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Periodic solutions of nonlinear finite difference systems with time
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Abstract

In this paper a coupled system of nonlinear finite difference equations corresponding to a class of periodic-
parabolic systems with time delays and with nonlinear boundary conditions in a bounded domain is investigated.
Using the method of upper-lower solutions two monotone sequences for the finite difference system are con-
structed. Existence of maximal and minimal periodic solutions of coupled system of finite difference equations
with nonlinear boundary conditions is also discussed. The proof of existence theorem is based on the method
of upper-lower solutions and its associated monotone iterations. It is shown that the sequence of iterations
converges monotonically to unique solution of the nonlinear finite difference system with time delays under
consideration.
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1 Introduction

Many researchers investigated periodic solutions of parabolic boundary value problems. Their work is either
on scalar periodic-parabolic boundary value problem [1,2] or to system of reaction-diffusion type of equations
with specific reaction functions [3,4]. Much of the work for parabolic initial boundary value problem with time
delay [5,6,7] and without time delay [1,2,4,10] is found in literature. The recent work of [12] is on the periodic
parabolic system with time delays under linear boundary conditions. Also Pao [8,9] has discussed system of
periodic parabolic equations with nonlinear boundary conditions with and without time delays. Recently Pao
[7] investigated some numerical aspect of the class of coupled nonlinear systems with time delays. Most of the
works in the literature are devoted to the qualitative analysis of the system and dynamics of the system [6]. In
this paper we give a treatment to a coupled system of finite difference equations of periodic-parabolic system
with time delay and with nonlinear boundary conditions and obtain the results which are motivated by earlier
results of Pao [6,7,8].

2 Finite Difference Equations

Consider the system which consists of an arbitrary number of parabolic equations in a bounded domain
Ω in <p ( p = 1,2,3, . . . ) with boundary ∂Ω and with fixed period T > 0 in the form.

(2.1)


∂u(l)

∂t − L(l)u(l) = f (l)(x, t,u,uτ ) , x ∈ Ω , t > 0

B(l)u(l) = g(l)(x, t,u), x ∈ ∂Ω , t > 0

u(l)(x, t) = u(l)(x, t + T ), x ∈ Ω,−τl ≤ t ≤ 0,
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where u = u(x, t) =
(
u(1)(x, t), u(2)(x, t), ..., u(N)(x, t)

)
uτ = uτ (x, t) =

(
u(1)(x, t− τ1), u(2)(x, t− τ2), ..., u(N)(x, t− τN )

)
for some time delays τ1, τ2, ..., τN > 0 and for each l = 1,2, . . ., N ; L(l)u(l) and B(l)u(l) are given by

L(l)u(l) = ∇ · (D(l)∇u(l)) + V (l) · ∇u(l) , B(l)u(l) = α(l) ∂u(l)

∂ν
+ β(l)u(l)

with ∂
∂ν denoting outward normal derivative on ∂Ω. It is assumed that the diffusion coefficient D(l) =

D(l)(x, t) > 0 and the convection coefficient V (l) = (V (l)
1 , V

(l)
2 , ..., V

(l)
p ) of L(l) where V

(l)
ν = V

(l)
ν (x, t) for ν

= 1,2,. . .,p are continuous on DT = Ω × [0, T ] for every finite T > 0. The coefficients α(l) and β(l) =
β(l)(x, t) of B(l) are continuous on ST = ∂Ω × [0, T ] with either α(l) = 0 , β(l) > 0 (Dirichlet condition) or
α(l) = 1, β(l) ≥ 0 ( Neumann or Robin condition) where Ω = Ω ∪ ∂Ω.

It is assumed that f (l) , g(l) and u(l) are continuous functions in their respective domains and f (l)(·,u,uτ ),
g(l)(·,u) are in general nonlinear in u and uτ ; and satisfy the conditions in hypothesis (H2) of Section 3.

