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Abstract
In this work, we investigate the existence of solutions to a quadratic integral equation of Volterra type. By
using the Schauder Tychonoff fixed point theorem in C(Ω,R), the Fréchet Space of real continuous functions on
unbounded open subset Ω⊂ Rn, we establish the existence of at least one solution.

Keywords
Quadratic integral equation, Schauder-Tychonoff fixed point theorem, Volterra operator, Fréchet space.

AMS Subject Classification
45D05, 47H10.

1Department of Mathematics, Faculty of Sciences, BP 270. Blida, 09000. Algeria.
2Department of Mathematics, Faculty of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Saad Dahlab University, route de
Soumaa.
3Laboratoire "Théorie du Point Fixe et Applications", ENS, BP 92 Kouba. Algiers, 16006. Algeria.
*Corresponding author: 2 djebali@hotmail.com; 1h_betrouni@yahoo.com
Article History: Received 11 April 2018; Accepted 29 September 2018 c©2018 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745

3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746

4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748

5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .749

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749

1. Introduction
The aim of this paper is to study the existence of continu-

ous solutions to a class of general quadratic integral equations
of Volterra type with deviated argument of the form:

u(x) = f (x,u(x))+g(x,u(x))
∫

Λ(x)

h(x,y,u(ξ (y))dy, (1.1)

for x ∈Ω. Here Ω is an unbounded open set of Rn, f , g, h, ξ

are given functions and u is the unknown.
Over the last decade, the solvability of nonlinear integral

equations in Banach spaces has been subject of several works
(see, e.g., [2]). In [6], the existence of integrable solutions to
the nonlinear equation

x(t) = u(t,x(t))+g(t,x(t))
∫

φ(t)

0
k(t,s) f (s,x(s))ds,

for 0 ≤ t ≤ 1 is obtained using the technique of measure of
weak noncompactness combined with the concept of weak-
strong compact operator. Also in [11], a quadratic equation of
the form:

x(t) = f (t,x(ϕ1(t)))

+g(t,x(ϕ2(t))ψ
(∫ α(t)

0 u(t,s,x(ϕ3(t)))ds
)
,

for t ∈ [0,T ] was studied and the existence of at least one
positive L1-solution was obtained.

In [15], the authors discussed the existence of nondecreas-
ing continuous solutions for the following quadratic integral
equation of Volterra type on a bounded interval:

x(t)= g(t,x(t))
(

h(t)+
∫ t

0
k(t,s) f (s,x(λ s))ds

)
, 0≤ t ≤ 1.

Moreover, several authors have been interested in the exis-
tence of continuous solutions to different types of integral
equations on unbounded intervals; most of their results have
been obtained in the setting of the Banach space of bounded
and continuous functions on the nonnegative real half-axis
and have employed the fixed point theory and some properties
of measures of non-compactness.

Indeed, the use of measures of non-compactness turns out
to be a strong technique allowing not only authors to obtain the
existence of solutions but also to derive some characterizations
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of the solutions. The efficiency of this technique is shown
in, e.g., [3], where the existence of asymptotically stable and
ultimately nondecreasing solutions to a quadratic functional
integral equation of Hammerstein-Volterra type of the form:

x(t) = m(t)+ f (t,x(t))
∫ t

0
g(t,τ)h(τ,x(τ))dτ,

for t ≥ 0, is proved.
In [8], the authors investigated the questions of existence

and asymptotic behavior of solutions of the quadratic Urysohn
integral equation:

x(t) = a(t)+ f (t,x(t))
∫

∞

0
u(t,s,x(s))ds,

for t ≥ 0. However, some restrictive conditions may appear
when dealing with such measures of noncompactness, espe-
cially when these measures are not regular (see, e.g., [2, (3.5),
p.72 ]).

Another approach to discuss the solvability of integral
equations is given in [7], where the authors obtained the ex-
istence of a unique solution to a quadratic integral equation
of Urysohn type in a Fréchet space by using the nonlinear
alternative of Leray-Schauder for contractive mappings.

