Finsler spaces with some special (α, β)-metric of Douglas type

Pradeep Kumar ${ }^{1}$ and Brijesh Kumar Tripathi ${ }^{2 *}$

Abstract

The purpose of present paper is to considered a special (α, β)-metric under which various conditions reduces to a Douglas type Finsler space.

Keywords
Finsler space, (α, β)-metrics, Riemannian metric, One form differential,Randers metric,Douglas Space.

```
AMS Subject Classification
53C60,53B40.
```

${ }^{1}$ Department of Mathematics, Digvijaynath P.G. College Gorakhpur-273001, Uttar Pradesh, India.
${ }^{2}$ Department of Mathematics, L.D. College of Engineering, Navrangpura, Ahmedabad-380015, Gujarat, India.
*Corresponding author:2brijeshkumartripathi4@gmail.com,drbrijeshtripathi@ldce.ac.in
Article History: Received 13 September 2018; Accepted 22 February 2019

Contents

1 Introduction 132
2 Preliminaries 132
3 Special (α, β) metric 133
4 Finsler space with the metric $L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\beta^{2}}{\alpha}+\frac{\beta^{3}}{\alpha^{2}}$134
5 Finsler space with metric $L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha} 13$
6 Finsler space with metric $L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\alpha^{2}}{\beta}+\frac{\alpha^{2}}{\beta}$ 136
References 137

1. Introduction

In the year 1997, S. Bacso amd M. Matsomoto [4] introduced the notion of Douglas space as a generalization of Berwald space from the viewpoint of geodesic equations.It is remarkable that a Finsler space is a Douglas space or is of Douglas type, if and only if the Douglas tensor Vanishes identically.Further M. Matsumoto [11] has studied the conditions for some Finsler spaces with (α, β)-metric to be of Douglas type.

The theories of Finsler spaces with (α, β)-metric have contributed to the development of Finsler geometry [10] , and Berwald spaces with (α, β)-metric have been studied by many authors [1, 7, 12] .Since Berwald space is also a kind of Douglas space, the impotant point of the paper [11] is to observe that,comparing with the condition of Berwald space,
to what condition of Douglas spce relaxes. In continuous the present paper is to considered a special (α, β)-metric under which various conditions reduces to a Doglas type Finsler space.

2. Preliminaries

Let $\alpha(x, y)$ and $\beta(x, y)$ be a Riemannian metric $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ and a differentiable one - form $\beta=b_{i}(x) y^{i}$ in an n-dimensional differentiable manifold M^{n}. If a Finsler fundamental function in M^{n} is a function $L(\alpha, \beta)$ of α and β which is positively homogeneous of degree one, then the structure $F^{n}=\left(M^{n}, L(\alpha, \beta)\right)$ is called a Finsler space with (α, β) - metric [10]. The space $R^{n}=\left(M^{n}\right), \alpha$ is called a Riemannian space associated with F^{n} [4]. In R^{n}, we have the christoffel symbols $\gamma_{j k}^{i}(x)$. and the covariant differentiation ∇ w.r.t $\gamma_{j k}^{i}(x)$ We shall use the symbols as follows:

$$
\begin{aligned}
r_{i j} & =\frac{1}{2}\left(\nabla_{j} b_{i}+\nabla_{i} b_{j}\right), s_{i j}=\frac{1}{2}\left(\nabla_{j} b_{i}-\nabla_{i} b_{j}\right), \\
s_{j}^{i} & =a^{i r} s_{r j}, s_{j}=b_{r} s_{j}^{r} .
\end{aligned}
$$

