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Abstract
The purpose of this paper is to study nonlinear fractional integro-differential equations of higher order in Banach
spaces. Sufficient conditions for existence of positive solutions are established by well-known fixed point index
theorem and nonlinear alternative of Leray-Schauder type. Example is presented to demonstrate the application
of our main result.
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1. Introduction
Let X be an ordered Banach space with the norm ‖ · ‖, θ

be a zero element of X and C(I,X) denotes an ordered Banach
space of X-valued continuous functions defined on I with the
supremum norm ‖x‖∞ := sup{‖x(t)‖ : t ∈ I}.

The aim of the present paper is to investigate the following
boundary value problem for fractional integro-differential
equation

cDα x(t) = f
(
t,x(t),(Sx)(t)

)
,α ∈ (n−1,n],

x(0) = x0,x′(0) = x1
0,x
′′(0) = x2

0, . . . ,x
(n−2)(0) = xn−2

0 ,

x(n−1)(1) = x1,

(1.1)

for t ∈ I = [0,1], where cDα is the Caputo fractional derivative
of order α, f : I×X ×X → X , x0,xi

0(i = 1,2, . . . ,n− 2,n ≥
3,n is an integer ), x1 are elements of a positive cone P ⊂
X and S is a nonlinear integral operator given by (Sx)(t) =∫ t

0 k
(
t,s,x(s)

)
ds, where k ∈C(I× I×X ,X).

It is important to exploring studies that focus on the theory
of boundary value problems (BVP for short) for nonlinear
fractional differential equations. Numerous applications and
physical manifestations of fractional calculus have been found
and some existence results for nonlinear fractional boundary
value problems were established by making use of techniques
of nonlinear analysis such as Banach fixed point theorem,
Leray-Schauder theory, etc., see [1, 14–17].

Many authors have been investigated the problems of exis-
tence and uniqueness of positive solutions to boundary value
problems for fractional order differential equations, for exam-
ple, see [4, 5, 8, 10–13, 18, 19]. Our work is motivated by
the interesting results obtained by Shuqin Zhang in [19] and
influenced by the works in [8, 11].

For convenience and simplicity in the following discus-
sion, we denote

f0 = liminf
‖x‖+‖y‖→0

min
t∈[a,b]

f (t,x,y)
‖x‖+‖y‖

.
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The organization of this paper is as follows. In Section
2, we present the preliminaries and hypotheses. Section 3
discusses the existence of positive solutions by well-known
fixed point index theorem and nonlinear alternative of Leray-
Schauder type. Finally, in Section 4, an example is provided
to illustrate the main result.

2. Preliminaries and Hypotheses

We shall set-forth some preliminaries from [6, 12] and
hypotheses on the functions involved in (1.1) that will be used
in our subsequent discussion.

Definition 2.1. Let (E,‖·‖) be a Banach space. A non-empty
closed convex set K ⊂ E is said to be a cone if the following
conditions are satisfied:

(i) if y ∈ K and λ ≥ θ , then λy ∈ K;

(ii) if y ∈ K and −y ∈ K, then y = θ .

A cone P is called positive if x≥ θ for every x ∈ P and is
said to be solid if it contains interior points, P̊6= θ . The positive
cone P is said to be generating if X = P−P; that is, every
element y ∈ X can be represented in the form y = x− z, where
x,z ∈ P. Every cone with nonempty interior is generating.
A cone P induced a partial ordering in X given by u ≤ v if
v−u ∈ P. If u≤ v and u 6= v, we write u < v; if cone P is solid
and v−u ∈ P̊, we write u� v.

Definition 2.2. A cone P⊂ X is said to be normal if there ex-
ists a positive constant v such that ‖x+y‖≥ v,∀x,y∈P,‖x‖=
1,‖y‖= 1.

Definition 2.3. A function x is called positive solution of
problem (1.1) if x(t)≥ θ ,∀ t ∈ [0,1] and it satisfies (1.1).

Lemma 2.4. ([3]) If W⊆C([a,b],X) is bounded and equicon-
tinuous, then Ψ(W(t)) is continuous for t ∈ [a,b], and
Ψ(W) = sup{Ψ(W(t)), t ∈ [a,b]}, where W(t) = {x(t);x ∈
W} ⊆ X and Ψ denote the Hausdorff’s measure of noncom-
pactness.