Recently, in [9, 12], the authors defined a sequence of
measures of noncompactness and obtained existence results in
the Fréchet space of continuous functions on the real half-axis.

More recently, the authors in [14] developed some fixed
point theorems in locally convex spaces and obtained an exis-
tence result in the space C(R+,Rd), without appealing to the
technique of measures of noncompactness.

Our aim in this work is twofold: first we extend the results
obtained in [9, 12, 14] to the case of unbounded open subsets
of Rn for a quite general quadratic Volterra type equation of
the form (1.1) and secondly we slightly relax the assumptions
in [9]. This is the content of Section 3, where the functions
f and g satisfy some Lipschitz conditions while h obeys a
general growth condition in its third argument. Two examples
of applications are provided in Section 4 to illustrate the main
existence result. Comparison with recent results are given in
the last Section 5 to show how Equation (1.1) encompasses
some particular equations already discussed in the very recent
literature. The next section is devoted to presenting some
auxiliary results.

2. Preliminaries
We introduce some notations, definitions, and theorems

which are used throughout this paper. The first one follows
from simple topological arguments (see, e.g., [13]):

Lemma 2.1. Let Ω⊂ Rn be a nonempty open subset. Then
there exists a sequence (K j)

∞
j=1 of compact subsets of Ω with

the following properties:

(a) Ω = ∪∞
j=1K j,

(b) K j ⊂ K̊ j+1, for all j ∈ {1,2, . . .}.

Owing to Lemma 2.1, we can introduce a metric on the
space C(Ω) of continuous real functions defined on an open
subset Ω of Rn. Indeed, for u,v ∈ C(Ω), we first define a
family of semi-norms by:

p j(u) = sup{|u(x)| : x ∈ K j}, j ∈ {1,2, . . .}

and then the distance:

d(u,v) =
∞

∑
j=1

1
2 j

p j(u− v)
1+ p j(u− v)

.

Endowed with this metric, C(Ω) may be considered as a
Fréchet space satisfying the following property (see, e.g.,
[13]):

Lemma 2.2. Let K be the collection of all compact subsets
of Ω. Then the topology on C(Ω) induced by d coincides with
τK , the topology of uniform convergence on compact subsets.

Definition 2.3. A set E ⊂C(Ω) is said to be bounded if for
all j = 1,2, . . ., there are numbers M j < ∞ such that

p j(u)≤M j, ∀u ∈ E,

i.e., |u(x)| ≤M j, for all u ∈ E and all x ∈ K j.

Also we have the following characterization of conver-
gence:

Lemma 2.4. A sequence (uk)k≥1 converges to some limit
u in the space C(Ω) if and only if for all j ≥ 1, we have
p j(uk−u)→ 0, as k→ ∞.

Finally by the Ascoli-Arzela Lemma and Lemma 2.2,
the characterization of compact subsets with respect to the
topology of C(Ω) reads as follows:

Lemma 2.5. A set M ⊂ C(Ω) is relatively compact if and
only if for each j, the restriction of all functions from M|K j
forms an equicontinuous and uniformly bounded subset in the
Banach space C(K j).

Let X be a Hausdorff locally convex space with a topology
generated by a family of semi-norms P . As in Definition 2.3,
a natural definition of the contraction is given by:

Definition 2.6. Let C⊂ X and p ∈P . A mapping A : C→C
is said to be a p-contraction if there exists αp with 0≤ αp < 1
such that

p(Ax−Ay)≤ αp p(x− y), ∀x,y ∈C.

We have (see, e.g., [10])

Lemma 2.7. Suppose C is a sequentially complete subset of
X and the mapping A : C→C is a p-contraction, for every
p ∈P . Then A has a unique fixed point x̄ ∈C and Akx→ x̄,
for every x ∈C, where Ak is the k-th iterate of the mapping A.
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The following lemma is then a direct consequence of
Lemma 2.7.

Corollary 2.8. Let M⊂C(Ω) be a closed set and T : M→M
an operator with the property

∀ j ≥ 1, ∃α j ∈ [0,1), ∀u1,u2 ∈M,

|Tu1(x)−Tu2(x)| ≤ α j|u1(x)−u2(x)|, ∀x ∈ K j.