It is to be noted that $s_{i j}=\frac{1}{2}\left(\partial_{j} b_{i}-\partial_{i} b_{j}\right)$. Throughout the paper the symbols ∂_{j} and $\dot{\partial}_{j}$ stand for $\frac{\partial}{\partial x^{j}}$ and $\frac{\partial}{\partial y^{j}}$ respectively. We are concerned with the Berwald connection $B \Gamma=$ $\left(G_{j k}^{i}, G_{j}^{i}\right)$ which is given by $2 G^{i}(x, y)=g^{i j}\left(y^{r} \dot{\partial}_{j} \partial_{r} F\right)$, where $F=\frac{L^{2}}{2}, G_{j}^{i}=\dot{\partial}_{j} G^{i}$ and $G_{j k}^{i}=\dot{\partial}_{k} G_{j}^{i}$. The Finsler space F^{n} is said to be of Douglas type or called a Douglas space [4] if $D^{i j}=G^{i}(x, y) y^{j}-G^{j}(x, y) y^{i}$ are homogeneous polynomial in
y^{i} of degree three. It has been shown that F^{n} is of Douglas type iff Douglas tensor

$$
D_{i j k}^{h}=G_{i j k}^{h}-\frac{1}{n-1}\left(G_{i j k} y^{h}+G_{i j} \delta_{k}^{h}+G_{j k} \delta_{i}^{h}+G_{k i} \delta_{j}^{h}\right)
$$

vanishes identically, where $G_{i j k}^{h}=\dot{\partial}_{k} G_{i j}^{h}$ is the hv-curvature tensor of the Berwald connection $B \Gamma, G_{i j}=G_{i j r}^{r}$ and $G_{i j k}=$ $\dot{\partial}_{k} G_{i j}$. [3] Now we consider the function $G^{i}(x, y)$ of F^{n} with (α, β)-metric. According to $[8,12]$ they are written in the form

$$
\begin{equation*}
2 G^{i}=\gamma_{00}^{i}+2 B^{i}, B^{i}=\frac{E}{\alpha} y^{i}+\frac{\alpha L_{\beta}}{L \alpha} s_{0}^{i}-\frac{\alpha L_{\alpha \alpha}}{L_{\alpha}} C^{*}\left(\frac{y^{i}}{\alpha}-\frac{\alpha}{\beta} b^{i}\right) \tag{2.1}
\end{equation*}
$$

where we put,

$$
\begin{align*}
& E=\frac{\beta L_{\beta}}{L} C^{*}, C^{*}=\frac{\alpha \beta\left(r_{00} L_{\alpha}-2 \alpha s_{0} L_{\beta}\right)}{2\left(\beta^{2} L_{\alpha}+\alpha r^{2} L_{\alpha \alpha}\right)} \tag{2.2}\\
& b^{i}=a^{i j} b_{j}, r^{2}=b^{2} \alpha^{2}-\beta^{2}, b^{2}=a^{i j} b_{i} b_{j}
\end{align*}
$$

and the subscript α and β in L denote the partial differentiation w.r.t α and β respectively.

Since $\gamma_{00}^{i}=\gamma_{j k}^{i} y_{j} y_{k}$ is homogeneous polynomial in $\left(y^{i}\right)$ of degree two, we have [11].

Proposition 2.1. A Finsler space F^{n} with (α, β)-metric is a Douglas space if and only if $B^{i j}=B^{i} y^{j}-B^{j} y^{i}$ are homogeneous polynomials in y^{i} of degree three.
Equation (2.1) gives

$$
\begin{equation*}
B^{i j}=\frac{\alpha L_{\beta}}{L_{\alpha}}\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)+\frac{\alpha^{2} L_{\alpha \alpha}}{\beta L_{\alpha}} C^{*}\left(b^{i} y^{j}-b^{j} y^{i}\right) \tag{2.3}
\end{equation*}
$$

Here we state the following lemma for the latter frequent use [6].

Lemma 2.2. If $\alpha^{2} \equiv 0(\bmod \beta)$, i.e. $a_{i j}(x) y^{i} y^{j}$ contains $b_{i}(x) y^{i}$ as a factor, then the dimension is equal to two and b^{2} vanishes. In this case we have $\delta=d_{i}(x) y^{i}$ satisfying $\alpha^{2}=\beta \delta$ and $d_{i} b^{i}=2$.

Through out the paper, we shall say "homogeneous polynomial (s) in y^{i} of degree $\mathrm{r}^{\prime \prime}$ as $h p(r)$ for brevity. Thus γ_{00}^{i} are $h p(2)$ and if the space is of Douglas type then $D^{i j}$ and $B^{i j}$ are $h p(3)$. Also, we have assumed that $\alpha^{2} \not \equiv 0(\bmod \beta)$, throughout the paper.

