Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...

www.malayajournal.org

On \tilde{g}_{α} -sets in bitopological spaces

M. Lellis Thivagar^a and Nirmala Rebecca Paul
 b,*

^aSchool of Mathematics, Madurai Kamaraj University, Madurai-625021, Tamilnadu, India.

^bDepartment of Mathematics, Lady Doak College, Madurai-625002, Tamilnadu, India.

Abstract

The paper introduces \tilde{g}_{α} -closed sets in bitopological spaces and establishes the relationship between other existing sets. As an application $(i, j)\tilde{g}_{\alpha}$ -closure is introduced to define a new topology. We also derive a new decomposition of continuity.

Keywords: τ_j -open set, \tilde{g}_{α} -closed set, \tilde{g}_{α} -open set, #gs-open set.

2010 MSC: 57E05.

©2012 MJM. All rights reserved.

1 Introduction

The notion of generalised closed sets introduced by Levine[7] plays a significant role in general topology. A number of generalised closed sets have been introduced and their properties are investigated. Only a few of the class of generalised closed sets form a topology. The class of \tilde{g}_{α} -closed sets[4] is one among them. Kelly[5] introduced the concepts of bitopological spaces. Many topologists have introduced different types of sets in bitopological spaces. We have introduced \tilde{g}_{α} -closed sets in bitopological spaces and discussed their basic properties. We have introduced $(i, j)\tilde{g}_{\alpha}$ -closure and defined a new topology. We also introduced $(i, j)T_{\tilde{g}_{\alpha}}, (i, j)^{\#}T_{\tilde{g}_{\alpha}}$ -spaces and derived a new decomposition of continuity in bitopological spaces.

2 Preliminaries

We list some definitions which are useful in the following sections. The interior and the closure of a subset A of (X, τ) are denoted by Int(A) and Cl(A), respectively. Throughout the paper, (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) (or simply X, Y and Z) represent bitopological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, A^c denote the complement of A.

Definition 2.1. A subset A of a topological space (X, τ) is called

- (i) an ω -closed set [10] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) ,
- (ii) a *g-closed set [11] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open in (X, τ) ,
- (iii) a #g-semi-closed set[13](briefly #gs-closed)[12] if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is *g-open in (X, τ) and
- (iv) \widetilde{g}_{α} closed set[4] if $\alpha Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is #gs-open in (X, τ)

The complement of ω -closed(resp *g-closed, #gs-closed) set is said to be ω -open(resp *g-open, #gs-open, \tilde{g}_{α} -open)

*Corresponding author.

E-mail addresses: mlthivagar@yahoo.co.in (M. Lellis Thivagar) and nimmi_rebecca@yahoo.com (Nirmala Rebecca Paul)

Definition 2.2. A subset A of a bitopological space (X, τ_1, τ_2) is called a

 $(i)(\tau_i, \tau_j)$ -g-closed set[2] if τ_j -Cl(A) $\subseteq U$ whenever $A \subseteq U$ and $U \in \tau_i$,

 $(ii)(\tau_i, \tau_j)$ -gp-closed set[1] if τ_j -pCl(A) $\subseteq U$ whenever $A \subseteq U$ and $U \in \tau_i$,

 $(iii)(\tau_i, \tau_j)$ -gpr-closed set[3] if τ_j -pCl(A) $\subseteq U$ whenever $A \subseteq U$ and U is regular open in τ_i ,

 $(iv)(\tau_i, \tau_j)$ - ω -closed set[3] if τ_j -Cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is semi-open in τ_i ,

 $(v)(\tau_i, \tau_j)g^*$ -closed set[9] if τ_j -Cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is g-open in τ_i .

The family of all (τ_i, τ_j) -g-closed (resp (τ_i, τ_j) -gp-closed, (τ_i, τ_j) -gpr-closed and (τ_i, τ_j) - ω -closed) subsets of a botopological space (X, τ_1, τ_2) is denoted by $D(\tau_i, \tau_j)$ (resp $GPC(\tau_i, \tau_j), \zeta(\tau_i, \tau_j), C(\tau_i, \tau_j)$ and $D^*(\tau_i, \tau_j)$).

Definition 2.3. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be

- (i) (τ_i, τ_j) -gp- σ_k -continuous[1] if the inverse image of every σ_k -closed set in (Y, σ_1, σ_2) is (τ_i, τ_j) -gp-closed in (X, τ_1, τ_2) ,
- (ii) $\zeta(\tau_i, \tau_j)$ - σ_k -continuous[3] if the inverse image of every σ_k -closed set in (Y, σ_1, σ_2) is (τ_i, τ_j) -gpr-closed in (X, τ_1, τ_2) ,
- (iii) $D^*(\tau_i, \tau_j)$ - σ_k -continuous[9] if the inverse image of every σ_k -closed set in (Y, σ_1, σ_2) is (τ_i, τ_j) - g^* -closed in (X, τ_1, τ_2) ,
- $(iv)D(\tau_i, \tau_j)$ - σ_k -continuous[2] if the inverse image of every σ_k -closed set in (Y, σ_1, σ_2) is (τ_i, τ_j) -g-closed in (X, τ_1, τ_2) ,

 $(v)\tau_j - \sigma_k$ -continuous[8] if the inverse image of every σ_k -closed set in (Y, σ_1, σ_2) is τ_j -closed in (X, τ_1, τ_2) ,

- (vi) bi-continuous [8] if f is τ_1 - σ_1 -continuous and τ_2 - σ_2 -continuous,
- (v) strongly bi-continuous[8] if f is bi-continuous, τ_1 - σ_2 -continuous and τ_2 - σ_1 -continuous.