Then T admits a unique fixed point in M.

We will also make use of the Schauder-Tychonoff fixed
point theorem (we refer, e.g., to [1, p. 96]):

Lemma 2.9. Let E be a Hausdorff locally convex linear topo-
logical space, C a convex subset of E, and F : C→ E a con-
tinuous mapping such that

F(C)⊂ A⊂C,

where A is compact. Then F has at least one fixed point.

3. Main Results
In this section, we present an existence result of continu-

ous solutions for Equation (1.1). The following definition can
be found in [4]:

Definition 3.1. Let Ω be an unbounded subset of Rn. A map-
ping Λ : Ω→MRn is said to be a continuous function if for
each ε > 0, there exists δ > 0 such that for x,y ∈Ω :

|x− y|< δ =⇒ µ(Λ(x) M Λ(y))< ε,

where µ is the Lebesgue measure on Rn and M denotes the
symmetric difference of sets in the euclidian space Rn.

Equation (1.1) will be studied under the following assump-
tions:

(H0) The mappings
Λ : Ω→MRn , ξ :

⋃
x∈Ω Λ(x)→ Ω, f : Ω×R→ R,

g : Ω×R→ R, and h : Ω×
⋃

x∈Ω

Λ(x)×R→ R

are continuous.

Here MRn refers to the family of nonempty, bounded,
and measurable subsets of Rn.

(H1) For each K j, the set
⋃

x∈K j

Λ(x) is bounded.

(H2) There exists a nonnegative function a ∈C(Ω) such that

| f (x,u)− f (x,v)| ≤ a(x)|u− v|,

for all x ∈Ω and all u,v ∈ R.

(H3) There exists a nonnegative function b ∈C(Ω) such that

|g(x,u)−g(x,v)| ≤ b(x)|u− v|,

for all x ∈Ω and all u,v ∈ R.

(H4) There exists a nondecreasing function ϕ :R+→R+ and
a continuous function k : Ω×

⋃
x∈Ω

Λ(x)→ R+ such that,

for all x ∈Ω, y ∈
⋃

x∈Ω

Λ(x), and u ∈ R, we have

|h(x,y,u)| ≤ k(x,y)ϕ(|u|). (3.1)

(H5) There exists a continuous function r : Ω→R+ such that
for all x ∈Ω

a(x)r(x)+b(x)r(x)
∫

Λ(x)

k(x,y)ϕ(r(ξ (y)))dy(3.2)

+c(x)
∫

Λ(x)

k(x,y)ϕ(r(ξ (y)))dy+d(x)≤ r(x)

and for all j ≥ 1

sup
x∈K j

a(x)+b(x)
∫

Λ(x)

k(x,y)ϕ(r(ξ (y)))dy

< 1,(3.3)

where d(x) = | f (x,0)| and c(x) = |g(x,0)|.

Define the nonempty, bounded, closed, and convex subset of
C(Ω):

M = {u ∈C(Ω) : |u(x)| ≤ r(x), ∀x ∈Ω},

where the function r is as defined in (H5).

Remark 3.2. The existence of functions r satisfying (H5) is
discussed in the examples, Section 4 and in the second remark,
Section 5.

Before stating the main existence result, we need to prove
two technical lemmas:

Lemma 3.3. Under (H0)−(H1) and (H4)−(H5), the Volterra
operator H : M −→C(Ω) defined by

H[u](x) =
∫

Λ(x)

h(x,y,u(ξ (y)))dy, for all x ∈Ω (3.4)

is continuous and H(M) is relatively compact in C(Ω).

Proof.