Let xj = (xj1 , xj2 , ..., xjp) be an arbitrary mesh point in Ω, where j = (j1, j2, ..., jp) is a multiple in-
dex with jν = 1,2, . . ., Mν and for each ν = 1,2, . . . , p , Mν is the total number of mesh points in the
xν direction. Denote by Ωp,Λp and Q

(l)
0 the sets of mesh points in Ω,Ω× (0,∞) and Ω× [−τl, 0] respectively.

Similarly denote by ∂Ωp, Sp and Q
(l)
p the sets of mesh points in ∂Ω, ∂Ω× [0,∞) and Ω× [−τl,∞) respectively.

Further let Qp = Q
(1)
p × Q

(2)
p × ... × Q

(N)
p . The set of all mesh points in Ω and Ω × [0,∞) are denoted by

Ωp and Λp respectively. It is assumed that, the domain Ω is connected. Let kn = tn − tn−1 be the time
increment and hν the spatial increment in the xν direction. For each l = 1, 2, . . . , N we choose kn such that
τl = k1 + k2 + ... + ksl

for some integer sl > 0 .

Define

u
(l)
j,n = u(l)(xj , tn) , uj,n = (u(1)

j,n, u
(2)
j,n, ..., u

(N)
j,n ),

u
(l)
j,n−sl

= u(l)(xj , tn−sl
) , uj,n−s = (u(1)

j,n−s1
, u

(2)
j,n−s2

, ..., u
(N)
j,n−sN

),

f (l)(uj,n,uj,n−s) = f (l)(xj , tn,uj,n,uj,n−s) , g(l)(uj,n) = g(l)(xj , tn,uj,n).

Define the standard central difference operators as follows:

4(ν)
uj,n

= h−2
ν [u(xj + hνeν , tn)− 2u(xj , tn) + u(xj − hνeν , tn)]

δ(ν)
uj,n

= 2h−1
ν [u(xj + hνeν , tn)− u(xj − hνeν , tn)]

where eν is the unit vector in <p with νth component 1 and zero elsewhere. Approximating the parabolic
system in (2.1) by the nonlinear finite difference system, we have

(2.2)



k−1
n (u(l)

j,n − u
(l)
j,n−1)− L(l)u

(l)
j,n = f (l)(uj,n,uj,n−s) in Λp

B(l)[u(l)
j,n] = g(l)(uj,n) on Sp,

u
(l)
j,n = u

(l)
j,n+k in Q

(l)
0 , l = 1, 2, , ..., N

where

L(l)u
(l)
j,n =

∑p
ν=1

(
D

(l)
j,n 4

(ν)
uj ,n +(V (l)

j,n)νδ(ν)u
(l)
j,n

)
, D

(l)
j,n = D(l)(x, t) , (V (l)

j,n)ν = (V (l)(x, t))ν

B(l)[u(l)
j,n] = α(l)(xj) |xj − x̂j |−1

[
u(l)(xj , tn)− u(l)(x̂j , tn)

]
+ β(l)(xj , tn)u(l)(xj , tn),

and u
(l)
j,n+k = u(l)(xj , tn+T ), T > 0 ,
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In the boundary conditions x̂j is a suitable point in Ωp and |xj − x̂j | is the distance between xj and x̂j .
We define upper and lower solutions for the discrete problem (2.2) in the following section.

3 Upper and Lower Solutions

Definition 3.1. A function ũj,n ≡ (ũ(1)
j,n, ũ

(2)
j,n, ..., ũ

(N)
j,n ) in Qp is called an upper solution of (2.2) if

(3.1)



k−1
n (ũ(l)

j,n − ũ
(l)
j,n−1)− L(l)ũ

(l)
j,n ≥ f

(l)
j,n(ũj,n, ũj,n−s) in Λp ,

B(l)[ũ(l)
j,n] ≥ g

(l)
j,n(ũj,n) on Sp ,

ũ
(l)
j,n ≥ ũ

(l)
j,n+k in Q

(l)
0 .