Lemma 2.5. ([9]) Let X be a Banach space and H ⊂C(J,X)
if H is countable and there exists ϕ ∈ L(J,R+) such that
‖y(t)‖ ≤ ϕ(t), t ∈ J,y ∈ H. Then Ψ({y(t) : y ∈ H}) is inte-
grable on J and

Ψ

({∫
J

y(t)dt : y ∈ H
})
≤ 2

∫
J

Ψ{y(t) : y ∈ H}dt.

For more details about Hausdorff’s measure of noncom-
pactness, one can see [3].

Lemma 2.6. Let f be a continuous function. Then, x ∈
C(I,X)is a solution of the fractional integral equation

x(t)

=
1

Γ(α)

∫ t

0
(t− s)α−1 f

(
s,x(s),(Sx)(s)

)
ds

− tn−1

(n−1)!Γ(α−n+1)

∫ 1

0
(1− s)α−n f

(
s,x(s),(Sx)(s)

)
ds

+ x0 + x1
0t +

x2
0

2!
t2 + · · ·+

xn−2
0

(n−2)!
tn−2 +

x1

(n−1)!
tn−1,

if and only if x is solution of the fractional BVP (1.1).

Proof. We can proof this lemma similar to (Lemma (2.4),
[14] ), by putting T = 1.

For convenience, we list the following hypotheses:

(H1) The function f : I×X×X → X is continuous and f ≤
θ .

(H2) There are Lebesgue integrable functionals ai(t),bi(t),
(i=1,2) and c(t) such that

‖ f
(
t,x(t),(Sx)(t)

)
‖

≤ a1(t)+b1(t)‖x(t)‖+ c(t)‖(Sx)(t)‖,
‖k
(
t,s,x(s)

)
‖ ≤ a2(t)+b2(t)‖x(s)‖,

and 0 <
∫ 1

0
1

ln−1 |G(s,s)|
(

a1(s)+ c(s)a2(s)
)

ds < ∞,

0 <
∫ 1

0
1

ln−1 |G(s,s)|
(

b1(s)+b2(s)c(s)
)

ds≤ 1
3 .

(H3) For any bounded sets Bi ⊂ X , i = 1,2, f (t,B1,B2) is
relatively compact set.

(H4) f0 < m, where

m = max

{(∫ 1

0
ζ |G(s,s)|ds

)−1

,

∫ 1

0

1
ln−1 |G(s,s)|

(
a1(s)+ c(s)a2(s)

)
ds,

‖x0‖+‖x1
0‖+

‖x2
0‖

2!
+ · · ·+

‖xn−2
0 ‖

(n−2)!
+
‖x1‖

(n−1)!

}
.

The following two lemmas play the key role for establishing
our main results.

Lemma 2.7. ([6, 11]) Let A : Y → Y be a completely con-
tinuous mapping and Ay 6= y for y ∈ ∂Yr. Thus, we have the
following conclusions:
(i)If ‖y‖ ≤ ‖Ay‖ for y ∈ ∂Yr, then i(A,Yr,Y ) = 0,
(ii)If ‖y‖ ≥ ‖Ay‖ for y ∈ ∂Yr, then i(A,Yr,Y ) = 1.

Lemma 2.8. (Nonlinear alternative of Leray-Schauder type,
[2]) Let C be a nonempty convex subset of a Banach space
X. Let U be a nonempty open subset of C with 0 ∈U and
F : U → C be a compact and continuous operators. Then
either
(i)F has fixed points in U, or
(ii) there exist x ∈ ∂U and η ∈ [0,1] with x = ηF(x).
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3. Main Results
Before proceeding to the main results, we require to prove

the following lemmas.

Define the operator F : C(I,X)→C(I,X) as follows:

(F(x))(t)

=
∫ 1

0
G(t,s) f

(
s,x(s),(Sx)(s)

)
ds

+ x0 + x1
0t +

x2
0

2!
t2 + · · ·+

xn−2
0

(n−2)!
tn−2 +

x1

(n−1)!
tn−1, t ∈ I,

(3.1)

where

G(t,s)=


(t−s)α−1

Γ(α) −
tn−1(1−s)α−n

(n−1)!Γ(α−n+1) , 0≤ s≤ t < 1,

− tn−1(1−s)α−n

(n−1)!Γ(α−n+1) , 0≤ t ≤ s < 1.