3. Special (α, β) metric

We shall apply the proposition (2.1) to the (α, β) - metric

$$
L=\frac{b_{1} \alpha^{3}+b_{2} \alpha^{2} \beta+b_{3} \alpha \beta^{2}+b_{4} \beta^{3}}{a_{1} \alpha^{2}+a_{2} \alpha \beta+a_{3} \beta^{2}}
$$

Where a's and b's are constants. It is obvious that by homothetic change of α and β this kind of the metric may be
classified as follows:
(I) If $a_{1} \neq 0, a_{2}=0, a_{3}=0$, we have the Rander's metric $L=\alpha+\beta$ (for $b_{3}=b_{4}=0$) the metric $L=c_{1} \alpha+c_{2} \beta+$ $\frac{\beta^{2}}{\alpha}\left(\right.$ for $\left.b_{4}=0, b_{3} \neq 0\right)$

$$
\begin{equation*}
L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\beta^{2}}{\alpha}+\frac{\beta^{3}}{\alpha^{2}}\left(\text { for } b_{4} \neq 0, b_{3} \neq 0\right) \tag{3.1}
\end{equation*}
$$

The metric (3.1) is approximate Matsumoto metric of second order.
(II) If $a_{2} \neq 0, a_{1}=0, a_{3}=0$, we have the Rander's metric $L=\alpha+\beta\left(\right.$ for $\left.b_{1}=b_{4}=0\right)$ the metric $L=c_{1} \alpha+c_{2} \beta+$ $\frac{\alpha^{2}}{\beta}\left(\right.$ for $\left.b_{4}=0, b_{1} \neq 0\right)$

$$
\begin{equation*}
L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}\left(\text { for } b_{4} \neq 0, b_{1} \neq 0\right) \tag{3.2}
\end{equation*}
$$

(III) If $a_{3} \neq 0, a_{1}=0, a_{2}=0$, we have the Rander's metric $L=\alpha+\beta\left(\right.$ forb $\left._{1}=b_{2}=0\right)$ the metric $L=c_{1} \alpha+c_{2} \beta+\frac{\alpha^{2}}{\beta}$ $\left(\right.$ for $\left.b_{1}=0, b_{2} \neq 0\right)$

$$
\begin{equation*}
L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\alpha^{2}}{\beta}+\frac{\alpha^{2}}{\beta}\left(\text { for }_{1} \neq 0, b_{2} \neq 0\right) \tag{3.3}
\end{equation*}
$$

Theorem 3.1. A Randers space is of Douglas type, if and only if $s_{i j}=0$. Then $2 G^{i}=\gamma_{00}^{i}+\frac{r_{00} y^{i}}{L}$.
As the metric $L=c_{1} \alpha+c_{2} \beta+\frac{\beta^{2}}{\alpha}$ we have [14].
Theorem 3.2. A Finsler space F^{n} with $(\alpha, \beta), L=c_{1} \alpha+$ $c_{2} \beta+\frac{\beta^{2}}{\alpha}$ for which $c_{2} \neq 0, b^{2} \neq c_{1}$ and $\alpha^{2} \nexists 0(\bmod \beta)$, is a Douglas space if and only if there exist a scalar function $h(x)$ such that

$$
\nabla_{j} b_{i}=h(x)\left[\left(c_{1}+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}\right]
$$

holds. In particular if $h(x)=0$, then F^{n} is a Berwald space. As for metric $L=c_{1} \alpha+c_{2} \beta+\frac{\alpha^{2}}{\beta}$, we have [14].

