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Abstract

In this paper, we consider a class of anti-periodic boundary value problems involving nonlinear fractional
q-difference equations. Some existence and uniqueness results are obtained by applying some standard fixed
point theorems. As applications, some examples are presented to illustrate the main results.
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1 Introduction

Anti-periodic boundary value problems occur in the mathematical modeling of a variety of physical pro-
cesses and have recently received considerable attention. For examples and details of anti-periodic boundary
conditions, see [2, 3, 4, 5, 7, 10] and the references therein.

The q-difference calculus or quantum calculus is an old subject that was initially developed by Jackson
[17, 18], basic definitions and properties of q-difference calculus can be found in the book mentioned in [19].

The fractional q-difference calculus had its origin in the works by Al-Salam [8] and Agarwal [1]. More
recently, maybe due to the explosion in research within the fractional differential calculus setting, new develop-
ments in this theory of fractional q-difference calculus were made, for example, q-analogues of the integral and
differential fractional operators properties such as the q-Laplace transform, q-Taylor’s formula, Mittage-Leffler
function [9, 22, 23], just to mention some.

Recently, boundary value problems of nonlinear fractional q-difference equations have aroused considerable
attention. Many people pay attention to the existence and multiplicity of solutions or positive solutions for
boundary value problems of nonlinear fractional q-difference equations by means of some fixed point theorems,
such as the Krasnosel’skii fixed-point theorem, the Leggett-Williams fixed-point theorem, and the Schauder
fixed-point theorem, For examples, see [11, 12, 20, 21, 26, 27, 28] and the references therein. Graef and
Kong [16] investigated the uniqueness, existence, and nonexistence of positive solutions for the boundary value
problem with fractional q-derivatives in terms of different ranges of λ. Ahmad et al. [6] studied the following
nonlinear fractional q-difference equation with nonlocal boundary conditions by applying some well-known
tools of fixed point theory such as Banach contraction principle, Krasnoselskiis fixed point theorem, and the
Leray-Schauder nonlinear alternative. Zhao et al. [29] considered some existence results of positive solutions to
nonlocal q-integral boundary value problem of nonlinear fractional q-derivatives equation using the generalized
Banach contraction principle, the monotone iterative method, and Krasnoselskii’s fixed point theorem.

El-Shahed and Hassan [13] studied the existence of positive solutions of the q-difference boundary value
problem {

−(D2
qu)(t) = a(t)f(u(t)), 0 ≤ t ≤ 1,

αu(0)− βDqu(0) = 0, γu(1)− δDqu(1) = 0.
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Ferreira [14] and [15] considered the existence of positive solutions to nonlinear q-difference boundary value
problems {

−(Dα
q u)(t) = −f(t, u(t)), 0 ≤ t ≤ 1, 1 < α ≤ 2

u(0) = u(1) = 0,

and {
(Dα

q u)(t) = −f(t, u(t)), 0 ≤ t ≤ 1, 2 < α ≤ 3,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β ≥ 0,

respectively. By applying a fixed point theorem in cones, sufficient conditions for the existence of nontrivial
solutions were enunciated.

In this paper, we investigate the existence and uniqueness results for anti-periodic boundary value problems
involving nonlinear fractional q-difference equations given by{

(cDα
q u)(t) = f(t, u(t)), t ∈ [0, 1], 1 < α ≤ 2,

u(0) = −u(1), (Du)(0) = −(Du)(1),
(1.1)

where cDα
q denotes the Caputo fractional q-derivative of order α, and f : [0, 1]× R → R is a given continuous

function. Our results are based on some standard fixed point theorems.

2 Preliminaries

For theconvenience of the reader, we present some necessary definitions and lemmas of fractional q-calculus
theory to facilitate analysis of problem (1.1). These details can be found in the recent literature; see [19] and
references therein. Let q ∈ (0, 1) and define

[a]q =
qa − 1
q − 1

, a ∈ R.

The q-analogue of the power (a− b)n with n ∈ N0 is

(a− b)(0) = 1, (a− b)(n) =
n−1∏
k=0

(a− bqk), n ∈ N, a, b ∈ R.