(3.2)

Lemma 3.1. The function G(t,s) defined as in (3.2) has the
following properties:

(i) G(t,s) is continuous and G(t,s) ≤ 0 for any (t,s) ∈
[0,1]× [l,1);

(ii) for any (t,s) ∈ [0,1]× [l,1), 1
ln−1 G(s,s) ≤ G(t,s) ≤

ζ G(s,s), where

0 <l =
1

( Γ(α)
(n−1)!Γ(α−n+1) )

1
n−1 +1

,

ζ = min
{
−(n−1)!Γ(α−n+1)(1− s)n−1

sn−1Γ(α)
+1,

tn−1}≤ 1.

Proof. (i) Obviously, G(t,s) is continuous for any (t,s) ∈
[0,1]× [l,1), and G(t,s)≤ 0 for t ≤ s.
Since s≥ l, we have

s≥ l =
1

( Γ(α)
(n−1)!Γ(α−n+1) )

1
n−1 +1

⇒1
s
≤ (

Γ(α)

(n−1)!Γ(α−n+1)
)

1
n−1 +1

⇒(
1
s
−1)≤ (

Γ(α)

(n−1)!Γ(α−n+1)
)

1
n−1

⇒(
1− s

s
)n−1 ≤ Γ(α)

(n−1)!Γ(α−n+1)

⇒ 1
Γ(α)

≤ sn−1(1− s)1−n

(n−1)!Γ(α−n+1)

⇒ (1− s)α−1

Γ(α)
≤ sn−1(1− s)α−n

(n−1)!Γ(α−n+1)
(3.3)

Now, for any s ≤ t,(t,s) ∈ [0,1]× [l,1), by (3.3), we
have

G(t,s) =
(t− s)α−1

Γ(α)
− tn−1(1− s)α−n

(n−1)!Γ(α−n+1)

≤ (1− s)α−1

Γ(α)
− sn−1(1− s)α−n

(n−1)!Γ(α−n+1)
≤ 0.

(ii) Let (t,s) ∈ [0,1]× [l,1). If s≤ t ,it follows from (3.3)

G(t,s)

=
(t− s)α−1

Γ(α)
− tn−1(1− s)α−n

(n−1)!Γ(α−n+1)

≤ (1− s)α−1

Γ(α)
− sn−1(1− s)α−n

(n−1)!Γ(α−n+1)

≤− sn−1(1− s)α−n

(n−1)!Γ(α−n+1)

×
{
− (n−1)!Γ(α−n+1)(1− s)n−1

sn−1Γ(α)
+1
}

≤
{
− (n−1)!Γ(α−n+1)(1− s)n−1

sn−1Γ(α)
+1
}

G(s,s).

(3.4)

If t ≤ s, then

G(t,s) =− tn−1(1− s)α−n

(n−1)!Γ(α−n+1)

≤− (ts)n−1(1− s)α−n

(n−1)!Γ(α−n+1)

≤ tn−1G(s,s). (3.5)

Therefore, from (3.4) and (3.5), we obtain

G(t,s)≤ ζ G(s,s). (3.6)

Also, if s≤ t, it yields

G(t,s) =
(t− s)α−1

Γ(α)
− tn−1(1− s)α−n

(n−1)!Γ(α−n+1)

≥− tn−1(1− s)α−n

(n−1)!Γ(α−n+1)

≥− 1
sn−1

sn−1(1− s)α−n

(n−1)!Γ(α−n+1)

≥ 1
ln−1 G(s,s). (3.7)

Similarly, for t ≤ s, we have

G(t,s)≥ 1
ln−1 G(s,s). (3.8)

Thus, from (3.7) and (3.8), we obtain

1
ln−1 G(s,s)≤ G(t,s). (3.9)
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Define the set

K =
{

x ∈C(I,P) : x(t)≥ θ , x(t)≥ ζ ln−1‖x‖∞, t ∈ [0,1]
}
,

which is a cone in the space C(I,P).

Lemma 3.2. Prove that F(K)⊂ K.