Claim 1. H(M) is relatively compact in C(Ω). Given u ∈M,
it is easy to check that Hu is continuous on Ω for, by (H0),
the functions ξ ,Λ, and h are continuous. The restriction of all
functions of H(M) forms a uniformly bounded set on K j. In
fact, for all x ∈ K j, we have by (H1) and (H4)− (H5):

|H[u](x)| ≤
∫

Λ(x)
|h(x,y,u(ξ (y)))|dy

≤
∫

Λ(x)
|k(x,y)ϕ(r(ξ (y)))|dy

≤ k̄ jϕ(R̄ j)Λ
j,
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where
∼
K j is the image under the continuous function ξ of the

set
⋃

x∈K j

Λ(x) which is bounded and closed in Rn, and where

we have set

R̄ j = sup{r(x), x ∈
∼
K j}

Λ j = sup{m(Λ(x)) , x ∈ K j}
k̄ j = sup{k(x,y), x ∈ K j, y ∈

⋃
x∈K j

Λ(x)}.

The next step consists in showing that, for all j≥ 1, the restric-
tion of all functions from H(M) to K j are equi-continuous.
For this, let j ≥ 1 be fixed and ε > 0. Since h is uniformly
continuous on the compact

K j×
⋃

x∈K j

Λ(x)× [−R̄ j, R̄ j],

then there exists δ1 > 0, such that for all u ∈M, y ∈
⋃

x∈K j

Λ(x),

and x1,x2 ∈ K j with |x1− x2| ≤ δ1, we have

|h(x1,y,u(ξ (y)))−h(x2,y,u(ξ (y)))|<
ε

2Λ j

and there exists δ2 > 0 such that for all x1,x2 ∈ K j with |x1−
x2| ≤ δ2, we have

µ(Λ(x1) M Λ(x2))<
ε

2k̄ jϕ(R̄ j)
.

Taking
δ = min{δ1,δ2},

we find that for all u ∈M and x1,x2 ∈ K j with |x1− x2| ≤ δ ,
we have the estimates:

|H[u](x1)−H[u](x2)|=∣∣∣∣∣ ∫
Λ(x1)

h(x1,y,u(ξ (y)))dy−
∫

Λ(x2)

h(x2,y,u(ξ (y)))dy

∣∣∣∣∣
≤

∣∣∣∣∣ ∫
Λ(x1)

h(x1,y,u(ξ (y)))−h(x2,y,u(ξ (y)))dy

∣∣∣∣∣
+

∣∣∣∣∣ ∫
Λ(x1)

h(x2,y,u(ξ (y)))dy−
∫

Λ(x2)

h(x2,y,u(ξ (y)))dy

∣∣∣∣∣
< εµ(Λ(x1))

2Λ j + k̄ jϕ(R̄ j)µ(Λ(x1) M Λ(x2))

< ε

2 +
ε

2 = ε.

From its uniform boundedness and equicontinuity, we deduce
that the set H(M) is relatively compact in C(Ω).

Claim 2. Continuity of the operator H on M. Since C(Ω) is
a metric space, it is sufficient to show that H is sequentially
continuous. Let (un)n be a sequence which converges to some
limit u ∈ M, i.e., it converges uniformly on each compact
subset of Ω. Due to the continuity of h and the convergence of
un, we have that for all j ≥ 1 and x ∈ K j, there exists Nε ∈ N,
such that for all n≥ Nε and y ∈

⋃
x∈K j

Λ(x), we have

|h(x,y,un(ξ (y)))−h(x,y,u(ξ (y)))|< ε

Λ j .

Hence

|H[un](x)−H[u](x)|=∣∣∣∣∣ ∫
Λ(x)

h(x,y,un(ξ (y)))−h(x,y,u(ξ (y)))dy

∣∣∣∣∣
< ε

Λ j µ(Λ(x))
< ε

Λ j Λ j = ε.

Therefore the operator H is continuous on M.

Lemma 3.4. Under Assumptions (H0)−(H5), for each v∈M,
there exists a unique ψv ∈M such that, for all x ∈Ω, we have

ψv(x) = f (x,ψv(x))+g(x,ψv(x))
∫

Λ(x)

h(x,y,v(ξ (y)))dy.

Proof. Let v ∈M be fixed and define the operator Tv by

Tv(u)(x) = f (x,u(x))+g(x,u(x))
∫

Λ(x)

h(x,y,v(ξ (y)))dy.