Similarly ûj,n ≡ (û(1)
j,n, û

(2)
j,n, ..., û

(N)
j,n ) in Qp is called a lower solution of (2.2) if it satisfies the inequalities

in (3.1) in reverse order.

Suppose ũj,n, ûj,n exist and ũj,n ≥ ûj,n.
Define

S (1) = {uj,n ∈ Qp , ûj,n ≤ uj,n ≤ ũj,n} ,

S (2) = {vj,n ∈ Qp , ûj,n−s ≤ vj,n−s ≤ ũj,n−s} ,

S = {(uj,n,vj,n) ∈ Qp ×Qp ; ûj,n ≤ uj,n ≤ ũj,n , ûj,n−s ≤ vj,n−s ≤ ũj,n−s} .

Also define

fj,n(uj,n,vj,n) =
(
f

(1)
j,n (uj,n,vj,n) , f

(2)
j,n (uj,n,vj,n) , ... , f

(N)
j,n (uj,n,vj,n)

)
,

gj,n(uj,n) =
(
g
(1)
j,n(uj,n) , g

(2)
j,n(uj,n) , ... , g

(N)
j,n (uj,n)

)
.

Definition 3.2. A function fj,n(uj,n, vj,n) is said to be quasi-monotone nondecreasing in S if for each l and

each (uj,n, vj,n) ∈ S , f
(l)
j,n(uj,n, vj,n) is nondecreasing in uj,n = (u(1)

j,n, u
(2)
j,n , ... , u

(N)
j,n ) for all u

(l)
j,n 6= u

(m)
j,n and

nondecreasing in vj,n = (v(1)
j,n, v

(2)
j,n , ... , v

(N)
j,n ) for all v

(m)
j,n , m = 1,2 , . . . , N .

We now make the following hypothesis
(H1) For each l = 1 , 2 , ... , N the coefficients D(l) , V (l) of L(l) and the functions f

(l)
j,n(·) , g

(l)
j,n(·) and

β(xj , tn) are all k-periodic in n.

(H2) fj,n(uj,n,vj,n) and gj,n(uj,n) are quasi-monotone nondecreasing C1 -functions of (uj,n,vj,n) ∈ S and
uj,n ∈ S (l) respectively.

The hypothesis (H2) is equivalent to the condition

∂f
(l)
j,n

∂u(m) (uj,n,vj,n) ≥ 0 for m 6= l ,
∂f

(l)
j,n

∂v(m) (uj,n,vj,n) ≥ 0 for m = 1 ,2 , .., N .

where (uj,n,vj,n) ∈ S .

and
∂g

(l)
j,n

∂v(m) (uj,n ≥ 0 for m 6= l where uj,n ∈ S (1) for l , m = 1 ,2,.. , N .

The subsets S , S (1) and S (2) are the sectors between the pairs of upper and lower solutions.
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Assume that the quasi-monotone condition in (H2) holds in the above subsets S and S (1). Let

(3.2)



γ
(l)
j,n ≥ Max

{
−∂f

(l)
j,n

∂u(l) (uj,n,vj,n) , (j, n) ∈ Λp , (uj,n,vj,n) ∈ S

}

σ
(l)
j,n ≥ Max

{
−∂g

(l)
j,n

∂u(l) (uj,n) , (j, n) ∈ Λp , uj,n ∈ S (1)

}

Define

(3.3)



L (l)[u(l)
j,n] = k−1

n (u(l)
j,n − u

(l)
j,n−1)− L(l)u

(l)
j,n + γ

(l)
j,nu

(l)
j,n

B(l)[u(l)
j,n] = B(l)[u(l)

j,n] + σ
(l)
j,nu

(l)
j,n

F
(l)
j,n(uj,n,vj,n) = γ

(l)
j,nu

(l)
j,n + f

(l)
j,n(uj,n,vj,n)

G
(l)
j,n(uj,n) = σ

(l)
j,nu

(l)
j,n + g

(l)
j,n(uj,n) , l = 1, 2, ..., N.

