2−24
24(q2−2q+1)

,

ά1 =
48q2−96q+48
24(q2−2q+1)

,

β́0 =
2u2 +24q−24q2−14u2q

(q2−2q+1)
,

β́1 =
25u2−12+96q2−84q+u2q

24(q2−2q+1)
,

+
28u2q2

24(q2−2q+1)

β́2 =
−18u2−144q2 +96q+48

24(q2−2q+1)
,

− 68u2q+10u2q2

24(q2−2q+1)

β́3 =
30u2−72+96q2−24q+8u2q2

24(q2−2q+1)
,

+
46u2q

24(q2−2q+1)

β́4 =
−20u2−24q2−24q+48

24(q2−2q+1)
,

− 14u2q+2u2q2

24(q2−2q+1)

β́5 =
5u2 +12q−12+u2q

24(q2−2q+1)
.

In order to incorporate the second initial condition of (1.1)
in the derived methods, we differentiate (2.5) and evaluate at
point x = xn, x = xn+1 and x = xn+5 to have:

y′n = ὰ0yn + ὰ1yn+1 +h2[β̀0(u) fn + β̀1(u) fn+1 (2.10)

+ β̀2(u) fn+2 + β̀3(u) fn+3 + β̀4(u) fn+4

+ β̀5(u) fn+5]

(2.11)

where

ὰ0 =
1440qp−720q2 p−720p

720(q2−2q+1)hp
,

ὰ1 =
720q2 p−1440qp+720p

720(q2−2q+1)hp
,
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β̀0 =
502u2qp+180p+720uq3u−720q2 p

720(q2−2q+1)hp
,

+
360pq

720(q2−2q+1)hp

−540uq−262u2 p
720(q2−2q+1)hp

β̀1 =
−9u2 p−1004u2q2 p−97u2qp−900p

720(q2−2q+1)hp

−1080pq+2880q2 p−360uq2

720(q2−2q+1)hp
,

2160uq−2880uq3 +180u
720(q2−2q+1)hp

β̀2 =
−118u2 p+916u2qp+1242u2q2 p

720(q2−2q+1)hp
,

+
1800p+720pq−4320q2 p+3240uq

720(q2−2q+1)hp
,

+
1440uq2 +4320uq3−720u

720(q2−2q+1)hp

β̀3 =
−62u2 p−792u2q2 p−1006u2qp

720(q2−2q+1)hp
,

+
−1800p+720pq+2880q2 p−2160uq2

720(q2−2q+1)hp

+
−2880uq3 +2160uq+1080u

720(q2−2q+1)hp
,

β̀4 =
144u2 p+502u2qp+194u2q2 p

720(q2−2q+1)hp
,

+
900p+720uq3 +1080pq720q2 p

720(q2−2q+1)hp

− 1440uq2−540uq−720u
720(q2−2q+1)hp

,

β̀5 =
−97u2qp−180p+360pq−360uq2

720(q2−2q+1)hp

+
180u−53u2 p

720(q2−2q+1)hp

where in the above, p = sinu. Again, differentiating and eval-
uating at x = xn+1, we obtain

y′n+1 = α̃0yn + α̃1yn+1 +h2[β̃0(u) fn + β̃1(u) fn+1

+ β̃2(u) fn+2 + β̃3(u) fn+3 + β̃4(u) fn+4 (2.12)

+ β̃5(u) fn+5]

