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Abstract

In this paper, we consider a class of anti-periodic boundary value problems involving nonlinear fractional
g-difference equations. Some existence and uniqueness results are obtained by applying some standard fixed
point theorems. As applications, some examples are presented to illustrate the main results.
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1 Introduction

Anti-periodic boundary value problems occur in the mathematical modeling of a variety of physical pro-
cesses and have recently received considerable attention. For examples and details of anti-periodic boundary
conditions, see [2, [B [ [5] [7, [T0] and the references therein.

The g¢-difference calculus or quantum calculus is an old subject that was initially developed by Jackson
[17, [18], basic definitions and properties of g-difference calculus can be found in the book mentioned in [19].

The fractional g-difference calculus had its origin in the works by Al-Salam [§] and Agarwal [I]. More
recently, maybe due to the explosion in research within the fractional differential calculus setting, new develop-
ments in this theory of fractional g-difference calculus were made, for example, g-analogues of the integral and
differential fractional operators properties such as the g-Laplace transform, ¢g-Taylor’s formula, Mittage-Leffler
function [9] 22} 23], just to mention some.

Recently, boundary value problems of nonlinear fractional ¢-difference equations have aroused considerable
attention. Many people pay attention to the existence and multiplicity of solutions or positive solutions for
boundary value problems of nonlinear fractional g-difference equations by means of some fixed point theorems,
such as the Krasnosel’skii fixed-point theorem, the Leggett-Williams fixed-point theorem, and the Schauder
fixed-point theorem, For examples, see [11, 12 20, 21} 26, 27, 28] and the references therein. Graef and
Kong [16] investigated the uniqueness, existence, and nonexistence of positive solutions for the boundary value
problem with fractional g-derivatives in terms of different ranges of \. Ahmad et al. [6] studied the following
nonlinear fractional g-difference equation with nonlocal boundary conditions by applying some well-known
tools of fixed point theory such as Banach contraction principle, Krasnoselskiis fixed point theorem, and the
Leray-Schauder nonlinear alternative. Zhao et al. [29] considered some existence results of positive solutions to
nonlocal g-integral boundary value problem of nonlinear fractional g-derivatives equation using the generalized
Banach contraction principle, the monotone iterative method, and Krasnoselskii’s fixed point theorem.

El-Shahed and Hassan [I3] studied the existence of positive solutions of the ¢-difference boundary value
problem

{ —(Dju)(t) = a(t)f(u(t)), 0<t<1,
au(0) — BD,u(0) =0, ~u(l) —d6Dgu(l) = 0.
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Ferreira [14] and [I5] considered the existence of positive solutions to nonlinear g-difference boundary value
problems

{(Dgu(t)f(t,u(t)), 0<t<1, 1l<a<?2

and

{ (Dgu)(t) = —f(t,u(t)), 0<t<1, 2<a<3,
u(0) = (Dgu)(0) = 0, (Dgu)(1) =48>0,

respectively. By applying a fixed point theorem in cones, sufficient conditions for the existence of nontrivial
solutions were enunciated.

In this paper, we investigate the existence and uniqueness results for anti-periodic boundary value problems
involving nonlinear fractional ¢-difference equations given by

{ (CDfu)(t) = f(tult), tef01], 1<a<2, (1)

u(0) = —u(1), (Du)(0) = —(Du)(1),

where °Dg denotes the Caputo fractional g-derivative of order a, and f : [0,1] x R — R is a given continuous
function. Our results are based on some standard fixed point theorems.

2 Preliminaries

For theconvenience of the reader, we present some necessary definitions and lemmas of fractional g-calculus
theory to facilitate analysis of problem (1.1). These details can be found in the recent literature; see [19] and
references therein. Let ¢ € (0,1) and define

gt —1
= R
[a]q q-— 1 , a €
The g-analogue of the power (a — b)™ with n € Ny is
n—1
(a— b)(o) =1, (a— b)(") = H(a —bg*), neN, a,beR.
k=0

More generally, if a € R, then

@) — T 0 b
(a—0)'" =a Ha—bqa‘""'

n=0

Note that, if b = 0 then a(®) = a®. The ¢g-gamma function is defined by

_ \(z—=1)
Ly(z) = ((ll_qq))x_l, zeR\{0,—-1,-2,...},

and satisfies T'y(x + 1) = [x],Ty(x).
The g-derivative of a function f is here defined by

f(z) — flqz)

(Duf) @) = S =7 (Daf)(0) = I (Dyf)(a)

and g-derivatives of higher order by

(Dgf)(x) = f(z) and (Dyf)(x) = Dg(Dg~" f)(x), neN.