Definition 2.4. A topological space X is called a

- (i) $T_{\widetilde{g}_{\alpha}}$ -space[4] if every \widetilde{g}_{α} -closed set in it is α -closed.
- $(ii)^{\#}T_{\widetilde{g}_{\alpha}}$ -space[4] if every \widetilde{g}_{α} -closed set in it is closed.

3 (τ_i, τ_j) - \widetilde{g}_{α} -closed sets

Definition 3.1. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (τ_i, τ_j) - \tilde{g}_{α} -closed if τ_j - $\alpha Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is #gs-open in τ_i .

The collection of all (τ_i, τ_j) - \tilde{g}_{α} -closed sets is denoted by $D\tilde{G}_{\alpha}(\tau_i, \tau_j)$.

Remark 3.2. If $\tau_1 = \tau_2$ then $(\tau_i, \tau_j) \cdot \widetilde{g}_{\alpha}$ set reduces to \widetilde{g}_{α} -closed set in a topological space.

Proposition 3.3. (i)Every τ_j -closed set is (τ_i, τ_j) - \tilde{g}_{α} -closed.

(ii) Every τ_j - α -closed set is (τ_i, τ_j) - \tilde{g}_{α} -closed.

Proof. (i) Let A be a τ_j -closed set and U be any #gs-open set in (X, τ_i) containing A. Then τ_j - $\alpha Cl(A) \subseteq \tau_j$ - $Cl(A) = A \subseteq U$. Hence A is (τ_i, τ_j) - \tilde{g}_{α} -closed. (ii)Let Let A be a τ_j - α -closed set and U be any #gs-open set in (X, τ_i) containing A. Then τ_j - $\alpha Cl(A) = A \subseteq U$. Hence A is (τ_i, τ_j) - \tilde{g}_{α} -closed.

Remark 3.4. The converse of the proposition 3.3 need not be true.

Example 3.5. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}, D\widetilde{G}_{\alpha}(\tau_i, \tau_j) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, The set \{b\} is (\tau_i, \tau_j) - \widetilde{g}_{\alpha}$ -closed but not τ_j - α -closed and τ_j -closed.

Proposition 3.6. Every (τ_i, τ_j) - \tilde{g}_{α} -closed set is (τ_i, τ_j) gp-closed and (τ_i, τ_j) gpr-closed.

Proof. (i)Let A be a (τ_i, τ_j) - \tilde{g}_{α} -closed set and U be any τ_i -open set in X. Then τ_j - $pCl(A) \subseteq \tau_j$ - $\alpha Cl(A) \subseteq U$. Since every τ_i -open set is ${}^{\#}gs$ -open in (X, τ_i) [12]. Hence A is $(\tau_i, \tau_j)gp$ -closed. (ii)Let A be a (τ_i, τ_j) - \tilde{g}_{α} -closed set and U be any regular open set in (X, τ_i) -open set in X. Then τ_j - $pCl(A) \subseteq \tau_j$ - $\alpha Cl(A) \subseteq U$. Since every regular open set is ${}^{\#}gs$ -open in (X, τ_i) .Hence A is $(\tau_i, \tau_j)gp$ -closed.

Remark 3.7. The converse of the proposition 3.6 need not be true.

Example 3.8. Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{b, c\}, \{b, c, d\}, \{a, b, c\}\}, \tau_2 = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}\}, D\widetilde{G}_{\alpha}(\tau_i, \tau_j) = \{\phi, X, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}, GPC(\tau_i, \tau_j) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}.$ The set $\{a, c\}$ is (τ_i, τ_j) -gp-closed but not (τ_i, τ_j) - \widetilde{g}_{α} -closed.

Example 3.9. Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}\}, D\tilde{G}_{\alpha}(\tau_i, \tau_j) = \{\phi, X, \{b\}, \{a, b\}, \{b, c, d\}\}, \zeta(\tau_i, \tau_j) = \{\phi, X, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{c, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}\}.$ The set $\{c\}$ is (τ_i, τ_j) -gpr-closed but not $(\tau_i, \tau_j)\tilde{g}_{\alpha}$ -closed.

Remark 3.10. (τ_i, τ_j) - \tilde{g}_{α} -closed sets are independent of (τ_i, τ_j) - ω -closed sets, (τ_i, τ_j) -g-closed sets and (τ_i, τ_j) - g^* -closed sets.

Example 3.11. Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}\}, \tau_2 = \{\phi, X, \{a\}\}, D\widetilde{G}_{\alpha}(\tau_i, \tau_j) = \{\phi, X, \{b\}, \{c\}, \{d\}, \{c\}, \{d\}, \{b, c\}, \{c\}, \{d\}, \{b, c\}, \{c\}, \{b, c\}, \{b, c\}, \{b, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}.$ $D(\tau_i, \tau_j) = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}.$ $D^*(\tau_i, \tau_j) = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}.$ The set $\{b\}$ is (τ_i, τ_j) - \widetilde{g}_{α} -closed but not (τ_i, τ_j) - ω -closed. The set $\{c\}$ is (τ_i, τ_j) - \widetilde{g}_{α} -closed. (τ_i, τ_j) -g-closed. The set $\{a, b\}$ is $(\tau_i, \tau_j$ - ω -closed, (τ_i, τ_j) -g-closed and $(\tau_i, \tau_j$ -g*-closed but not (τ_i, τ_j) - \widetilde{g}_{α} -closed.