By hypothesis (H2) , F (l) and G(l) possess the property,

(3.4)



F
(l)
j,n(uj,n,vj,n) ≥ F

(l)
j,n(u′j,n,v′j,n)

when (ûj,n, v̂j,n) ≤ (u′j,n,v′j,n) ≤ (uj,n,vj,n) ≤ (ũj,n, ṽj,n) ,

G
(l)
j,n(uj,n) ≥ G

(l)
j,n(u′j,n) ,

when ûj,n ≤ u′j,n ≤ uj,n ≤ ũj,n , l = 1, 2, ..., N.

Using either u(0)
j,n = ũj,n or u(0)

j,n = ûj,n as the initial iteration we construct a sequence{
u(m)

j,n

}
=
{

(u(1)
j,n)

m
, (u(2)

j,n)
m

, . . . , (u(N)
j,n )

m}
from the linear discrete system

(3.5)



L (l)[u(l)
j,n]

m
= F

(l)
j,n(u(m−1)

j,n ,u(m−1)
j,n−s ) in Λp

B(l)[u(l)
j,n]

m
= G

(l)
j,n(u(m−1)

j,n ) on Sp

[u(l)
j,n]

m
= (u(l)

j,n+k)
m−1

in Q
(l)
0 ,

where n = 0 , -1 , -2, . . . , - sl , l = 1 ,2 , . . . , N , k > 0 , and m = 1 ,2 , . . .

From the above , it is clear that, the sequence
{
u(m)

j,n

}
is well defined. Denote this sequence by{

u(m)
j,n

}
if u(0)

j,n = ũj,n and by
{
u(m)

j,n

}
if u(0)

j,n = ûj,n.

Now we prove the monotone property of these sequences.
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Lemma 3.1. The sequences
{
u

(m)
j,n

}
,
{
u

(m)
j,n

}
possess the monotone property,

(3.6) ûj,n ≤ u
(m)
j,n ≤ u

(m+1)
j,n ≤ u

(m+1)
j,n ≤ u

(m)
j,n ≤ ũj,n on Qp

where m = 1 , 2 , . . . .

Proof. Let
[
w

(l)
j,n

](0)
=
[
u

(l)
j,n

](0)
−
[
u

(l)
j,n

](1)
where

[
u

(l)
j,n

](0)
= ũ

(l)
j,n .

By (3.3), (3.5) and (3.1) we have

L (l)
[
w

(l)
j,n

](0)
= k−1

n (ũ(l)
j,n − ũ

(l)
j,n−1)− L(l)ũ

(l)
j,n + γ

(l)
j,nũ

(l)
j,n −

[
γ

(l)
j,n

(
u

(l)
j,n

)(0)

+ f
(l)
j,n

(
u(0)

j,n,u(0)
j,n−s

)]
= k−1

n (ũ(l)
j,n − ũ

(l)
j,n−1)− L(l)ũ

(l)
j,n − f

(l)
j,n(ũ(l)

j,n , ũ(l)
j,n−s) ≥ 0 in Λp

B(l)[w(l)
j,n]

(0)
=
[
B(l)[ũ(l)

j,n] + ũ
(l)
j,nσ

(l)
j,n

]
−
[
σ

(l)
j,n

(
u

(l)
j,n

)(0)

+ g
(l)
j,n

(
u(0)

j,n

)]
= B(l)[ũ(l)

j,n]− g
(l)
j,n

(
ũ(0)

j,n

)
≥ 0 on Sp

[w(l)
j,n]

(0)
= ũ

(l)
j,n − ũ

(l)
j,n+k ≥ 0 in Q

(l)
0 .