Making use of (H2)− (H4), we find that, for each u1,u2 ∈M
and for all x ∈Ω, we have

|Tv(u1)(x)−Tv(u2)(x)|
≤ | f (x,u1(x))− f (x,u2(x))|
+|g(x,u1(x))−g(x,u2(x))|

∫
Λ(x)
|h(x,y,v(ξ (y)))|dy

≤

(
a(x)+b(x)

∫
Λ(x)
|h(x,y,v(ξ (y)))|dy

)
|u1(x)−u2(x)|

≤

(
a(x)+b(x)

∫
Λ(x)

k(x,y)ϕ(r(ξ (y)))dy

)
|u1(x)−u2(x)|.

Writing this for x ∈ K j, passing to the supremum over K j,
and appealing to (H5) shows that Tv is a contraction. Then
Corollary 2.8 guarantees that the operator Tv : M→M admits
a unique fixed point ψv in M.

We are now in position to state and prove the main exis-
tence result of this paper:

Theorem 3.5. Under assumptions (H0)− (H5), Equation
(1.1) has at least one solution in the Fréchet space C(Ω).

Proof. The proof of this theorem is based on an application of
the Schauder-Tychonov fixed point theorem, namely Lemma
2.9. Using Lemma 3.4, we first define the mapping A : M→
M which assigns to each v the image A v solution of the
following nonlinear equation:

A v(x) = f (x,A v(x))+g(x,A v(x))H[v](x), x ∈Ω,

where H is defined by (3.4). It is clear that a fixed point of the
mapping A is a solution to Equation (1.1).

Claim 1. A is a continuous operator on M. It is sufficient to
show that it is sequentially continuous.
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Let (vn)n be a sequence which converges to v ∈ M, let
j ≥ 1 be fixed, and x ∈ K j. Using (H0)− (H4), we get the
estimates:

|A vn(x)−A v(x)|
≤ | f (x,A vn(x))− f (x,A v(x))|

+

∣∣∣∣∣g(x,A vn(x))
∫

Λ(x)
h(x,y,vn(ξ (y)))dy

−g(x,A v(x))
∫

Λ(x)
h(x,y,vn(ξ (y)))dy

∣∣∣∣∣
+|g(x,A v(x))||H[vn](x)−H[v](x)|
≤ α j|A vn(x)−A v(x)|+ ḡ j|H[vn](x)−H[v](x)|,

where

α j = sup
x∈K j

{a(x)+b(x)
∫

Λ(x)
k(x,y)ϕ(r(ξ (y)))dy},

g j = sup
{
|g(x,u)|, x ∈ K j, u ∈ [−r j,r j]

}
,

r j = sup{r(x), x ∈ K j}.

Hence

|A vn(x)−A v(x)| ≤ ḡ j

1−α j
|H[v]n(x)−H[v](x)|.

Since H is continuous, from the last estimate we deduce the
continuity of the operator A on M.

Claim 2. A (M) is equi-continuous. Given j≥ 1, for all x1,x2 ∈
K j and v ∈M, we have the estimate:

|A v(x1)−A v(x2)|
≤ | f (x1,A v(x1))− f (x2,A v(x1))|
+| f (x2,A v(x1))− f (x2,A v(x2))|
+|g(x1,A v(x1))−g(x2,A v(x1))||Hv(x1)|
+|g(x2,A v(x1))−g(x2,A v(x2))||Hv(x1)|
+|g(x2,A v(x2))||H[v](x1)−H[v](x2)|.

Hence

|A v(x1)−A v(x2)|
≤ | f (x1,A v(x1))− f (x2,A v(x1))|
+|g(x1,A v(x1))−g(x2,A v(x1))||H[v](x1)|
+α j|A v(x1)−A v(x2)|+g j|H[v](x1)−H[v](x2)|.