More generally, if α ∈ R, then

(a− b)(α) = aα
∞∏

n=0

a− bqn

a− bqα+n
.

Note that, if b = 0 then a(α) = aα. The q-gamma function is defined by

Γq(x) =
(1− q)(x−1)

(1− q)x−1
, x ∈ R \ {0,−1,−2, . . .},

and satisfies Γq(x + 1) = [x]qΓq(x).
The q-derivative of a function f is here defined by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
, (Dqf)(0) = lim

x→0
(Dqf)(x),

and q-derivatives of higher order by

(D0
qf)(x) = f(x) and (Dn

q f)(x) = Dq(Dn−1
q f)(x), n ∈ N.

The q-integral of a function f defined in the interval [0, b] is given by

(Iqf)(x) =
∫ x

0

f(t)dqt = x(1− q)
∞∑

n=0

f(xqn)qn, x ∈ [0, b].
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If a ∈ [0, b] and f is defined in the interval [0, b], its integral from a to b is defined by∫ b

a

f(t)dqt =
∫ b

0

f(t)dqt−
∫ a

0

f(t)dqt.

Similarly as done for derivatives, an operator In
q can be defined, namely,

(I0
q f)(x) = f(x) and (In

q f)(x) = Iq(In−1
q f)(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIqf)(x) = f(x),

and if f is continuous at x = 0, then
(IqDqf)(x) = f(x)− f(0).

Basic properties of the two operators can be found in the book [19]. We now point out three formulas that will
be used later (iDq denotes the derivative with respect to variable i)

[a(t− s)](α) = aα(t− s)(α), tDq(t− s)(α) = [α]q(t− s)(α−1),(
xDq

∫ x

0

f(x, t)dqt

)
(x) =

∫ x

0
xDqf(x, t)dqt + f(qx, x).

We note that if α > 0 and a ≤ b ≤ t, then (t− a)(α) ≥ (t− b)(α) [14].

Definition 2.1 ([24]). Let α ≥ 0 and f be function defined on [0, 1]. The fractional q-integral of the Riemann-
Liouville type is I0

q f(x) = f(x) and

(Iα
q f)(x) =

1
Γq(α)

∫ x

0

(x− qt)(α−1)f(t)dqt, α > 0, x ∈ [0, 1].

Definition 2.2 ([24]). The fractional q-derivative of the Riemann-Liouville type of order α ≥ 0 is defined by
D0

qf(x) = f(x) and
(Dα

q f)(x) = (Dm
q Im−α

q f)(x), α > 0,

where m is the smallest integer greater than or equal to α.

Definition 2.3 ([24]). The fractional q-derivative of the Caputo type of order α ≥ 0 is defined by

(cDα
q f)(x) = (Im−α

q Dm
q f)(x), α > 0,

where m is the smallest integer greater than or equal to α.

Lemma 2.1 ([14]). Let α, β ≥ 0 and f be a function defined on [0, 1]. Then the next formulas hold:

(1) (Iβ
q Iα

q f)(x) = Iα+β
q f(x),

(2) (Dα
q Iα

q f)(x) = f(x).

Lemma 2.2 ([14]). Let α > 0 and α ∈ R+ \ N. Then the following equality holds:

(Iα
q

cDα
q f)(x) = f(x)−

m−1∑
k=0

xk

Γq(k + 1)
(Dk

q f)(0),

where m is the smallest integer greater than or equal to α.

Lemma 2.3. For any y ∈ C[0, 1], the unique solution of the linear fractional boundary value problem{
(cDα

q u)(t) = y(t), t ∈ [0, 1], 1 < α ≤ 2,

u(0) = −u(1), (Du)(0) = −(Du)(1),
(2.2)

is given by

u(t) =
∫ 1

0

G(t, qs)y(s)dqs,
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where

G(t, s) =


2(t− s)(α−1) − (1− s)(α−1)

2Γq(α)
+

(1− 2t)(1− s)(α−2)

4Γq(α− 1)
, 0 ≤ s ≤ t ≤ 1,

− (1− s)(α−1)

2Γq(α)
+

(1− 2t)(1− s)(α−2)

4Γq(α− 1)
, 0 ≤ t ≤ s ≤ 1.