where

α̃0 =
−720u2 p−720q2u2 p+1440qu2 p

720(q2−2q+1)hp
,

α̃1 =
720u2 p+720q2u2 p−1440u2qp

720(q2−2q+1)hp
,

and

β̃0 =
−180u+113u2 p+360uq2−720pq2

720(q2−2q+1)hp

+
360pq−323u2qp+180p

720(q2−2q+1)hp

β̃1 =
276u2 p−1440uq2−180uq+720u

720(q2−2q+1)hp

− 1080pq
720(q2−2q+1)hp

+2880pq2 +646u2q2 p+38w2qp−900p
720(q2−2q+1)hp

,

β̃2 =
−1080u+720uq−178u2 p+2160uq2

720(q2−2q+1)hp

+
720pq−4320pq2

720(q2−2q+1)hp
,

−1034u2qp−528u2q2 p+1800p
720(q2−2q+1)hp

,

β̃3 =
720u−1080uq+358u2 p−1440uq2

720(q2−2q+1)hp

+
720pq

720(q2−2q+1)hp

+2880pq2 +318u2q2 p+884u2qu2 p
720(q2−2q+1)hp

,

+
−1800p

720(q2−2q+1)hp

β̃4 =
−180u+720uq−291u2 p+360uq2

720(q2−2q+1)hp

+
−720pq2−1080pq
720(q2−2q+1)hp

−323u2qu2 p−76u2q2 p+900p
720(q2−2q+1)hp

,

β̃5 =
−180uq+82u2 p+360pq+38u2qp

720(q2−2q+1)hp

+
−180p

720(q2−2q+1)hp
.

Finally, differentiating and evaluating at x = xn+5 gives

y′n+5 = α̈0yn + α̈1yn+1 +h2[β̈0(u) fn + β̈1(u) fn+1

+ β̈2(u) fn+2 + β̈3(u) fn+3 + β̈4(u) fn+4

+ β̈5(u) fn+5] (2.13)

with

α̈0 =−
1

720

(
720q2 p−1440qp+720p

(q2−2q+1)hp

)
,

α̈1 =−
1

720

(
1440qp−720q2 p−720p

(q2−2q+1)hp

)
,
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β̈0 =−
1

720

(
−360uq2 +720pq2−360pq

(q2−2q+1)hp

+
323u2qp+180u−113u2 p

(q2−2q+1)hp

)
,

β̈1 =−
1

720

(
720uq3−540uq+1440uq2

(q2−2q+1)hp

− 2880pq2

(q2−2q+1)hp

+
1080pq+900p−646u2q2 p

(q2−2q+1)hp

−180p+922u2qp−720u−516u2 p
(q2−2q+1)hp

)
,

β̈2 =−
1

720

(
−2160uq2−2880uq3 +2160uq

(q2−2q+1)hp

− 720pq
(q2−2q+1)hp

+
+4320pq2−1800p−1392u2q2 p+

(q2−2q+1)hp

+
1034u2qp+1080u−782u2 p

(q2−2q+1)hp

)
,

β̈3 =−
1

720

(
4320uq3−3240uq+1440uq2

(q2−2q+1)hp

−720pq−2880pq2

(q2−2q+1)hp

+
1800p+642u2q2 p+2956u2q

(q2−2q+1)hp

+
u2 p−720u−838u2 p

(q2−2q+1)hp

)
,

β̈4 =−
1

720

(
−2880uq3 +2160uq−360uq2

(q2−2q+1)hp

+
720pq2

(q2−2q+1)hp

+
1080pq+323u2qp−900p

(q2−2q+1)hp

−1844u2q2 p+180u−669u2 p
(q2−2q+1)hp

)
,

β̈5 =−
1

720

(
720uq3−540uq−360pq+180p

(q2−2q+1)hp

+
922u2qp−322u2 p
(q2−2q+1)hp

)
.

The methods derived in equations (2.6) - (2.12) above will
be combined and implemented as a block in solving numerical
examples.

3. Error and Stability Analysis of the
Scheme

3.1 Local truncation error
Following Simos [15], Taylor series technique shall be

used to estimate the local truncation error of the derived five-
step method. Thus, for small values of the parameter u, the
coefficients in equation (2.6) can be expressed as

α0 =−
48
12

α1 =
60
12

β0 =
7
24

+
349

30240
u2 +

53
181440

u4 +
71

26611200
u6

− 4087
18681062400

u8− 142231
7846046208000

u10

− 16727
17784371404800

u12

− 69525593
1703031405723648000

u14

− 28465181
17747379912278016000

u16

− 34602653
586213531493990400000

u18 + · · ·

β1 =
15
4
− 127

3024
u2− 13

12960
u4− 13

2661120
u6

+
9929

9340531200
u8 +

8779
112086374400

u10

+
3889

988020633600
u12 + · · ·

β2 =
11
4

+
53

1008
u2 +

11
10080

u4− 19
2661120

u6

− 6427
3113510400

u8

− 11509
87178291200

u10− 56369
8892185702400

u12 + · · ·

β3 =
13
6
− 4

189
u2− 1

5670
u4 +

1
41580

u6

+
167

83397600
u8

+
2633

24518894400
u10 +

2671
555761606400

u12 + · · ·

β4 =
23
24
− 31

6048
u2− 67

181440
u4− 109

5322240
u6

− 18127
18681062400

u8

− 64931
1569209241600

u10− 9701
5928123801600

u12

β5 =
1
12

+
1

240
u2 +

1
6048

u4 +
1

172800
u6

+
1

5322240
u8

+
691

118879488000
u10

+
1

5748019200
u12 + · · ·

The Local Truncation Error (LTE) for the five-step method
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described by equation (2.6) is obtained as