The g-integral of a function f defined in the interval [0,d] is given by

@ = [ it =21 ) fed)d, x e [0.5]
n=0
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If a € [0,b] and f is defined in the interval [0,b], its integral from a to b is defined by

/ab ft)dqgt = /Ob f(t)dgt — /Oa f(t)dgt

Similarly as done for derivatives, an operator ;' can be defined, namely,
(Ig)(@) = f(z) and (I3 f)(2) = I,(Ig 7" f)(z), neN.
The fundamental theorem of calculus applies to these operators I, and Dy, i.e.,
(Dglof)(x) = f(x),

and if f is continuous at = = 0, then

(IgDqf)(x) = f(z) — f(0).
Basic properties of the two operators can be found in the book [19]. We now point out three formulas that will
be used later (;D, denotes the derivative with respect to variable 7)

at = )@ =a®(t = 5)(,1Dy(t = 5 = [al,(t ),

( /fxtdt) /Dfxt)dt+f(qxx)

We note that if o > 0 and a < b < t, then (t — a)(®) > (t — b)(®) [14].

Definition 2.1 ([24]). Let o > 0 and f be function defined on [0, 1]. The fractional ¢-integral of the Riemann-
Liouville type is I) f(x) = f(z) and

(I3 f)(x) = F;a) /OT(x - qt)(a_l)f(t)dqt, a> 0,z €[0,1].

Definition 2.2 ([24]). The fractional g-derivative of the Riemann-Liouville type of order a > 0 is defined by
DY /() = f(x) and _
(Dg (@) = (D1 f)(x), a>0,

where m is the smallest integer greater than or equal to a.
Definition 2.3 ([24]). The fractional g-derivative of the Caputo type of order a > 0 is defined by
(“Dg f)(x) = (1"~ Dy f)(x), a>0,

where m is the smallest integer greater than or equal to a.

Lemma 2.1 ([14]). Let o, 8 >0 and f be a function defined on [0,1]. Then the next formulas hold:
(1) (I7Ig (@) = 170 f (),
(2) (Dg1gf)(x) = f(x).

Lemma 2.2 ([14]). Let a > 0 and o € RT™ \ N. Then the following equality holds:

m—1

(Ig°D ) (a - Dk,

k=0
where m is the smallest integer greater than or equal to a.
Lemma 2.3. For any y € C|0, 1], the unique solution of the linear fractional boundary value problem

{ (‘Dgu)(t) =y(t), te[0,1], 1<a<2, (2.2)

u(0) = —u(1), (Du)(0) = =(Du)(1),

s given by

= / G(t, gs)y(s)dgys
0



110 W. Yang / Anti-periodic boundary value problems ...

where
—g)e=1) _ (1 = g)(a=D) — —5)(a=2)
2(t — s) (1—23s) (1-2t)(1—s) C0<s<ti<l,
2Ty (a) ATy (a — 1)
G(t,s) = (2.3)
(1—s)@=D (1 -2t)(1 —s)>2
_ : 0<t<s<l
2Ty () AT (o — 1)
Proof. We may apply Lemma 2.1 and Lemma [2.2} we see that
1 t
u(t) = / (t —qs) “ Vy(s)dys + ¢1 + cot. (2.4)
Lg() Jo !
Differentiating both sides of (2.4]), we obtain
(Dgu)(t) = _ /t(t —qs) @ Dy(s)dys + ca.
! Lol —1) Jo !
Applying the boundary conditions for the problem (2.2]), we find that
L (a=1) ! 1 (a=2)
= - 1 _ a—1 d - 1 _ a—2 d
o= gm0 L =9 s = s [ =9 s

1 1
Co M@= /0 (1—13s) y(s)dys.