By positivity Lemma of [11 ] for finite difference equations of parabolic initial boundary value prob-
lem

[w(l)
j,n]

(0)
≥ 0 on Q(l)

p

Thus (u(l)
j,n)

(0)
≥ [u(l)

j,n]
(1)

on Q
(l)
p . This yields u(0)

j,n ≥ u(1)
j,n on Qp.

A similar argument using the property of a lower solution gives u(1)
j,n ≥ u(0)

j,n

Put [w(l)
j,n]

(1)
= [u(l)

j,n]
(1)

− [u(l)
j,n]

(1)
. Then by (3.4) and (3.5) , we have

L (l)[w(l)
j,n]

(1)
= F

(l)
j,n

(
u(0)

j,n,u(0)
j,n−s

)
− F

(l)
j,n

(
u(0)

j,n,u(0)
j,n−s

)
≥ 0 in Λp

B(l)[w(l)
j,n]

(1)
= G

(l)
j,n

(
u(0)

j,n

)
−G

(l)
j,n

(
u(0)

j,n

)
≥ 0 on Sp

[w(l)
j,n]

(1)
= [u(l)

j,n+k]
(0)
− [u(l)

j,n+k]
(0)

≥ 0 on Q
(l)
0 .

It follows again from positivity lemma of [11]that [w(l)
j,n]

(1)
≥ 0.

i.e. (u(l)
j,n)

(1)
≥ (u(l)

j,n)
(1)

on Q
(l)
p . This gives u(1)

j,n ≥ u(1)
j,n.

The above conclusions show that

u(0)
j,n ≥ u(1)

j,n ≥ u(1)
j,n ≥ u(0)

j,n on Qp

The monotone property (3.6)follows by an induction argument as in [11].

It is clear from the monotone property (3.6) that the point-wise limits

(3.7) lim
m→∞

u(m)
j,n = uj,n and lim

m→∞
u(m)

j,n = uj,n

exist and satisfy the relation
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(3.8) ûj,n ≤ u(m)
j,n ≤ u(m+1)

j,n ≤ uj,n ≤ uj,n ≤ u(m+1)
j,n ≤ u(m)

j,n ≤ ũj,n on Qp

Now we show that uj,n and uj,n are respectively maximal and minimal k-periodic solutions of (2.2).

Theorem 3.1. Let ûj,n and ũj,n be ordered lower and upper solutions of (2.2) and let hypothesis (H1), (H2) be
satisfied. Then the problem (2.2) has a maximal k-periodic solution uj,n and a minimal k-periodic solution uj,n

in S (1) . Moreover the sequences
{
u

(m)
j,n

}
and

{
u

(m)
j,n

}
converge monotonically to uj,n and uj,n respectively and

satisfy the relation (3.8). If in addition uj,0 = uj,0 then uj,n = uj,n (= u∗j,n), and u∗j,n is the unique solution
of (2.2) in S (1).

Proof. The sequence
{
u(m)

j,n

}
constructed from the linear system (3.5) with initial iteration either upper or

lower solution of (2.2) converge to uj,nor uj,n according to initial iteration as ũj,n or ûj,n respectively and
using (3.7) it shows that both uj,n and uj,n satisfy the equations

(3.9)



L (l)[u(l)
j,n] = F

(l)
j,n(uj,n,uj,n−s) in Λp ,

B(l)[u(l)
j,n] = G

(l)
j,n(uj,n, ) on Sp ,

u
(l)
j,n = u

(l)
j,n+k in Q

(l)
0 .

In view of (3.3) uj,n and uj,n are solutions of (2.2).

To show that uj,n and uj,n are k-periodic solutions we let w
(l)
j,n = u

(l)
j,n − u

(l)
j,n+k,

where u
(l)
j,n stands for either u

(l)
j,n or u

(l)
j,n , l =1, 2 , . . . , N.