LTE((2.6)) =− 95
6048

h5
(

w2y(3)(xn)+ y(5)(xn)
)

(3.1)

where y(i) denotes the ith derivative of y with respect to the
independent variable x.

3.2 Zero stability
The block method is zero stable if the roots zs, s = 1,2 of

the first characteristic polynomial ρ(z) which is defined by

ρ̄(z) = det[zIn− Ē] (3.2)

satisfies |zs| ≤ 1 and every root with |zs|= 1 has multiplicity
not exceeding two in the limit as h→ 0. where I is the identity
matrix, and

E =



α0 α1 β0 β1 β2 β3 β4 β5

α̂0 α̂1 β̂0 β̂1 β̂2 β̂3 β̂4 β̂5

α̌0 α̌1 β̌0 β̌1 β̌2 β̌3 β̌4 β̌5

ά0 ά1 β́0 β́1 β́2 β́3 β́4 β́5

ὰ0 ὰ1 β̀0 β̀1 β̀2 β̀3 β̀4 β̀5

α̃0 α̃1 β̃0 β̃1 β̃2 β̃3 β̃4 β̃5

α̈0 α̈1 β̈0 β̈1 β̈2 β̈3 β̈4 β̈5
0 0 0 0 0 0 0 0


Ē = lim

h→0
(E)

Ē =



−4 5 0 0 0 0 0 0
−3 4 0 0 0 0 0 0
4 6 0 0 0 0 0 0
−1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Thus

ρ̄(z) = det[zI− Ē] = z6(−1+ z2)

solving for z in
z6(−1+ z2) = 0

gives z = 0 or z = 1. Hence the block method is zero stable.

4. Convergence of the method
According to Gurjinder et.al (2013),

Definition 4.1. A block method is said to be consistent if it
has an order of convergence p, with p≥ 1.

The block method derived in this article are all consistent
as all the methods are of order p > 1.

It is a standard result that The necessary and sufficient con-
dition for a linear multistep method to be convergent is for it
to be consistent and zero stable, see Dahlquist [Henrici[11]].
Thus the block methods derived in this article are convergent.

5. Implementation of the Scheme

The strategy adopted for the implementation of the meth-
ods is such that all the discrete methods obtained from the
continuous method as well as their derivatives, which have the
same order of accuracy, with very low error constants for fixed
h, are combined as simultaneous integrators. The absolute
errors calculated in the code are defined as

Error = |yexact−ycomputed|

where yexact is the exact solution, ycomputed is the computed
result and Error is the absolute error. The value of w that pro-
duce an optimal solution in terms of accuracy are considered.
All computations were carried out using Maple 17

6. Numerical Examples

Example1
We consider the following problem:

y′′ =−100y+99sin(x), y(0) = 1, y′(0) = 11 (6.1)

whose exact solution is given by y(x) = cos(10x)+sin(10x)+
sin(x).
Example 2
We consider a highly oscillatory test problem

y′′+λ
2y = 0, y(0) = 1, y′(0) = 2. (6.2)

For λ = 2, the exact solution is known to be y(x) = cos(2x)+
sin(2x).

Example 3
We consider the non-linear initial value problem

y′′(x) =
(y′)2

2y
−2y, y(

π

6
) =

1
4

and y′(
π

6
) =

√
3

2
(6.3)

whose exact solution is given by y = sin2 x.