By the uniform continuity of functions f and g on the compact
set K j × [−r j,r j] and the equicontinuity of H(M), for all
ε > 0, there exists δ > 0, such that for all x1,x2 ∈ K j with
|x1− x2|< δ , we have

| f (x1,A v(x1))− f (x2,A v(x1))|<
(1−α j)ε

3
,

|g(x1,A v(x1))−g(x2,A v(x1))|<
(1−α j)ε

3k̄ jϕ(R̄ j)Λ j ,

and

|H[v](x1)−H[v](x2)|<
(1−α j)ε

3g j .

Therefore

|A v(x1)−A v(x2)|<
ε

3
+

ε

3
+

ε

3
= ε,

which means that the restriction of all functions from A (M)
forms an equi-continuous set, for each j ≥ 1. As a conse-
quence, the set A (M) is relatively compact by Lemma 2.5.
Now applying the Schauder-Tychonov fixed point theorem,
i.e., Lemma 2.9, we conclude that A has a fixed point in M,
that is a solution to Equation (1.1).

4. Examples
In this section, we illustrate the applicability of Theorem 3.5
by giving two concrete examples.

Example 4.1. Consider the following integral equation posed
on (0,+∞)× (0,+∞):

u(x1,x2)
= (x1 + x2)expx1+x2

+arctan
(

u(x1,x2)

3+x4
1+x4

2

)∫ x2
0
∫ x1

0
4x2

1x2
2y1y2

(1+x4
1+x4

2)

u2(y1,y2)
(1+u2(y1,y2))

dy1dy2.

(4.1)

Let

Λ(x1,x2) = (0,x1)× (0,x2), ξ (x1,x2) = (x1,x2),

f (x1,x2,u) = (x1 + x2)exp(x1+x2),

g(x1,x2,u) = arctan
(

u
3+ x4

1 + x4
2

)
,

h(x1,x2,y1,y2,u) =
4x2

1x2
2

(1+ x4
1 + x4

2)

u2

(1+u2)
y1y2.

We have for all x1,x2,y1,y2 ∈ (0,+∞) and u,v ∈ R

| f (x1,x2,u)− f (x1,x2,v)|= 0,

|g(x1,x2,u)−g(x1,x2,v)| ≤
1

(3+ x4
1 + x4

2)
|u− v|,

|h(x1,x2,y1,y2,u)| ≤
4x2

1x2
2

(1+ x4
1 + x4

2)
y1y2.

So we can take a(x) = c(x) = 0, b(x) = 1
3+x4

1+x4
2
, ϕ(u) = 1,

and

k(x1,x2,y1,y2) =
4x2

1x2
2

1+ x4
1 + x4

2
y1y2,

such that Assumptions (H1)− (H5) are satisfied. To check
(H5), we choose

r(x) =
(x1 + x2)exp(x1+x2)

1− x4
1x4

2
(3+x4

1+x4
2)(1+x4

1+x4
2)
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which is a continuous function from (0,+∞)× (0,+∞)→R+

that further satisfies (H5) for

1
(3+x4

1+x4
2)

∫ x2
0
∫ x1

0
4x2

1x2
2y1y2

(1+x4
1+x4

2)
dy1dy2 =

x4
1x4

2
(3+x4

1+x4
2)(1+x4

1+x4
2)
< 1.

By Theorem 3.5, Equation (4.1) has at least one solution in
the space C((0,+∞)× (0,+∞)).

Example 4.2. Consider the following integral equation on
(0,+∞)× (0,+∞)

u(x1,x2)

= 1
2 x1x2 cos

(
u(x1,x2)

1+x2
1x2

2

)
+ u(x1,x2)

(1+x2
1)

2(1+x2
2)

∫ x2
0
∫ x2

1+1
x1

2u(y1,y2)
1+|u(y1,y2)|

y1y2dy1dy2.

(4.2)

For all x1,x2,y1,y2 ∈ (0,+∞) and u,v ∈ R, let

Λ(x1,x2) = (x1,x2
1 +1)× (0,x2), ξ (x1,x2) = (x1,x2),

f (x1,x2,u) =
1
2

x1x2cos(
u

1+ x2
1x2

2
),

g(x1,x2,u) =
u

(1+ x2
1)

2(1+ x2
2)
,

h(x1,x2,y1,y2,u) =
2u

1+ |u|
y1y2.