By Hypothesis (H1) and mean value theorem, we have

k−1
n (w(l)

j,n − w
(l)
j,n−1)− L(l)

n w
(l)
j,n = k−1

n (u(l)
j,n − u

(l)
j,n−1)− L(l)

n u
(l)
j,n

−
[
k−1

n (u(l)
j,n+k − u

(l)
j,n+k−1)− L

(l)
n+ku

(l)
j,n+k

]
= f

(l)
j,n(uj,n,uj,n−s)− f

(l)
j,n(uj,n+k,uj,n+k−s)

=
N∑

m=1

(
∂f

(l)
j,n

∂u(m)
(ξ, η)

)
w

(m)
j,n +

N∑
m=1

(
∂f

(l)
j,n

∂v(m)
(ξ, η)

)
w

(m)
j,n−s in Λp

(3.10) B(l)[w(l)
j,n] = B

(l)
n [u(l)

j,n]−B
(l)
n+k[u(l)

j,n+k]

= g
(l)
j,n(uj,n)− g

(l)
j,n(uj,n+k)

=
N∑

m=1

(
∂g

(l)
j,n

∂u(m) (ξ′)
)

w
(m)
j,n on Sp ,

and w
(l)
j,n = u

(l)
j,n − u

(l)
j,n+k = 0 in Q

(l)
0 , l = 1,2, ..., N .

where ξ = ξj,n , ξ′ = ξ′j,n and η = ηj,n are some intermediate values in S (1) and S (2) respectively and

(3.11) w
(l)
j,n−s = u

(l)
j,n−sl

− u
(l)
j,n+k−sl

.

Let s = min{sl , sl > 0 , l = 1, 2, ..., N} > 0 and consider the system (3.10) in the domain Λs = Ωp× [0 , s]
. From (3.10) and (3.11) we have w

(l)
j,n−s = 0 on Λs .
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This implies that

(3.12)



k−1
n (w(l)

j,n − w
(l)
j,n−1)− L

(l)
n w

(l)
j,n =

N∑
m=1

blm
j,nw

(m)
j,n in Λs ,

B(l)
[
w

(l)
j,n

]
=

N∑
m=1

clm
j,nw

(m)
j,n on Ss ,

w
(l)
j,0 = 0 in Ωp ,

where

Ss = ∂Ωp × [0, s] ,

blm
j,n =

∂f
(l)
j,n

∂u(m) (ξj,n, ηj,n) ,

and clm
j,n =

∂g
(l)
j,n

∂u(m) (ξ′j,n) .
From the hypothesis (H2) it is clear that blm ≥ 0 and clm ≥ 0 on Λs when m 6= l .

By Lemma 10.9.1 of [10] we obtain w
(l)
j,n = 0 on Λs = Ωp × [0, s]. This shows that w

(l)
j,n−s = 0 on Λ2s =

Ωp× [0, 2s] and so w
(l)
j,n satisfies the equations in (3.12), in the domain Λ2s. It follows again from Lemma 10.9.1

of [10] that w
(l)
j,n = 0 on Λ2s.

A continuation of the similar argument shows that w
(l)
j,n = 0 on Ωp × [0,Ms] for every positive integer M.

This proves the periodic property uj,n = uj,n+k on Qp.
Since by definition every k-periodic solution u∗j,n of (2.2) is an upper solution as well as a lower solution, the

consideration of
(
u∗j,n, ûj,n

)
and

(
ũj,n,u∗j,n

)
as the pair of upper and lower solutions in the above argument,

leads to the relation uj,n ≤ u∗j,n ≤ uj,n on Qp. This ensures the maximal and minimal property of uj,n and
uj,n. Finally if uj,0 = uj,0 (≡ uj,0) then by considering problem (2.2) as an initial boundary value problem with
condition uj,0 = uj , the standard existence-uniqueness theorem for finite difference system of initial boundary
value problem of parabolic type ensures that uj,n = uj,n on Qp. This completes the proof.
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