(2.3)

Proof. We may apply Lemma 2.1 and Lemma 2.2; we see that

u(t) =
1

Γq(α)

∫ t

0

(t− qs)(α−1)y(s)dqs + c1 + c2t. (2.4)

Differentiating both sides of (2.4), we obtain

(Dqu)(t) =
1

Γq(α− 1)

∫ t

0

(t− qs)(α−2)y(s)dqs + c2.

Applying the boundary conditions for the problem (2.2), we find that

c1 =
1

2Γ(α)

∫ 1

0

(1− s)(α−1)y(s)dqs−
1

4Γ(α− 1)

∫ 1

0

(1− s)(α−2)y(s)dqs,

c2 =
1

2Γq(α− 1)

∫ 1

0

(1− s)(α−2)y(s)dqs.

Thus, the unique solution of (2.2) is

u(t) =
∫ t

0

(t− qs)(α−1)

Γq(α)
y(s)dqs−

1
2

∫ 1

0

(1− qs)(α−1)

Γq(α)
y(s)dqs−

1− 2t

4

∫ 1

0

(1− qs)(α−2)

Γq(α− 1)
y(s)dqs

=
∫ 1

0

G(t, qs)y(s)dqs,

where G(t, s) is given by (2.3). This completes the proof.

3 Main results

In this section, we establish some sufficient conditions for the existence and uniqueness of solutions for
boundary value problem (1.1).

Let C = C([0, 1], R) denote the Banach space of all continuous functions from [0, 1] → R endowed with the
norm defined by ‖u‖ = sup{|u(t)|, t ∈ [0, 1]}.

Now we state some known fixed point theorems which are needed to prove the existence of solutions for
(1.1).

Theorem 3.1 ([25]). Let X be a Banach space. Assume that T : X → X is a completely continuous operator
and the set V = {u ∈ X|u = µTu, 0 < µ < 1} is bounded. Then T has a fixed point in X.

Theorem 3.2 ([25]). Let X be a Banach space. Assume that Ω is an open bounded subset of X with θ ∈ Ω
and let T : Ω → X be a completely continuous operator such that

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Ω.

Then T has a fixed point in Ω.

We define, in relation to (1.1), an operator T : C → C as follows

(Tu)(t) =
∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, u(s))dqs−

1
2

∫ 1

0

(1− qs)(α−1)

Γq(α)
f(s, u(s))dqs

−1− 2t

4

∫ 1

0

(1− qs)(α−2)

Γq(α− 1)
f(s, u(s))dqs, t ∈ [0, 1]. (3.1)

From Lemma 2.3, we observe that the problem (3.1) has a solution if and only if the operator T has a fixed
point.
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Theorem 3.3. Assume that there exists a positive constant M such that |f(t, u)| ≤ M for t ∈ [0, 1] and u ∈ C.
Then the problem (1.1) has at least one solution.

Proof. We show, as a first step, that the operator T is completely continuous. Clearly, continuity of the
operator T follows from the continuity of f . Let Ω ∈ C be bounded. Then, u ∈ Ω together with the assumption
|f(t, u)| ≤ M , we get

|(Tu)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, u(s))|dqs +

1
2

∫ 1

0

(1− qs)(α−1)

Γq(α)
|f(s, u(s))|dqs

+
|1− 2t|

4

∫ 1

0

(1− qs)(α−2)

Γq(α− 1)
|f(s, u(s))|dqs

≤ M

(∫ t

0

(t− qs)(α−1)

Γq(α)
dqs +

1
2

∫ 1

0

(1− qs)(α−1)

Γq(α)
dqs +

|1− 2t|
4

∫ 1

0

(1− qs)(α−2)

Γq(α− 1)
dqs

)
≤ M(3Γq(α) + Γq(α + 1))