Theorem 3.3. Let F^{n} be a Douglas space with metric $L=$ $c_{1} \alpha+c_{2} \beta+\frac{\alpha^{2}}{\beta}$ for which $b^{2} \neq 0$ and $\alpha^{2} \not \equiv 0(\bmod \beta)$, then there exist a scalar function $u(x)$ and a tensor function $v_{i j}(x)$ such that $\nabla_{j} b_{i}\left(=r_{i j}+s_{i j}\right)$

$$
\begin{aligned}
& \text { where } r_{i j}=\frac{c_{2}}{2 c_{1}}\left(b_{i} s_{j}+b_{j} s_{i}\right)-u a_{i j} \text { and } \\
& \qquad s_{i j}=\frac{1}{b^{2}}\left(b_{i} s_{j}-b_{j} s_{i}\right)-\frac{4}{n-1} v_{i j}
\end{aligned}
$$

Now as for metric $L=\frac{c_{1} \alpha^{2}+c_{2} \alpha \beta+c_{3} \beta^{2}}{\alpha+\beta}$, we have [14].
Theorem 3.4. Let F^{n} be a Douglas space with (α, β) metric $L=\frac{c_{1} \alpha^{2}+c_{2} \alpha \beta+c_{3} \beta^{2}}{\alpha+\beta}$ for which $b^{2} \neq 0$ and $\alpha^{2} \not \equiv 0(\bmod \beta)$, then $\left(\nabla_{j} b_{i}-\nabla_{i} b_{j}\right)=\frac{\mu}{k_{0}(n-1)}\left(b_{i} s_{j}-b_{j} s_{i}\right)$ where $\mu=2 n c_{0}\left(c_{2}-\right.$ $\left.c_{1}\right)-\frac{k_{0}}{b^{2}}, c_{0}=c_{1}-c_{2}+c_{3}$ and $k_{0}=\left(c_{2}-c_{1}\right)\left(c_{1}+2 c_{0} b^{2}\right)$ We shall discuss the condition for F^{n} with metrics (3.1), (3.2) and (3.3) to be of Douglas type in the following articles.

4. Finsler space with the metric

$$
L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\beta^{2}}{\alpha}+\frac{\beta^{3}}{\alpha^{2}}
$$

For the metric $L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\beta^{2}}{\alpha}+\frac{\beta^{3}}{\alpha^{2}}\left(\right.$ for $b_{4} \neq 0, b_{3} \neq$ 0), we have

$$
\begin{aligned}
& L_{\alpha}=\frac{c_{1} \alpha^{3}-c_{3} \alpha \beta^{2}-2 \beta^{3}}{\alpha^{3}}, L_{\beta}=\frac{c_{2} \alpha^{2}+2 c_{3} \alpha \beta+3 \beta^{2}}{\alpha^{2}} \\
& L_{\alpha \alpha}=\frac{2 \alpha \beta^{2} c_{3}+6 \beta^{3}}{\alpha^{4}}
\end{aligned}
$$

Therefore the value of C^{*} given in (2.2) becomes

$$
C^{*}=\frac{\alpha \beta}{2}\left[\frac{r_{00}\left(c_{1} \alpha^{3}-c_{3} \alpha \beta^{2}-2 \beta^{3}\right)-2 s_{0}\left(c_{2} \alpha^{2}+2 \alpha \beta c_{3}+3 \beta^{2}\right) \alpha^{2}}{c_{1} \alpha^{3} \beta^{2}-c_{3}\left(3 \alpha \beta^{4}-2 b^{2} \beta^{2} \alpha^{3}\right)-8 \beta^{5}+6 b^{2} \alpha^{2} \beta^{3}}\right]
$$

From (2.3), we have

$$
\left\{\begin{array}{l}
B^{i j}=\alpha^{2} \frac{\left(c_{2} \alpha^{2}+2 c_{3} \alpha \beta+3 \beta^{2}\right)}{\left(c_{1} \alpha^{3}-c_{3} \alpha \beta^{2}-2 \beta^{3}\right)}\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right) \tag{4.1}\\
+\alpha^{2} \frac{c_{3} \alpha \beta^{2}+3 \beta^{3}}{\left(c_{1} \alpha^{3}-c_{3} \alpha \beta^{2}-2 \beta^{3}\right)} \\
\times\left[\frac{r_{00}\left(c_{1} \alpha^{3}-c_{3} \alpha \beta^{2}-2 \beta^{3}\right)-2 s_{0}\left(c_{2} \alpha^{2}+2 \alpha \beta c_{3}+3 \beta^{2}\right) \alpha^{2}}{c_{1} \alpha^{3} \beta^{2}-c_{3}\left(3 \alpha \beta^{4}-2 b^{2} \beta^{2} \alpha^{3}\right)-8 \beta^{5}+6 b^{2} \alpha^{2} \beta^{3}}\right] \\
\left(b^{\left.b^{\prime} y^{j}-b^{j} y^{i}\right)}\right.
\end{array}\right.
$$