Thus

| f (x1,x2,u)− f (x1,x2,v)| ≤
x1x2

2(1+ x2
1x2

2)
|u− v|,

|g(x1,x2,u)−g(x1,x2,v)| ≤
1

(1+ x2
1)

2(1+ x2
2)
|u− v|,

|h(x1,x2,y1,y2,u)| ≤ 2y1y2.

So we can choose a(x)= x1x2
2(1+x2

1x2
2)

, b(x)= 1
(1+x2

1)
2(1+x2

2)
, c(x)=

0, ϕ(u) = 1, and

k(x1,x2,y1,y2) = 2y1y2,

such that assumptions (H1)− (H5) are satisfied. To verify
(H5), we consider the function

r(x) =
1
2 x1x2

1− |x1x2|
2(1+x2

1x2
2)
− (x4

1+x2
1+1)x2

2
2(1+x2

1)
2(1+x2

2)

which is a continuous function from (0,+∞)× (0,+∞)→R+

that satisfies (H5) for

x1x2
2(1+x2

1x2
2)
+ 1

(1+x2
1)

2(1+x2
2)

∫ x2
0
∫ x2

1+1
x1

2y1y2dy1dy2

< 1
2 +

1
2 = 1.

Applying Theorem 3.5, we conclude that Equation (4.2) has
at least one solution in the space C((0,+∞)× (0,+∞)).

5. Concluding Remarks

1. Example 1 cannot be covered by the method used in [4]
because the function (x1 + x2)expx1+x2 is not bounded.
Example 2 cannot be treated by the method in [9] be-
cause Ω⊂ R2 and f depends on the unknown u.

2. The nonlinear quadratic Volterra equation:

u(x) = a(x)+ f (x,u(x))
∫ x

0
ν(x,y,u(y)dy, x≥ 0,

is solved in [9] via a measure of noncompactness and
it is clearly covered by Equation (1.1). From Theo-
rem 3.5, the existence of solution is obtained when
Λ(x) = (0,x), the nonlinearity f satisfies the Lipschitz
condition (H3) in the second argument, and the function
ν is variable-separated dominated as in (H4) while it is
assumed bounded in the third argument in [9, (H3)

′,
(33)], namely |ν(x,y,u)| ≤ g(x,y). Our assumption
(H5) then reduces to [9, (H4)

′, (34)]. In this case, notice
that if we take ϕ(s) = 1 in Hypothesis (H4), then the
function r introduced in (H5) becomes:

r(x) =
| f (x,0)|

∫ x
0 g(x,y)dy+ |a(x)|

1− k f
∫ x

0 g(x,y)dy
,

where k f is the Lipschitz constant of f and

k f

∫ x

0
g(x,y)dy < 1

by [9, (H4)
′, (34)], i.e., by Hypothesis (H5). This shows

that a direct application of Schauder-Tychonoff fixed
point theorem leads to the same existence result.

3. The nonlinear (non-quadratic) Volterra equation with
deviated argument:

u(x) = d(x)+
∫ x

0
ν(x,y,u(ϕ(y))dy, x≥ 0,

discussed in [5] is also covered by Equation (1.1). The
Schauder fixed point theorem was employed for the
nonlinearity ν was assumed to satisfy the sublinear
growth condition (see [5, (i), (6)]):

|ν(x,y,u)| ≤ η(x,y)+α(x)β (y)|u|,

for some positive continuous functions, α,β , and η .
This is of course a more restrictive condition than Hy-
pothesis (H5). Further conditions (ii) and (iii) are im-
posed in [5, (8)].

4. The usage of MNC in the space BC(R+×R+) in [4]
has generated several boundedness conditions on the
nonlinear functions of the functional-integral equation
in consideration (see [4, (i)-(v)]), which did not occur
in this work.

5. It may be of interest to relax Lipschitz conditions in
(H2)− (H3) which are intrinsic to the method used in
this work.
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