Proposition 3.12. Union of two (τ_i, τ_j) - \tilde{g}_{α} -closed sets is (τ_i, τ_j) - \tilde{g}_{α} -closed.

Proof. Let A and B are (τ_i, τ_j) - \tilde{g}_{α} -closed sets and U be any #gs-open set in (X, τ_i) containing A and B. Then τ_j - $\alpha Cl(A) \subseteq U, \tau_j$ - $\alpha Cl(A) \subseteq U, \tau_j$ - $\alpha Cl(A) \subseteq U, \tau_j$ - $\alpha Cl(A \cup B) = \tau_j$ - $\alpha Cl(A) \cup \tau_j$ - $\alpha Cl(B) \subseteq U$. Hence $A \cup B$ is (τ_i, τ_j) - \tilde{g}_{α} -closed.

Remark 3.13. Intersection of two (τ_i, τ_j) - \tilde{g}_{α} -closed sets need not be a (τ_i, τ_j) - \tilde{g}_{α} -closed set. In example 3.11 $\{a, b, c\}$ and $\{a, b, d\}$ are (τ_i, τ_j) - \tilde{g}_{α} -closed but their intersection $\{a, b\}$ is not (τ_i, τ_j) - \tilde{g}_{α} -closed.

Remark 3.14. In general $D\widetilde{G}_{\alpha}(\tau_1, \tau_2)$ is not equal to $D\widetilde{G}_{\alpha}(\tau_2, \tau_1)$. In example 3.8 $D\widetilde{G}_{\alpha}(\tau_1, \tau_2) = \{\phi, X, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\},$ $D\widetilde{G}_{\alpha}(\tau_2, \tau_1) = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}\}.$ Hence they are not equal.

Proposition 3.15. If $\tau_1 \subseteq \tau_2$ in (X, τ_1, τ_2) then $D\widetilde{G}_{\alpha}(\tau_1, \tau_2) \supseteq D\widetilde{G}_{\alpha}(\tau_2, \tau_1)$.

Proof. Let A be $(\tau_2, \tau_1)\widetilde{g}_{\alpha}$ -closed and U be any τ_1 -#gs-open set containing A. Since $\tau_1 \subseteq \tau_2$, U is τ_2 -#gs-open, τ_2 - $\alpha Cl(A) \subseteq \tau_1$ - $\alpha Cl(A) \subseteq U$. Hence A is (τ_1, τ_2) - \widetilde{g}_{α} -closed.

Theorem 3.16. For each point x of (X, τ_1, τ_2) , $\{x\}$ is τ_i -#gs-closed or $\{x\}^c$ is (τ_1, τ_2) - \tilde{g}_{α} -closed for each fixed integer *i*, *j* of $\{1, 2\}$.

Proof. Suppose $\{x\}$ is not τ_i -#gs-closed. Then $\{x\}^c$ is not τ_i -#gs-open. Then the only τ_i -#gs-open set containing $\{x\}$ is the set X. τ_j - $\alpha Cl(\{x\}^c) \subseteq X$. Hence $\{x\}^c$ is (τ_1, τ_2) - \tilde{g}_{α} -closed.

Proposition 3.17. If a set A is a (τ_1, τ_2) - \tilde{g}_{α} -closed set in (X, τ_1, τ_2) then τ_j - $\alpha Cl(A) - A$ contains no non empty τ_i -#gs-closed set.

Proof. Let A be a (τ_1, τ_2) - \tilde{g}_{α} -closed and F be a τ_i -#gs-closed set contained in $\tau_j \alpha Cl(A) - A$. Since A is (τ_1, τ_2) - \tilde{g}_{α} -closed τ_j - $\alpha Cl(A) \subseteq F^c$. Hence $F \subseteq \tau_j$ - $\alpha Cl(A) \cap (\tau_j$ - $\alpha Cl(A))^c = \phi$.

Remark 3.18. The converse of the proposition 3.17 need not be true.

Proposition 3.20. If A is (τ_i, τ_j) - \tilde{g}_{α} -closed in (X, τ_1, τ_2) then A is τ_j - α -closed if and only if $\tau_j \alpha Cl(A) - A$ is $\tau_i - \#$ gs-closed.

Proof. Necessity implies $\tau_j - \alpha Cl(A) - A = \phi$ and hence $\tau_j - \alpha Cl(A) - A$ is $\tau_i - \# gs$ -closed. Sufficiency. If $\tau_j - \alpha Cl(A) - A$ is $\tau_i - \# gs$ -closed then by proposition 3.17 $\tau_j - \alpha Cl(A) - A = \phi$. Therefore A is $\tau_j - \alpha$ -closed.

Proposition 3.21. If A is (τ_i, τ_j) - \tilde{g}_{α} -closed then τ_i - $\alpha Cl(\{x\}) \cap A \neq \phi$ for each $x \in \tau_j$ - $\alpha Cl(A)$.