2Γq(α)Γq(α + 1)
= M2,

which implies that ‖(Tu)(t)‖ ≤ M2. Furthermore,

|Dq(Tu)(t)| ≤
∫ t

0

(t− qs)(α−2)

Γq(α− 1)
|f(s, u(s))|dqs +

1
2

∫ 1

0

(1− qs)(α−2)

Γq(α− 1)
|f(s, u(s))|dqs

≤ M

(∫ t

0

(t− qs)(α−2)

Γq(α− 1)
dqs +

1
2

∫ 1

0

(1− qs)(α−2)

Γq(α− 1)
dqs

)
≤ 3M

2Γq(α)
= M3,

Hence, for t1, t2 ∈ [0, 1], t1 < t2, we have

|(Tu)(t2)− (Tu)(t1)| ≤
∫ t2

t1

|Dq(Tu)(s)|dqs ≤ M3(t2 − t1).

This implies that T is equicontinuous on [0, 1]. Thus, by the Arzela-Ascoli theorem, the operator T : C → C is
completely continuous.

Next, we consider the set V = {u ∈ X|u = µTu, 0 < µ < 1}, and show that the set V is bounded. Let
u ∈ V ; then u = µTu, 0 < µ < 1. For any t ∈ [0, 1], we have

|u(t)| = µ|(Tu)(t)| ≤ |(Tu)(t)| = M2.

Thus, ‖u‖ ≤ M2 for any t ∈ [0, 1]. So, the set V is bounded. Thus, by the conclusion of Theorem 3.1,
the operator T has at least one fixed point, which implies that (1.1) has at least one solution. The proof is
complete.

Theorem 3.4. Let limu→0 f(t, u)/u = 0. Then the problem (1.1) has at least one solution.

Proof. Since limu→0 f(t, u)/u = 0, there therefore exists a constant r > 0 such that |f(t, u)| ≤ δ|u| for 0 <

|u| < r, where δ > 0 is such that M2δ < 1.
Define Ω = {u ∈ C|‖u‖ < r} and take u ∈ C such that ‖u‖ = r, that is, u ∈ ∂Ω. As before, it can be

shown that T is completely continuous and |(Tu)(t)| ≤ M2δ‖u‖, which, in view of M2δ < 1, yields ‖Tu‖ ≤ ‖u‖,
u ∈ ∂Ω. Therefore, by Theorem 3.2, the operator T has at least one fixed point, which in turn implies that the
problem (1.1) has at least one solution.

Theorem 3.5. Assume that f : [0, 1]× R → R is a jointly continuous function satisfying

|f(t, u)− f(t, v)| ≤ L|u− v|, ∀t ∈ [0, 1], u, v ∈ R

with

L ≤ Γq(α)Γq(α + 1)
3Γq(α) + Γq(α + 1)

.

Then the problem (1.1) has a unique solution.
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Proof. Defining supt∈[0,1] |f(t, 0)| = K < ∞ and selecting

r ≥ K(3Γq(α) + Γq(α + 1))
Γq(α)Γq(α + 1)

,

we show that TBr ⊂ Br, where Br = {u ∈ C : ‖u‖ ≤ r}. For u ∈ Br, we have

|(Tu)(t)|

≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, u(s))|dqs +

1
2

∫ 1

0

(1− qs)(α−1)

Γq(α)
|f(s, u(s))|dqs

+
|1− 2t|

4

∫ 1

0

(1− qs)(α−2)

Γq(α− 1)
|f(s, u(s))|dqs

≤
∫ t

0

(t− qs)(α−1)

Γq(α)
(|f(s, u(s))− f(s, 0)|+ |f(s, 0)|)dqs +

1
2

∫ 1

0

(1− qs)(α−1)

Γq(α)
(|f(s, u(s))

−f(s, 0)|+ |f(s, 0)|)dqs +
|1− 2t|

4

∫ 1

0

(1− qs)(α−2)

Γq(α− 1)
(|f(s, u(s))− f(s, 0)|+ |f(s, 0)|)dqs

≤ (Lr + K)
(∫ t

0

(t− qs)(α−1)

Γq(α)
dqs +

1
2

∫ 1

0

(1− qs)(α−1)

Γq(α)
dqs +

|1− 2t|
4

∫ 1

0

(1− qs)(α−2)

Γq(α− 1)
dqs

)
≤ (Lr + K)

3Γq(α) + Γq(α + 1)
2Γq(α)Γq(α + 1)

≤ r.