Proof. In view of G(t,s)≤ 0 for any (t,s) ∈ [0,1]× [l,1) and
f ≤ θ , we have Fx≥ θ .
Now, for any x ∈ K, from lemma 3.1, we obtain

‖Fx‖∞ ≤
∫ 1

0

1
ln−1 G(s,s) f

(
s,x(s),(Sx)(s)

)
ds

+ x0 + x1
0 +

x2
0

2!
+ · · ·+

xn−2
0

(n−2)!
+

x1

(n−1)!
.

(3.10)

On other hand, for any t ∈ I, again by (3.10) and Lemma 3.1,
we have

(F(x))(t)

=
∫ 1

0
G(t,s) f

(
s,x(s),(Sx)(s)

)
ds

+ x0 + x1
0t +

x2
0

2!
t2 + . . .

+
xn−2

0
(n−2)!

tn−2 +
x1

(n−1)!
tn−1

≥
∫ 1

0
ζ G(s,s) f

(
s,x(s),(Sx)(s)

)
ds

+ x0 + x1
0t +

x2
0

2!
t2 + . . .

+
xn−2

0
(n−2)!

tn−2 +
x1

(n−1)!
tn−1

= ζ ln−1
{∫ 1

0

1
ln−1 G(s,s) f

(
s,x(s),(Sx)(s)

)
ds

+
x0

ζ ln−1 +
x1

0t
ζ ln−1 +

x2
0t2

2!ζ ln−1 + . . .

+
xn−2

0 tn−2

(n−2)!ζ ln−1 +
x1tn−1

(n−1)!ζ ln−1

}

≥ ζ ln−1
{∫ 1

0

1
ln−1 G(s,s) f

(
s,x(s),(Sx)(s)

)
ds

+x0 + x1
0 +

x2
0

2!
+ · · ·+

xn−2
0

(n−2)!
+

x1

(n−1)!

}
≥ ζ ln−1‖Fx‖∞.

Thus,
(Fx)(t)≥ ζ ln−1‖Fx‖∞.

Hence, F(K)⊂ K.

Lemma 3.3. Suppose that (H1)–(H3) hold, then, F : K→ K
is completely continuous.

Proof. Firstly, we show that F : K → K is continuous. As-
sume that xn,x ∈ K and ‖xn− x‖→ 0 as n→ ∞. Since f (I×
X×X ,X) is continuous, then

lim
n→∞
‖ f
(
t,xn(t),(Sxn)(t)

)
− f
(
t,x(t),(Sx)(t)

)
‖= 0. (3.11)

Then, for any t ∈ I, from the Lebesgue dominated convergence
theorem together with (3.11), we know that

‖(F(xn))(t)− (F(x))(t)‖

≤
∫ 1

0

∥∥G(t,s) f
(
s,xn(s),(Sxn)(s)

)
−G(t,s) f

(
s,x(s),(Sx)(s)

)∥∥ds

≤
∫ 1

0

1
ln−1 |G(s,s)|

∥∥ f
(
s,xn(s),(Sxn)(s)

)
− f
(
s,x(s),(Sx)(s)

)∥∥ds

→ 0 as n→ ∞.

Hence, F : K→ K is continuous.

Let B⊂ K be any bounded set, then there exists a positive
constant r such that ‖x‖∞ ≤ r. Thus, we claim that ‖Fx‖∞ ≤
M. By (H2), for any x ∈ B, t ∈ I, we have

‖(F(x))(t)‖

≤
∫ 1

0

1
ln−1 |G(s,s)|

(
a1(s)+b1(s)‖x(s)‖

+ c(s)‖(Sx)(s)‖
)

ds

+‖x0‖+‖x1
0‖t +

‖x2
0‖

2!
t2 + . . .

+
‖xn−2

0 ‖
(n−2)!

tn−2 +
‖x1‖

(n−1)!
tn−1

≤
∫ 1

0

1
ln−1 |G(s,s)|

(
a1(s)+b1(s)‖x(s)‖

+ c(s)
∫ s

0
(a2(s)+b2(s)‖x(τ)‖)dτ

)
ds

+‖x0‖+‖x1
0‖t +

‖x2
0‖

2!
t2 + . . .

+
‖xn−2

0 ‖
(n−2)!

tn−2 +
‖x1‖

(n−1)!
tn−1

≤
∫ 1

0

1
ln−1 |G(s,s)|

(
a1(s)+ c(s)a2(s)+

(
b1(s)

+ c(s)b2(s)
)
r
)

ds

+‖x0‖+‖x1
0‖+

‖x2
0‖

2!
+ . . .