Proof. If $\tau_i - \alpha Cl(\{x\}) \cap A = \phi$ for each $x \in \tau_j - \alpha Cl(A)$ then $A \subseteq (\tau_i \alpha Cl(\{x\}))^c$. Since A is $(\tau_i, \tau_j) - \widetilde{g}_\alpha$ -closed, we have $\tau_j - \alpha Cl(A) \subseteq (\tau_i - \alpha Cl(\{x\})^c)$. [Since $(\tau_j - \alpha Cl(\{x\})^c)$ is $\tau_i - \alpha$ -open and therefore τ_i -semi-open, τ_i -#gs-open]. This gives $x \notin \tau_j \alpha Cl(A)$. A contradiction.

Proposition 3.22. If A is (τ_i, τ_j) - \widetilde{g}_{α} -closed $A \subseteq B \subseteq \tau_j$ - $\alpha Cl(A)$ then B is (τ_i, τ_j) - \widetilde{g}_{α} -closed.

Proof. Let $B \subseteq U$ where U is τ_i -#gs-open. Then $A \subseteq B \subseteq U$.Since A is (τ_i, τ_j) - \tilde{g}_{α} -closed τ_j - $\alpha Cl(A) \subseteq U$. Therefore τ_j - $\alpha Cl(B) \subseteq \tau_j$ - $\alpha Cl(\tau_j$ - $\alpha Cl(A)) = \tau_j$ - $\alpha Cl(A)$. Thus τ_j - $\alpha Cl(B) \subseteq U$. Therefore B is (τ_i, τ_j) - \tilde{g}_{α} -closed.

Proposition 3.23. If $A \subseteq Y \subseteq X$ and A is $(\tau_i, \tau_j) \cdot \tilde{g}_{\alpha}$ -closed then A is $(\tau_i, \tau_j) \cdot \tilde{g}_{\alpha}$ -closed relative to Y.

Proof. Let S be any τ_i -#gs-open set in Y such that $A \subseteq S$. Then $S = U \cap Y$ for some $U \in GSO(X, \tau_i)$. Thus $A \subseteq U \cap Y$ and $A \subseteq U$. Since A is $(\tau_i, \tau_j) \cdot \widetilde{g}_{\alpha}$ -closed in X, $\tau_j - \alpha Cl(A) \subseteq U$. Therefore $Y \cap \tau_j - \alpha Cl(A) \subseteq Y \cap U$. That is $\tau_j - \alpha Cl_Y(A) \subseteq S$. Since $\tau_j - \alpha Cl_Y(A) = Y \cap \tau_j - \alpha Cl(A)$. Hence A is $(\tau_i, \tau_j) \cdot \widetilde{g}_{\alpha}$ -closed.

Definition 3.24. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (τ_i, τ_j) - \tilde{g}_{α} -open if its complement is (τ_i, τ_j) - \tilde{g}_{α} -closed in X.

Theorem 3.25. In a bitopological space (X, τ_1, τ_2)

- (i) Every τ_j -open set is $(\tau_i, \tau_j)\tilde{g}_{\alpha}$ -open.
- (*ii*)Every τ_j - α -open set is $(\tau_i, \tau_j)\widetilde{g}_{\alpha}$ -open.
- (iii)Every (τ_i, τ_j) - \tilde{g}_{α} -open set is (τ_i, τ_j) gp-open.

(iv)Every (τ_i, τ_j) - \tilde{g}_{α} -open set is (τ_i, τ_j) gpr-open.

Remark 3.26. The converse of the theorem 3.25 need not be true.

Theorem 3.27. A subset A of a bitopological space (X, τ_1, τ_2) is (τ_i, τ_j) - \tilde{g}_{α} -open if and only if $F \subseteq \tau_j$ - $\alpha Int(A)$ whenever F is τ_i -#gs-closed and $F \subseteq A$.

Proof. Necessity. Let A be a (τ_i, τ_j) - \tilde{g}_{α} -open set in X and F be a τ_i -#gs-closed set such that $F \subseteq A$. Then $A^c \subseteq F^c$ where F^c is τ_i -#gs-open and A^c is (τ_i, τ_j) - \tilde{g}_{α} -closed implies τ_j - $\alpha Cl(A^c) \subseteq (F^c), \tau_j$ - $(\alpha Int(A))^c \subseteq F^c$. Hence $F \subseteq \tau_j$ - $\alpha Int(A)$.

Sufficiency.Let $F \subseteq \tau_j - \alpha Int(A)$ where F is #gs-closed and $F \subseteq A$. Then $A^c \subseteq F^c = G$ and G is $\tau_i - \#gs$ -open. Then $G^c \subseteq A$ implies $G^c \subseteq \tau_j - \alpha Int(A)$ or $\tau_j - \alpha Cl(A^c) = (\tau_j - \alpha Int(A))^c \subseteq G$. Thus A^c is $(\tau_i, \tau_j) - \widetilde{g}_{\alpha}$ -closed or A is

4 Applications

Definition 4.1. A bitopological space (X, τ_1, τ_2) is said to be a $(i, j)T_{\tilde{g}_{\alpha}}$ -space if every (τ_i, τ_j) - \tilde{g}_{α} -closed set in it is τ_j - α -closed.

Remark 4.2. If $\tau_1 = \tau_2$ then $(i, j)T_{\tilde{g}_{\alpha}}$ -space becomes a $T_{\tilde{g}_{\alpha}}$ -space.

Theorem 4.3. A bitopological space (X, τ_1, τ_2) is a $(i, j)T_{\tilde{g}_{\alpha}}$ -space if and only if each $\{x\}$ is τ_j - α -open or τ_i .[#]gs-closed for each $x \in X$.