Taking the maximum over the interval [0, 1], we get ‖(Tu)(t)‖ ≤ r. Now, for u, v ∈ C and for each t ∈ [0, 1],
we obtain

‖(Tu)(t)− (Tv)(t)‖

≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, u(s))− f(s, v(s))|dqs +

1
2

∫ 1

0

(1− qs)(α−1)

Γq(α)
|f(s, u(s))− f(s, v(s))|dqs

+
|1− 2t|

4

∫ 1

0

(1− qs)(α−2)

Γq(α− 1)
|f(s, u(s))− f(s, v(s))|dqs

≤ L‖u− v‖
(∫ t

0

(t− qs)(α−1)

Γq(α)
dqs +

1
2

∫ 1

0

(1− qs)(α−1)

Γq(α)
dqs +

|1− 2t|
4

∫ 1

0

(1− qs)(α−2)

Γq(α− 1)
dqs

)
≤ L(3Γq(α) + Γq(α + 1))

2Γq(α)Γq(α + 1)
‖u− v‖ = ΛL,α‖u− v‖,

where

ΛL,α =
L(3Γq(α) + Γq(α + 1))

2Γq(α)Γq(α + 1)
,

which depends only on the parameters involved in the problem. As ΛL,α < 1, T is therefore a contraction.
Thus, the conclusion of the theorem follows by the contraction mapping principle (the Banach fixed point
theorem).

4 Some examples

Example 4.1. Consider the anti-periodic fractional q-difference boundary value problem (cDα
q u)(t) =

e− cos2 u(t)[5 + cos 2t + 4 ln(5 + 2 sin2 u(t))]
2 + sin2 u(t)

, t ∈ [0, 1], 1 < α ≤ 2,

u(0) = −u(1), (Du)(0) = −(Du)(1).
(4.1)

Clearly, M = 3 + 2 ln 7, and the hypothesis of Theorem 3.3 holds. Therefore, the conclusion of Theorem 3.3
implies that the problem (4.1) has at least one solution.
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Example 4.2. Consider the anti-periodic fractional q-difference boundary value problem{
(cDα

q u)(t) = (16 + u3(t))
1
2 + 2(t2 + 1)(tanu(t)− u(t))− 4, t ∈ [0, 1], 1 < α ≤ 2,

u(0) = −u(1), (Du)(0) = −(Du)(1).
(4.2)

It can easily be verified that all the assumptions of Theorem 3.4 holds. Consequently, the conclusion of Theorem
3.4 implies that the problem (4.2) has at least one solution.

Example 4.3. Consider the anti-periodic fractional q-difference boundary value problem (cDα
q u)(t) =

e−πt|u(t)|
(5 + e−πt)(1 + |u(t)|)

, t ∈ [0, 1],

u(0) = −u(1), (Du)(0) = −(Du)(1),
(4.3)

where α = 1.5 and q = 0.5. Let

f(t, u) =
e−πt|u|

(5 + e−πt)(1 + |u|)
.

Clearly, L = 1/5 as |f(t, u)− f(t, v)| ≤ 1/5|u− v|. Further,

L(3Γq(α) + Γq(α + 1))
Γq(α)Γq(α + 1)

=
3Γ0.5(1.5) + Γ0.5(2.5)
5Γ0.5(1.5)Γ0.5(2.5)

≈ 0.721135 < 1.

Thus, all the assumptions of Theorem 3.5 are satisfied. Therefore, the conclusion of Theorem 3.5 implies that
the problem (4.3) has a unique solution.
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