7. Conclusion
We have proposed a five-step block trigonometrically fit-

ted methods for the direct solution of general second order
initial value problems with oscillatory solutions. The method
has the advantage of being self starting, having good accu-
racy with order 4, consistent and zero stable. The methods
are implemented without the need for the development of
predictors nor requiring any other method to generate start-
ing values. Implementation of the method with numerical
examples on linear, non-linear and problems with oscillatory
solution showed that the methods are superior to most of
the existing multistep methods available for approximating
similar class of problems.
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Table 1. The exact solutions, computed results and error from the proposed methods for Example 1 with h = 1
320 , w = 5.

x yExact yComputed Error Error in Adeniran et.al[2]
1

320 1.03388166738420 1.03388166738422 2.00×10−14 9.170×10−11

2
320 1.06675678785246 1.06675678785252 6.00×10−14 -

3
320 1.09859628036501 1.09859628036514 1.30×10−13 3.0905×10−10

4
320 1.12937207509627 1.12937207509648 2.10×10−13 -

5
320 1.15905714081491 1.15905714081527 3.60×10−13 -

6
320 1.18762550988244 1.18762551125056 5.40×10−13 4.8987×10−10

7
320 1.21505230844501 1.21505231041790 7.40×10−13 -

8
320 1.24131377434580 1.24131377688084 9.60×10−13 -

9
320 1.26638728387076 1.26638728692404 1.24×10−12 -
10
320 1.29025137290459 1.29025137661543 1.55×10−12 -

Table 2. The exact solutions, computed results and error from the proposed methods for Example 2, h = 0.01, w = 2.

x yExact yComputed Error
0.01 1.01979867335991 1.01979867335991 0
0.02 1.03918944084761 1.03918944084382 3.79×10−12

0.03 1.05816454641465 1.05816454641776 3.11×10−12

0.04 1.07671640027179 1.07671640026785 3.94×10−12

0.05 1.09483758192485 1.09483758192041 4.44×10−12

0.06 1.11252084314278 1.11252084313810 4.68×10−12

0.07 1.12975911085687 1.12975911084779 9.08×10−12

0.08 1.14654548998987 1.14654548998810 1.77×10−12

0.09 1.16287326621394 1.16287326620421 9.73×10−12

0.10 1.17873590863630 1.17873590862580 1.05×10−12

Table 3. Comparison of errors for Example 2. Abhulimen and Okunuga (2008)-ABHUK

x Proposed method Adeniran et.al [2] ABHUK[1] Awoyemi et. al.[5]
p = 4, k = 5 p = 3, k = 1 p = 6 p = 4 k = 3

0.01 0.00 4.00×10−11 2.66×10−11 -
0.02 3.79×10−12 1.03×10−10 2.60×10−06 8.48×10−10

0.03 3.11×10−12 1.88×10−10 4.00×10−06 6.41×10−09

0.04 3.94×10−12 2.95×10−10 5.30×10−06 6.71×10−09

0.05 4.44×10−12 4.24×10−10 6.60×10−06 7.12×10−09

0.06 4.68×10−12 5.74×10−10 7.90×10−06 7.65×10−09

0.07 9.08×10−12 7.44×10−10 9.30×10−06 8.36×10−09

0.08 1.77×10−12 9.34×10−10 1.10×10−05 9.06×10−09

0.09 9.73×10−12 1.14×10−09 1.20×10−05 9.92×10−09

0.1 1.05×10−12 1.37×10−09 1.30×10−05 1.09×10−08
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Table 4. The exact solutions, computed results and error from the proposed methods for Example 3, h = 0.1, w = 2.

x yExact yComputed Error Error in Alabi et.al.[3]
0.1 0.0099667110793792 0.00996671107827122 1.114×10−12 −
0.2 0.0394695029985574 0.0394695029786944 1.990×10−11 −
0.3 0.0873321925451611 0.0873321924526160 9.255×10−11 −
0.4 0.1516466453264171 0.151646645281091 4.533×10−11 −
0.5 0.229848847065930 0.229848847017083 4.884×10−11 −
0.6 0.318821122761663 0.318821122673452 8.821×10−11 1.013×10−08

0.7 0.415016428549879 0.415016428485594 6.429×10−11 4.782×10−08

0.8 0.514599761150645 0.514599761134647 1.599×10−11 1.109×10−07

0.9 0.613601047346543 0.613601047330533 1.601×10−10 1.892×10−07

1.0 0.708073418273572 0.708073418262838 1.071×10−10 1.196×10−07

2.0 0.826821810431807 0.826821783609997 2.682×10−08 1.435×10−06
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