Thus, the unique solution of (2.2) is

t (g — gg)(@=1) 1 (1 — gg)@=D “ot (1 — gs)(@=2)
) = [ ey 5 [ By - 2 [ S,

1
- / G(t, gs)y(s)dys,
0

where G(t, s) is given by (2.3]). This completes the proof. O

3 Main results

In this section, we establish some sufficient conditions for the existence and uniqueness of solutions for
boundary value problem (1.1

Let C = C([0,1],R) denote the Banach space of all continuous functions from [0, 1] — R endowed with the
norm defined by |lul| = sup{|u(t)|,t € [0,1]}.

Now we state some known fixed point theorems which are needed to prove the existence of solutions for

D).

Theorem 3.1 ([25]). Let X be a Banach space. Assume that T : X — X is a completely continuous operator
and the set V = {u € X|u = pTu,0 < p < 1} is bounded. Then T has a fized point in X.

Theorem 3.2 ([25]). Let X be a Banach space. Assume that Q2 is an open bounded subset of X with 6 €
and let T : Q — X be a completely continuous operator such that

[Tull < Jlull,  Vu e 0.

Then T has a fized point in Q.
We define, in relation to (1.1]), an operator T': C — C as follows

t o S(afl) 1 _ S(O‘fl)
o = [ et - 5 [ B s,

Cop (] — g)(@2)
lﬁaéunéle@w@mﬁ,tqmu (3.1)

From Lemma we observe that the problem (3.1) has a solution if and only if the operator T" has a fixed
point.
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Theorem 3.3. Assume that there exists a positive constant M such that | f(t,u)| < M fort € [0,1] and u € C.
Then the problem has at least one solution.

Proof. We show, as a first step, that the operator T is completely continuous. Clearly, continuity of the
operator T follows from the continuity of f. Let 2 € C be bounded. Then, u € €2 together with the assumption
|f(t,u)] < M, we get

t _ S(a—l) 1 _ 3(0‘_1)
()| < /“‘”)m s+ [ O o)l

_ (a—2)
=2 / (s, u(s))ldgs

a—l

(tqu)("‘ D 1/1 (1 —gs)@=b 172t|/ l—qs y(@=2)
M ACEI AN Y G A
</0 Lg(a) dos ¥ 2Jo Iq(a) (a—1) do?

M@y (o) +Ty(a + 1))
S T+

IA

:M27

which implies that ||(Tu)(¢)|| < Ms. Furthermore,

A

_as)( 1 (1 gg)(@=2
Dyt < [ I el + 3 [ O sl

t (t— qs)(a—2) 1 ! (1— qs)(a—Q)
< M ~— < d - -~ d
- </ T(a—1) q”z/o T(a—1) )
S 3M = M37
2l ()

Hence, for t1,t2 € [0, 1], t1 < ta, we have

ta
(Tu)(tz) = (Ta)(0)] < [ IDy(Tu)(s)ldys < Motz — o).
ty
This implies that T is equicontinuous on [0, 1]. Thus, by the Arzela-Ascoli theorem, the operator T': C — C is
completely continuous.
Next, we consider the set V = {u € X|u = pTu,0 < p < 1}, and show that the set V' is bounded. Let
u € V; then w = puTu, 0 < p < 1. For any t € [0, 1], we have

u(t)] = ul(Tu) ()] < [(Tu)(t)] = Ma.

Thus, ||ul] < My for any ¢ € [0,1]. So, the set V is bounded. Thus, by the conclusion of Theorem
the operator T' has at least one fixed point, which implies that (1.1)) has at least one solution. The proof is
complete. O

Theorem 3.4. Let lim, .o f(t,u)/u = 0. Then the problem has at least one solution.

Proof. Since lim,_¢ f(¢,u)/u = 0, there therefore exists a constant r > 0 such that |f(¢,u)| < dlu| for 0 <
|u| < 7, where § > 0 is such that M6 < 1.