Proof. Suppose that $\{x\}$ is not τ_i -#gs-closed then by theorem 3.16, $\{x\}^c$ is (τ_i, τ_j) - \tilde{g}_{α} -closed. Since X is a $(i, j)T_{\tilde{g}_{\alpha}}$ -space, $\{x\}^c$ is τ_j - α -closed. Therefore $\{x\}$ is τ_j - α -open in X.

Conversely let F be a (τ_i, τ_j) - \tilde{g}_{α} -closed set. By assumption $\{x\}$ is τ_j - α -open or τ_i -#gs-closed for any $x \in \tau_j$ - $\alpha Cl(F)$.

case(i) $\{x\}$ is τ_j - α -open. Since $x \in \tau_j$ - $\alpha Cl(F)$, $\{x\} \cap F \neq \phi$. Hence $x \in F$.

case(ii) Suppose $\{x\}$ is τ_i -#gs-closed. If $x \notin F$, then $\{x\} \subseteq \tau_j$ - $\alpha Cl(F) - F$ which is a contradiction by proposition 3.20. Therefore $x \in F$. Hence F is a $\tau_j \alpha$ -closed subset of X.

Definition 4.4. A bitopological space (X, τ_1, τ_2) is said to be $(i, j)^{\#}T_{\tilde{g}_{\alpha}}$ -space if every (τ_i, τ_j) - \tilde{g}_{α} -closed set in it is τ_j -closed.

Proposition 4.5. Every $(i, j)^{\#}T_{\tilde{g}_{\alpha}}$ -space is a $(i, j)T_{\tilde{g}_{\alpha}}$ -space

Proof. Since every τ_j -closed set is τ_j - α -closed, the proposition is valid.

Remark 4.6. The converse of the proposition 4.5 need not be true. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a, \}, \{b, c\}\}, \tau_2 = \{\phi, X, \{a\}\}$. The space X is a $(i, j)T_{\tilde{g}_{\alpha}}$ -space but not a $(i, j)^{\#}T_{\tilde{g}_{\alpha}}$ -space. Since the set $\{b\}$ is not τ_j -closed.

Definition 4.7. For a subset A of a bitopological space (X, τ_1, τ_2) , the $(i, j)\tilde{g}_{\alpha}$ -Cl(A) is defined as $(i, j)\tilde{g}_{\alpha}$ -Cl(A) = $\bigcap \{F : A \subseteq F, F \in D\widetilde{G}_{\alpha}(\tau_i, \tau_j)\}$.

Proposition 4.8. Let A and B be two subsets of (X, τ_i, τ_j) .

(i) If $A \subseteq B$ then $(i, j)\widetilde{g}_{\alpha}$ - $Cl(A) \subseteq (i, j)\widetilde{g}_{\alpha}$ -Cl(B),

(*ii*)If $\tau_1 \subseteq \tau_2$ then $(1,2)\widetilde{g}_{\alpha}$ -Cl(A) $\subseteq (2,1)\widetilde{g}_{\alpha}$ -Cl(B).

Proof. It follows from proposition 3.15.

Proposition 4.9. For a subset A of (X, τ_1, τ_2) ,

(i) $A \subseteq (i, j)\widetilde{g}_{\alpha}$ - $Cl(A) \subseteq \tau_j$ -Cl(A),

(ii) If A is (τ_i, τ_j) - \tilde{g}_{α} -closed then $(i, j)\tilde{g}_{\alpha}$ -Cl(A) = A.

Proof. (i) By definition $A \subseteq (i, j)\widetilde{g}_{\alpha}$ -Cl(A). By Proposition 3.3 τ_j -Cl(A) is (τ_i, τ_j) - \widetilde{g}_{α} -closed. Therefore $A \subseteq (i, j)\widetilde{g}_{\alpha}$ - $Cl(A) \subseteq \tau_j$ -Cl(A).

(ii) Follows from (i) and the definition 4.5.

Remark 4.10. The converse of the proposition 4.9 need not be true. In example 3.11 if $A = \{a, b\}$ then $(i, j)\tilde{g}_{\alpha}$ - $Cl(A) = \{a, b\}$. But A is not (τ_i, τ_j) - \tilde{g}_{α} -closed.

Theorem 4.11. The closure operator $(i, j)\tilde{g}_{\alpha}$ -closure is the Kuratowski closure operator.

Proof. (i)From proposition 3.3 and proposition 4.9 (ii) it follows that $(i, j)\tilde{g}_{\alpha}Cl(\phi) = \phi$.

- (ii) From proposition 4.9 (i) $A \subseteq (i, j)\widetilde{g}_{\alpha}$ -Cl(A).
- (iii) If A and B are two subsets of X then $(i, j)\widetilde{g}_{\alpha}$ - $Cl(A) \cup (i, j)\widetilde{g}_{\alpha}$ - $Cl(B) \subseteq (i, j)\widetilde{g}_{\alpha}$ - $Cl(A \cup B)$. If x does not belong to $(i, j)\widetilde{g}_{\alpha}$ - $Cl(A) \cup (i, j)\widetilde{g}_{\alpha}$ -Cl(B), then there exist $C, D \in D\widetilde{G}_{\alpha}(\tau_i, \tau_j)$ such that $A \subseteq C, x \notin C, B \subseteq D, x \notin D$. Hence $A \cup B \subseteq C \cup D$ and $x \notin C \cup D$. Since $C \cup D$ is (τ_i, τ_j) - \widetilde{g} -closed by proposition 3.12, x does not belong to $(i, j)\widetilde{g}_{\alpha}$ - $Cl(C \cup D)$. Hence $(i, j)\widetilde{g}_{\alpha}$ - $Cl(A \cup B) \subseteq (i, j)\widetilde{g}_{\alpha}$ - $Cl(A) \cup (i, j)\widetilde{g}_{\alpha}$ -Cl(B).Thus $(i, j)\widetilde{g}_{\alpha}$ - $Cl(A \cup B) = (i, j)\widetilde{g}_{\alpha}$ - $Cl(A) \cup (i, j)\widetilde{g}_{\alpha}$ -Cl(B).