Which may be written as

$$
\left\{\begin{array}{l}
\left(c_{1} \alpha^{3}-c_{3} \alpha \beta^{2}-2 \beta^{3}\right)\left(c_{1} \alpha^{3} \beta^{2}-3 c_{3} \alpha \beta^{4}+\right. \tag{4.2}\\
\left.2 c_{3} b^{2} \beta^{2} \alpha^{3}-8 \beta^{5}+6 b^{2} \alpha^{2} \beta^{3}\right) B^{i j}-\alpha^{2}\left(c_{2} \alpha^{2}\right. \\
\left.+2 \alpha \beta c_{3}+3 \beta^{2}\right)\left(c_{1} \alpha^{3} \beta^{2}-3 c_{3} \alpha \beta^{4}\right. \\
\left.+2 c_{3} b^{2} \beta^{2} \alpha^{3}-8 \beta^{5}+6 b^{2} \alpha^{2} \beta^{3}\right)\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right) \\
-\alpha^{2}\left(c_{3} \alpha \beta^{2}+3 \beta^{3}\right)\left[r_{00}\left(c_{1} \alpha^{3}-c_{3} \alpha \beta^{2}-2 \beta^{3}\right)\right. \\
\left.-2 s_{0}\left(c_{2} \alpha^{2}+2 \alpha \beta c_{3}+3 \beta^{2}\right) \alpha^{2}\right] \cdot\left(b^{i} y^{j}-b^{j} y^{i}\right)=0
\end{array}\right.
$$

Since α is irrational in $\left(y^{i}\right)$, the equation (4.2) are divided into two equations as follows:

$$
\left\{\begin{array}{l}
{\left[c_{1}^{2} \alpha^{6}-4 c_{1} c_{3} \alpha^{4} \beta^{2}+2 c_{1} c_{3} b^{2} \alpha^{4}+3 c_{3}^{2} \alpha^{2} \beta^{4}\right.} \tag{4.3}\\
\left.-2 c_{3}^{2} b^{2} \beta^{2} \alpha^{4}+16 \beta^{6}-12 b^{2} \alpha^{2} \beta^{4}\right] B^{i j} \\
-\alpha^{2}\left[6 c_{2} b^{2} \alpha^{4} \beta+2 c_{1} c_{3} \alpha^{4} \beta-8 c_{2} \alpha^{2} \beta^{3}\right. \\
-6 c_{3}^{2} \alpha^{2} \beta^{3}-24 \beta^{5}+18 b^{2} \alpha^{2} \beta^{3}+ \\
\left.4 c_{3}^{2} b^{2} \beta \alpha^{4}\right]\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-\alpha^{2}\left[c_{1} c_{3} \alpha^{4} r_{00}-c_{3}^{2} \beta^{2}\right. \\
-2 s_{0}\left(2 c_{3}^{2} \alpha^{2} \beta+3 c_{2} \alpha^{2} \beta+9 \beta^{3}\right) \alpha^{2}- \\
\left.6 \beta^{4} r_{00}\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)=0
\end{array}\right.
$$