+
‖xn−2

0 ‖
(n−2)!

+
‖x1‖

(n−1)!
:= M.

Thus, ‖Fx‖∞ ≤M. Therefore, F(B) is uniformly bounded.
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Next, we will show that F maps bounded sets into equicon-
tinuous sets of K.
For any x ∈ B and t1, t2 ∈ I and t1 ≤ t2 , we get

‖(F(x))(t2)− (F(x))(t1)‖

≤
∥∥∥∥∫ 1

0
[G(t2,s)−G(t1,s)] f

(
s,x(s),(Sx)(s)

)
ds
∥∥∥∥

+‖x1
0‖(t2− t1)+

‖x2
0‖

2!
(t2

2 − t2
1 )+ . . .

+
‖xn−2

0 ‖
(n−2)!

(tn−2
2 − tn−2

1 )+
‖x1‖

(n−1)!
(tn−1

2 − tn−1
1 )

≤
∫ 1

0
|G(t2,s)−G(t1,s)|

×
(

a1(s)+b1(s)‖x(s)‖+ c(s)‖(Sx)(s)‖
)

ds

+‖x1
0‖(t2− t1)+

‖x2
0‖

2!
(t2

2 − t2
1 )+ . . .

+
‖xn−2

0 ‖
(n−2)!

(tn−2
2 − tn−2

1 )+
‖x1‖

(n−1)!
(tn−1

2 − tn−1
1 )

≤
∫ 1

0
|G(t2,s)−G(t1,s)|

(
a1(s)+b1(s)‖x(s)‖

+ c(s)
∫ s

0
(a2(s)+b2(s)‖x(τ)‖)dτ

)
ds

+‖x1
0‖(t2− t1)+

‖x2
0‖

2!
(t2

2 − t2
1 )+ . . .

+
‖xn−2

0 ‖
(n−2)!

(tn−2
2 − tn−2

1 )+
‖x1‖

(n−1)!
(tn−1

2 − tn−1
1 )

≤
∫ 1

0
|G(t2,s)−G(t1,s)|

(
a1(s)+ c(s)a2(s)+

(
b1(s)

+ c(s)b2(s)
)
r
)

ds.

+‖x1
0‖(t2− t1)+

‖x2
0‖

2!
(t2

2 − t2
1 )+ . . .

+
‖xn−2

0 ‖
(n−2)!

(tn−2
2 − tn−2

1 )+
‖x1‖

(n−1)!
(tn−1

2 − tn−1
1 ).

As t2→ t1, then ‖(F(x))(t2)− (F(x))(t1)‖ tends to 0, which
implies that the family of functions {Fx : x ∈ B} is equicon-
tinuous.

Finally, by virtue of Lemma 2.5 and (H3), we know that

Ψ{(F(x))(t) : x ∈ B}

= Ψ

(∫ 1

0
G(t,s) f

(
s,x(s),(Sx)(s)

)
ds+ x0 + x1

0t

+
x2

0
2!

t2 + · · ·+
xn−2

0
(n−2)!

tn−2 +
x1

(n−1)!
tn−1

)

≤ 2
∫ 1

0
|G(t,s)|Ψ

(
f
(
s,x(s),(Sx)(s)

))
ds = 0.

So, Ψ(F(B)) = 0. Therefore, F(B) is relative compact. In
view of the Arzelá–Ascoli theorem, we conclude that the

operator F : K→ K is completely continuous. This completes
the proof.

Now, we will discuss our main results.

Theorem 3.4. Suppose that (H1)–(H4) hold. Then the frac-
tional BVP (1.1) has at least one positive solution.