(iv) Let E be a subset of X and A be a (τ_i, τ_j) - \tilde{g}_{α} -closed set containing E. We have $(i, j)\tilde{g}_{\alpha}$ - $Cl(E) \subseteq A$, we have $(i, j)\tilde{g}_{\alpha}$ - $Cl(E) \supseteq (i, j)\tilde{g}_{\alpha}$ - $Cl((i, j)\tilde{g}_{\alpha}$ -Cl(E)). Conversely $(i, j)\tilde{g}_{\alpha}$ - $Cl(E) \subseteq (i, j)\tilde{g}_{\alpha}$ - $Cl((i, j)\tilde{g}_{\alpha}$ -Cl(E)).(By proposition 4.8 (i)). Hence $(i, j)\tilde{g}_{\alpha}$ - $Cl(E) = (i, j)\tilde{g}_{\alpha}$ - $Cl((i, j)\tilde{g}_{\alpha}$ -Cl(E).

Definition 4.12. $(i, j)\widetilde{g}_{\alpha}$ -closure defines a new topology on X. The topology defined by $(i, j)\widetilde{g}_{\alpha}$ -closure is defined as and denoted as $\widetilde{G}_{\alpha}(\tau_i, \tau_j) = \{E \subseteq X : (i, j)\widetilde{g}_{\alpha}$ -Cl $(E^c) = E^c\}$.

Example 4.13. Let $X = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{b, c\}, \{b, c, d\}, \{a, b, c\}\}, \tau_2 = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}\}.$ $D\widetilde{G}_{\alpha}(\tau_i, \tau_j) = \{\phi, X, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}.$ $\widetilde{G}_{\alpha}(\tau_i, \tau_j) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}.$

Proposition 4.14. Let $i, j \in \{1, 2\}$ be two fixed integers.

$$(i)\tau_j \subseteq G_\alpha(\tau_i, \tau_j).$$

- (ii) If a subset A of X is (τ_i, τ_j) - \tilde{g}_{α} -closed then A is $\tilde{G}_{\alpha}(\tau_i, \tau_j)$ -closed.
- Proof. (i) Let U be any τ_j -open set, by proposition 3.3 and proposition 4.9 (ii) $(i, j)\tilde{g}_{\alpha}$ - $Cl(U^c) = U^c$. Hence $U \in \tilde{G}_{\alpha}(\tau_i, \tau_j)$.
- (ii) It follows from proposition 4.9(ii). If A is (τ_i, τ_j) - \tilde{g}_{α} -closed then $(i, j)\tilde{g}_{\alpha}$ -Cl(A) = A, this implies $A^c \in \widetilde{G}_{\alpha}(\tau_i, \tau_j)$ or A is $\widetilde{G}_{\alpha}(\tau_i, \tau_j)$ -closed.

Proposition 4.15. If $\tau_1 \subseteq \tau_2$ then $\widetilde{G}_{\alpha}(\tau_1, \tau_2) \supseteq \widetilde{G}_{\alpha}(\tau_2, \tau_1)$.

Proof. Let $A \in \widetilde{G}_{\alpha}(\tau_2, \tau_1)$ then $(2, 1)\widetilde{g}_{\alpha}$ - $Cl(A^c) = A^c$. Since $\tau_1 \subseteq \tau_2$, $(1, 2)\widetilde{g}_{\alpha}$ - $Cl(A) \subseteq \widetilde{g}_{\alpha}$ -Cl(A), $A^c \subseteq (1, 2)\widetilde{g}_{\alpha}$ - $Cl(A^c) \subseteq (2, 1)\widetilde{g}_{\alpha}$ - $Cl(A^c) = A^c$. Thus $A^c = (1, 2)\widetilde{g}_{\alpha}$ - $Cl(A^c)$. Therefore $A \in \widetilde{G}_{\alpha}(1, 2)$.

5 $\widetilde{G}_{\alpha}(\tau_i, \tau_j)$ -Continuity

Definition 5.1. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $D\widetilde{G}_{\alpha}(\tau_i, \tau_j) - \sigma_k$ -continuous if the inverse image of every σ_k -closed set in (Y, σ_1, σ_2) is a $(\tau_i, \tau_j) - \widetilde{g}_{\alpha}$ -closed set in (X, τ_1, τ_2) .

Remark 5.2. If $\tau_1 = \tau_2 = \tau$ and $\sigma_1 = \sigma_2 = \sigma$ then the $D\widetilde{G}_{\alpha}(\tau_i, \tau_j)$ - σ_k -continuous function coincides with \widetilde{g}_{α} -continuous function.[6]

Definition 5.3. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $\tau_j - \alpha - \sigma_k$ -continuous if the inverse image of every σ_k -closed set in (Y, σ_1, σ_2) is a τ_j - α -closed set in (X, τ_1, τ_2) .