Define Q = {u € C||jul| < r} and take u € C such that |u|| = r, that is, u € 9. As before, it can be
shown that T is completely continuous and |(T'w)(t)| < Mad||u||, which, in view of M2 < 1, yields ||[Tu|| < |jull,
u € 0f). Therefore, by Theorem the operator T" has at least one fixed point, which in turn implies that the
problem has at least one solution. O

Theorem 3.5. Assume that f :[0,1] x R — R is a jointly continuous function satisfying
F(tw) = f(60) < Llu—ol, Vi€ [0,1],uveR

with
Fq( gl +1)

b= 3@ 4 Tat D)

Then the problem has a unique solution.
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Proof. Defining sup;c(o ) | f(¢,0)] = K < oo and selecting

> K(3ly(a) + Ly(a +1))
~ Tyla)lg(e+1) 7

we show that TB, C B,, where B, = {u € C: ||u|]| < r}. For u € B,, we have
|(Tw) (®))

b — g)@=D) F(1-gs)e
| s <>>|ds+; | sty

|1 — 2t|
/ a_l ‘f(37u(5))‘dq3
Pl gs)!

M Lt A—g)e o
A Ry (6 u(s) ~ f(s,o>|+|f<s,o>|>dqs+2 | s )

~105,0) + 176,00y + 120 [ O " 2 (100 u(6)) = F(5.0)] + 15, 0) 5

(t —gs)>~V (1 gs)let |1—2t| 5)(@2)
< (L”K)Uo Ty(0) dq”ifo B a—1 d"s)

8Ty (a) + Tyla + 1)
2Ty (a)Ty(a + 1)

IN

IN

< (Lr+K)

Taking the maximum over the interval [0, 1], we get ||(Tu)(t)|| < r. Now, for u,v € C and for each t € [0, 1],
we obtain

[(Tu)(t) = (To)(D)]]

t (t qs)(aq) 1 ! (1-— qs)(afl)
< i — e u(s) = o)y + 5 / (s, u(5) — f(o, () s
|1—2t| 1—q8 y(@=2)
[ o) .6
(t —gs)@=1 (1—gs)*V gs)(@~ 1) |1 — 2t| (1- qs y(@=2)
< L=l (/ Tya) 5/0 T / (- 1) dqs)

< L(3Ty (o) + Tg(a + 1))
= T, (@) + 1)

lw = vl = AL allu =],

where

A _ LB (@) £ Ty(a +1)
b (@)l (a+1)

which depends only on the parameters involved in the problem. As Ay, < 1, T is therefore a contraction.
Thus, the conclusion of the theorem follows by the contraction mapping principle (the Banach fixed point
theorem). O

4 Some examples

Example 4.1. Consider the anti-periodic fractional g-difference boundary value problem

— cos” u(t) o + 41 2sin? u(t
(CDou)(t) = e [5 + cos .+2 n(5 + 2sin” u( ))], be0.], 1<a<2
2 + sin” u(t)

u(0) = —u(1), (Du)(0) = —(Du)(1).

(4.1)

Clearly, M = 3+ 2In7, and the hypothesis of Theorem [3.3] holds. Therefore, the conclusion of Theorem [3.3|
implies that the problem (4.1)) has at least one solution.
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Example 4.2. Consider the anti-periodic fractional g-difference boundary value problem

{ CDgu)(H) = (16+u3(E)} +2( + Ditanu(®) —u(t) =4, te0.1], 1<a<2 w2

u(0) = —u(1), (Du)(0) = —(Du)(L).

It can easily be verified that all the assumptions of Theorem [3-4]holds. Consequently, the conclusion of Theorem
implies that the problem (4.2]) has at least one solution.

Example 4.3. Consider the anti-periodic fractional g-difference boundary value problem

e fu(t)|
(54 e ™) (1 + |u(t)])’
w(0) = —u(1), (Du)(0) = —=(Du)(1),

(“Dgu)(t) =

p t €10,1],

(4.3)

where o = 1.5 and ¢ = 0.5. Let
e*“t|u|

(5+e ™)L+ |uf)’
Clearly, L =1/5 as | f(t,u) — f(t,v)| < 1/5/u — v|. Further,

f(tvu) -

L(3Tg(a) + Ty(ar+1))  3Lg5(1.5) + Lo5(2.5)
L ()T (a+1)  5Tg5(1.5)T05(2.5)

~ 0.721135 < 1.

Thus, all the assumptions of Theorem are satisfied. Therefore, the conclusion of Theorem implies that
the problem (4.3)) has a unique solution.
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