Proof. From (H4), there exists ε > 0 such that f0 < m+ε and
also there exists R > 0 such that for any 0 < ‖x1‖+‖x2‖ ≤ R
and t ∈ I, we have

f (t,x1,x2)≤ (m+ ε)(‖x1‖+‖x2‖). (3.12)

Set KR = {x ∈C(I,P) : ‖x‖∞ < R}. Then for any x ∈ KR∩K,
by virtue of (3.12) and lemma 3.1, we have

‖(F(x))(t)‖

≥
∥∥∥∥∫ 1

0
G(t,s) f

(
s,x(s),(Sx)(s)

)
ds
∥∥∥∥

≥
∥∥∥∥∫ 1

0
ζ G(s,s)(m+ ε)

(
‖x(s)‖+‖(Sx)(s)‖

)
ds
∥∥∥∥

≥
∥∥∥∥∫ 1

0
ζ (m+ ε)G(s,s)‖x(s)‖ds

∥∥∥∥
≥
∥∥∥∥∫ 1

0
ζ m G(s,s)‖x(s)‖ds

∥∥∥∥ ,
by taking supremum to both sides, we obtain

‖Fx‖∞ ≥ m
∫ 1

0
ζ |G(s,s)|ds‖x‖∞ = R.

Therefore, by Lemma 2.7, we get

i(F,KR∩K,K) = 0. (3.13)

Let KR′ = {x∈C(I,P) : ‖x‖∞ <R′}, where R′>max{3m,R},
so for any x ∈ KR′ ∩K and t ∈ I, we obtain

‖(F(x))(t)‖

≤
∫ 1

0

1
ln−1 |G(s,s)|

×
(

a1(s)+b1(s)‖x(s)‖+ c(s)‖(Sx)(s)‖
)

ds

+‖x0‖+‖x1
0‖t +

‖x2
0‖

2!
t2 + . . .

+
‖xn−2

0 ‖
(n−2)!

tn−2 +
‖x1‖

(n−1)!
tn−1

≤
∫ 1

0

1
ln−1 |G(s,s)|

(
a1(s)+b1(s)‖x(s)‖

+ c(s)
∫ s

0
(a2(s)+b2(s)‖x(τ)‖)dτ

)
ds

+‖x0‖+‖x1
0‖+

‖x2
0‖

2!
+ · · ·+

‖xn−2
0 ‖

(n−2)!
+
‖x1‖

(n−1)!

≤
∫ 1

0

1
ln−1 |G(s,s)|

(
a1(s)+ c(s)a2(s)

)
ds
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+
∫ 1

0

1
ln−1 |G(s,s)|

(
b1(s)+b2(s)c(s)

)
ds‖x‖∞

+‖x0‖+‖x1
0‖+

‖x2
0‖

2!
+ · · ·+

‖xn−2
0 ‖

(n−2)!
+
‖x1‖

(n−1)!

≤
∫ 1

0

1
ln−1 |G(s,s)|

(
a1(s)+ c(s)a2(s)

)
ds

+R′
∫ 1

0

1
ln−1 |G(s,s)|

(
b1(s)+b2(s)c(s)

)
ds

+‖x0‖+‖x1
0‖+

‖x2
0‖

2!
+ · · ·+

‖xn−2
0 ‖

(n−2)!
+
‖x1‖

(n−1)!

≤ R′

3
+

R′

3
+

R′

3
= R′.

Hence, ‖(Fx‖∞ ≤ R′. Therefore,

i(F,KR′ ∩K,K) = 1. (3.14)

From (3.13) and (3.14) and using Theorem (2.3.1), [6], we
get
i(F,(KR′ ∩K)\(KR∩K),K)= i(F,KR′ ∩K,K)− i(F,KR∩K,K)= 1.
Thus, F has at least one fixed point on (KR′ ∩K)\(KR ∩K).
Consequently, problem (1.1) has at least one positive solution.

Theorem 3.5. Assume that all the assumptions of Lemma 3.3
hold. If∫ 1

0

1
ln−1 |G(s,s)|

(
b1(s)+b2(s)c(s)

)
ds < 1, (3.15)

then fractional BVP (1.1) has at least one positive solution.

Proof. Let U = {x ∈ K : ‖x‖∞ < a}, where∫ 1

0

1
ln−1 |G(s,s)|

(
a1(s)+ c(s)a2(s)

)
ds

+‖x0‖+‖x1
0‖+

‖x2
0‖

2!
+ . . .

+
‖xn−2

0 ‖
(n−2)!

+
‖x1‖

(n−1)!
a :=

1−
∫ 1

0
1

ln−1 |G(s,s)|
(
b1(s)+b2(s)c(s)

)
ds

> 0

and
F : U → K, where

(F(x))(t)

=
∫ 1

0
G(t,s) f

(
s,x(s),(Sx)(s)

)
ds

+ x0 + x1
0t +

x2
0

2!
t2 + . . .