Proposition 5.4. If a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\tau_j \cdot \sigma_k$ (resp $\tau_j \cdot \alpha \cdot \sigma_k$ -continuous) continuous then it is $D\widetilde{G}_{\alpha}(\tau_i, \tau_j) \cdot \sigma_k$ -continuous.

Proof. Let V be any σ_k -closed set in (Y, σ_1, σ_2) then $f^{-1}(V)$ is τ_j -closed (resp τ_j - α -closed). Since every τ_j -closed (resp τ_j - α -closed) set is (τ_i, τ_j) - \tilde{g}_{α} -closed. Hence f is $D\tilde{G}_{\alpha}(\tau_i, \tau_j)$ - σ_k -continuous.

Remark 5.5. The converse of the proposition 5.4 need not be true.

Example 5.6. Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{b\}\}, \sigma_1 = \{\phi, Y, \{a, b\}\}, \sigma_2 = \{\phi, Y, \{a\}\}.$ The function f is defined as f(a) = b, f(b) = a, f(c) = c. Here f is $D\widetilde{G}_{\alpha}(\tau_i, \tau_j)$ - σ_k -continuous but not τ_j - σ_k (resp τ_j - α - σ_k) continuous.

Proposition 5.7. If a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $D\widetilde{G}_{\alpha}(\tau_i, \tau_j)$ - σ_k -continuous then it is (τ_i, τ_j) - $g_{p-\sigma_k}$ continuous and $\zeta(\tau_i, \tau_j)$ - σ_k continuous.

Proof. Let V be any σ_k -closed set in (Y, σ_1, σ_2) then $f^{-1}(V)$ is (τ_i, τ_j) - \tilde{g}_{α} -closed which is (τ_i, τ_j) -gp-closed and (τ_i, τ_j) -gpr-closed. Hence f is (τ_i, τ_j) -gp- σ_k continuous and $\zeta(\tau_i, \tau_j)$ - σ_k continuous.

Remark 5.8. The converse of the proposition 5.7 need not be true.

Example 5.9. Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}, \sigma_1 = \{\phi, Y, \{a, b\}\}, \sigma_2 = \{\phi, Y, \{a, c\}\}$. The function f is the identity map. Here f is (τ_i, τ_j) -gp- σ_k -continuous but not $D\widetilde{G}_{\alpha}(\tau_i, \tau_j)$ - σ_k -continuous.

Example 5.10. Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a, b\}\}, \sigma_1 = \{\phi, Y, \{a, b\}\}, \sigma_2 = \{\phi, Y, \{a, c\}\}$. The function f is the identity map. Here f is $\zeta(\tau_i, \tau_j)$ - σ_k -continuous but not $D\widetilde{G}_{\alpha}(\tau_i, \tau_j)$ - σ_k -continuous.

Remark 5.11. $D\widetilde{G}_{\alpha}(\tau_i, \tau_j) - \sigma_k$ -continuity is independent of $D(\tau_i, \tau_j) - \sigma_k$ -continuity.

Example 5.12. Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}\}, \sigma_1 = \{\phi, Y, \{a\}, \{a, b\}, \{a, c\}\}, \sigma_2 = \{\phi, Y, \{a, c\}\}.$ The function f is the identity map. Here f is $D\widetilde{G}_{\alpha}(\tau_i, \tau_j)$ - σ_k -continuous but not $D(\tau_i, \tau_j)$ - σ_k -continuous and $C(\tau_i, \tau_j)$ -gp- σ_k -continuous.

Example 5.13. Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b, c\}\}, \tau_2 = \{\phi, X, \{a, b\}\}, \sigma_1 = \{\phi, Y, \{b\}\}, \sigma_2 = \{\phi, Y, \{c\}\}.$ The function f is the identity map. Here f is $D(\tau_i, \tau_j)$ - σ_k -continuous and $C(\tau_i, \tau_j)$ - σ_k -continuous but not $D\widetilde{G}_{\alpha}(\tau_i, \tau_j)$ - σ_k -continuous.

Definition 5.14. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called \tilde{g}_{α} -bi continuous if f is both $D\tilde{G}_{\alpha}(2, 1)$ - σ_1 continuous and $D\tilde{G}_{\alpha}(1, 2)$ - σ_2 -continuous.

Definition 5.15. A function $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called strongly \tilde{g}_{α} -bi continuous if it is \tilde{g}_{α} -bi continuous, $D\tilde{G}_{\alpha}(2, 1)$ - σ_2 -continuous and $D\tilde{G}_{\alpha}(1, 2)$ - σ_1 -continuous.

Proposition 5.16. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function.

(i) If f is bi-continuous then it is \tilde{g}_{α} -bi continuous.

(ii) If f is strongly -bi-continuous then it is strongly \tilde{g}_{α} -bi continuous.

Proof. (i)Let f be bi-continuous. Then f is τ_1 - σ_1 -continuous and τ_2 - σ_2 -continuous. By proposition 5.4 f is \tilde{g}_{α} -bi continuous.

(ii)Let f be strongly bi-continuous then f is τ_1 - σ_2 -continuous and τ_2 - σ_1 -continuous. Then by proposition 5.4 f is strongly \tilde{g}_{α} -bi continuous.

Example 5.17. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{b, c\}\},$ $Y = \{p, q\}, \sigma_1 = \{\phi, Y, \{p\}\}, \sigma_2 = \{\phi, Y, \{p\}, \{q\}\}.$ The function f is defined as f(a) = p, f(b) = f(c) = q. Here f is \tilde{g}_{α} -bi continuous and strongly \tilde{g}_{α} -bi continuous but not bi-continuous and strongly bi-continuous.

Proposition 5.18. If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is strongly \tilde{g}_{α} -bi continuous then it is \tilde{g}_{α} -bi continuous.

Proof. It follows from the definitions.

Example 5.19. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}, Y = \{p, q\}, \sigma_1 = \{\phi, Y, \{p\}\}, \sigma_2 = \{\phi, Y, \{q\}\}.$ The function f is defined as f(a) = p, f(b) = f(c) = q. Here f is \tilde{g}_{α} -bi continuous but not strongly \tilde{g}_{α} -bi continuous.

Proposition 5.20. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $D\widetilde{G}_{\alpha}(\tau_i, \tau_j)\sigma_k$ -continuous if and only if $f^{-1}(U)$ is $(\tau_i, \tau_j) \cdot \widetilde{g}_{\alpha}$ -open in (X, τ_1, τ_2) for every σ_k -open set in (Y, σ_1, σ_2) .

Proof. Let f be $D\widetilde{G}_{\alpha}(\tau_i, \tau_j)\sigma_k$ -continuous and U be a σ_k -open set in (Y, σ_1, σ_2) . Then $f^{-1}(U^c)$ is (τ_i, τ_j) - \widetilde{g}_{α} -closed. But $f^{-1}(U^c) = (f^{-1}(U))^c$ and so $f^{-1}(U)$ is (τ_i, τ_j) - \widetilde{g}_{α} -open.

Conversely let for any σ_k -open set U in (Y, σ_1, σ_2) then $f^{-1}(U)$ be (τ_i, τ_j) - \tilde{g}_{α} -open in (X, τ_1, τ_2) .Let F be a σ_k -closed set in (Y, σ_1, σ_2) But $f^{-1}(F^c) = (f^{-1}(F))^c$ and so $f^{-1}(F)$ is $(\tau_i, \tau_j)\tilde{g}_{\alpha}$ -closed. Hence f is $D\tilde{G}_{\alpha}(\tau_i, \tau_j)$ - σ_k -continuous.

Theorem 5.21. If a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $D\widetilde{G}_{\alpha}(\tau_i, \tau_j)$ - σ_k -continuous and if (X, τ_1, τ_2) is a $(i, j)^{\#}T_{\widetilde{g}_{\alpha}}$ -space then f is

(i) τ_j - σ_k -continuous.

 $(ii)D(\tau_i, \tau_j)$ - σ_k -continuous.

(*iii*) $C(\tau_i, \tau_j)$ - σ_k -continuous.

Proof. Let V be any σ_k -closed set in Y then $f^{-1}(V)$ is (τ_i, τ_j) - \tilde{g}_{α} -closed in X. Since X is a $(i, j)^{\#}T_{\tilde{g}_{\alpha}}$ -space $f^{-1}(V)$ is τ_j -closed in X. Hence f is τ_j - σ_k -continuous. Since τ_j -closed set is τ_j -g-closed and τ_j - ω -closed, f is $D(\tau_i, \tau_j)$ - σ_k -continuous and $C(\tau_i, \tau_j)$ - σ_k -continuous.

References

- O.A. El-Tantawy, and H.M. Abu-Donia, Generalised Separation Axioms in Bitopological spaces, The Arabian J. for Science and Engg., 30(1A)(2005), 117-129.
- [2] T. Fukutake, On generalised closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Par III, 35(1986), 19-28.
- [3] T. Fukutake, P. Sundaram and M. Sheik John, ω-closed sets,ω-open sets and ω-coninuity in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 51(2002), 1-9.
- [4] S. Jafari, M.L. Thivagar and Nirmala Rebecca Paul, Remarks on \tilde{g}_{α} -closed sets, *International Mathematical Forum*, 5(2010), 1167-1178.
- [5] J.C. Kelly Bitopological spaces, Proc.London Math. Soc., 13(1963), 71-89.
- [6] M. Lellis Thivagar and Nirmala Rebecca Paul, Remarks on \tilde{g}_{α} -irresolute maps, Bull. Soc. Paran. Mat., 29(2011), 49-60.
- [7] N. Levine, Generalized closed sets in topology, Rend. Circlo. Mat. Palermo, 19(2)(1970), 89-96.
- [8] H. Maki, P. Sundaram and K. Balachandran, On generalised continuous maps and pasting lemma in bitopological spaces, *Bull. Fukuoka Univ. Ed. Part III*, 40(1991), 23-31.
- [9] M. Sheik John and P. Sundaram, g*-closed sets in bitopological spaces, Indian J.Pure Appl. Math., 35(1)(2004), 71-80.
- [10] P. Sundram, On ω -closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.
- [11] M.K.R.S. Veera Kumar, Between g*-closed and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. Appl. Math., 21(2000), 1-19.
- [12] M.K.R.S. Veera Kumar, #g-semi-closed sets in topological spaces, Antarctica J. Math., 2(2005), 201-222.

Received: November 11, 2012; Accepted: July 06, 2013

UNIVERSITY PRESS