+
xn−2

0
(n−2)!

tn−2 +
x1

(n−1)!
tn−1.

In order to prove that F has at least one fixed point which is a
positive solution of fractional BVP (1.1), we shall apply the

nonlinear alternative of Leray-Schauder type.
By Lemma 3.3, F is completely continuous.
Suppose that there exist x ∈ K and η ∈ [0,1]} such that x =
ηFx, we claim that ‖x‖∞ 6= a. In fact, we have

‖x(t)‖= η‖(F(x))(t)‖

≤
∫ 1

0

1
ln−1 |G(s,s)|

(
a1(s)+ c(s)a2(s)

)
ds

+
∫ 1

0

1
ln−1 |G(s,s)|

(
b1(s)+b2(s)c(s)

)
ds‖x‖∞

+‖x0‖+‖x1
0‖+

‖x2
0‖

2!
+ · · ·+

‖xn−2
0 ‖

(n−2)!
+
‖x1‖

(n−1)!
.

So

‖x‖∞

<
∫ 1

0

1
ln−1 |G(s,s)|

(
a1(s)+ c(s)a2(s)

)
ds

+a
∫ 1

0

1
ln−1 |G(s,s)|

(
b1(s)+b2(s)c(s)

)
ds

+‖x0‖+‖x1
0‖+

‖x2
0‖

2!
+ . . .

+
‖xn−2

0 ‖
(n−2)!

+
‖x1‖

(n−1)!
= a.

This means that x /∈ ∂U. By Lemma 2.8, F has a fixed point
x ∈U . Hence, fractional BVP (1.1) has at least one positive
solution. The proof is completed.

4. Example
In this section, we give an example to illustrate the useful-

ness of our main results.

Example 4.1. Consider the following fractional integrodiffer-
ential equation

cD
9
2 x(t)+4+ t2 + 2

3 t|x(t)|sin(|x(t)|)
+ 1

5
∫ 1

0 [t +
|x(s)|

4+|x2(s)| ]ds = 0,

t ∈ [0,1],α ∈ (4,5],
x(0) = 0,x′(0) = 1,x′′(0) = 1,x′′′(0) = 0,x(4)(1) = 0.

(4.1)

Set

f1
(
t,x(t),(Sx)(t)

)
=−(4+ t2 +

2
3

t|x(t)|sin(|x(t)|)+ 1
5
(Sx)(t)),

k1(t,s,x(s)) = t +
|x(s)|

4+ |x2(s)|
.
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Take X1 = [0,∞), then for all x ∈ C(I,X1) and each t ∈ I =
[0,1], we have

|k1(t,s,x(s))|=
∣∣∣∣t + |x(s)|

4+ |x2(s)|

∣∣∣∣≤ t + |x(s)|,

∣∣ f1
(
t,x(t),Sx(t)

)∣∣
=

∣∣∣∣−(4+ t2 +
2
3

t|x(t)|sin(|x(t)|)+ 1
5
(Sx)(t))

∣∣∣∣
≤ 4+ t2 +

2
3

t|x(t)|+ 1
5
|(Sx)(t)|.

So, a1(t) = 4+ t2,a2(t) = t,b1(t) = 2
3 t,b2(t) = 1,

c(t) = 1
5 ,Γ(0.5) = 1.77,Γ(4.5) = 11.63 and l = 0.58.

Now,∫ 1

0

1
ln−1 |G(s,s)|

(
b1(s)+b2(s)c(s)

)
ds

=
∫ 1

0

1
ln−1

sn−1(1− s)α−n

(n−1)!Γ(α−n+1)

(2
3

s+
1
5

)
ds

≤ 13
15(0.58)4

∫ 1

0

(1− s)−0.5

4!Γ(0.5)
ds

=
−13(1− s)0.5

15× (0.58)4×4! ×0.5× Γ(0.5)

∣∣∣1
0

=
26

15× (0.58)4×4! × Γ(0.5)
' 0.36 < 1.

Thus, all the assumptions of Theorem 3.5 are satisfied, and,
hence, the fractional boundary value problem (4.1) has at least
one positive solution on I.
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