And

$$
\left\{\begin{array}{l}
{\left[-10 c_{1} \beta^{3} \alpha^{2}+6 c_{1} b^{2} \beta \alpha^{4}+14 c_{3} \beta^{5}\right.} \tag{4.4}\\
\left.-10 c_{3} b^{2} \alpha^{2} \beta^{3}\right] B^{i j}-\alpha^{2}\left[c_{1} c_{2} \alpha^{4}-3 c_{2} c_{3} \alpha^{2} \beta^{2}\right. \\
\left.+2 c_{2} c_{3} b^{2} \alpha^{4}-25 c_{3} \beta^{4}+18 c_{3} b^{2} \alpha^{2} \beta^{2}+3 c_{1} \alpha^{2} \beta^{2}\right] \\
\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-\alpha^{2}\left[-5 c_{3} \beta^{3} r_{00}-2 s_{0}\left(c_{2} c_{3} \alpha^{2}\right.\right. \\
\left.\left.+9 c_{3} \beta^{2}\right) \alpha^{2}+3 c_{1} \alpha^{2} \beta r_{00}\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)
\end{array}\right.
$$

Only term $14 c_{3} \beta^{5} B^{i j}$ of (4.4) seemingly does not contain α^{2}. Therefore there exists a $h p(6) K_{(6)}^{i j}$ such that it is equal to $\alpha^{2} K_{(6)}^{i j}$.
Hence we have $B^{i j}=\alpha^{2} K^{i j}$ where we put $K_{(6)}^{i j}=14 c_{3} \beta^{5} K^{i j}$
with $h p(1) K^{i j}$.
Therefore (4.4) reduces to

$$
\left\{\begin{array}{l}
{\left[6 c_{1} b^{2} \beta \alpha^{4}+14 c_{3} \beta^{5}-10 c_{1} \beta^{3} \alpha^{2}-10 c_{3} b^{2} \alpha^{2} \beta^{3}\right] k^{i j}} \\
-\left[c_{1} c_{2} \alpha^{4}-3 c_{2} c_{3} \alpha^{2} \beta^{2}+2 c_{2} c_{3} b^{2} \alpha^{4}-25 c_{3} \beta^{4}\right. \\
\left.+18 c_{3} b^{2} \alpha^{2} \beta^{2}+3 c_{1} \alpha^{2} \beta^{2}\right]\left(s_{0}^{i} y^{j}+s_{0}^{j} y^{i}\right) \tag{4.5}\\
-\left[-5 c_{3} \beta^{3} r_{00}-2 s_{0}\left(c_{2} c_{3} \alpha^{2}+9 c_{3} \beta^{2}\right) \alpha^{2}\right. \\
\left.+3 c_{1} \alpha^{2} \beta r_{00}\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)=0
\end{array}\right.
$$

The term in (4.5) which seemingly does not contain β are

$$
\begin{gathered}
-\left(c_{1} c_{2} \alpha^{4}+2 c_{2} c_{3} b^{2} \alpha^{4}\right)\left(\underset{\left.b^{j} y^{i}\right)}{i} y^{j}+s_{0}^{j} y^{i}\right)+2 c_{2} c_{3} s_{0} \alpha^{4}\left(b^{i} y^{j}-\right. \\
\hline
\end{gathered}
$$

Hence we must have $h p(1) m^{i j}$ Such that above is equal to $c_{2} \alpha^{4} \beta m^{i j}$.
Therefore we have

$$
\left\{\begin{array}{l}
-\left(c_{1}+2 c_{3} b^{2}\right)\left(s_{0}^{i} y^{j}+s_{0}^{j} y^{i}\right)+2 c_{3} s_{0}\left(b^{i} y^{j}\right. \tag{4.6}\\
\left.-b^{j} y^{i}\right)=\beta m^{i j}
\end{array}\right.
$$

By putting $m^{i j}=m_{k}^{i j}(x) y^{k}$ then equation (4.6) may be written as

$$
\left\{\begin{array}{l}
-\left(c_{1}+2 c_{3} b^{2}\right)\left[s_{h}^{i} \delta_{k}^{j}+s_{k}^{i} \delta_{h}^{j}-s_{h}^{j} \delta_{k}^{i}-s_{k}^{j} \delta_{h}^{i}\right] \tag{4.7}\\
+2 c_{3}\left[\left(s_{h} \delta_{k}^{j}+s_{k} \delta_{h}^{j}\right) b^{i}-\left(s_{h} \delta_{k}^{i}+s_{k} \delta_{h}^{i}\right) b^{j}\right] \\
=b_{h} m_{k}^{i j}+b_{k} m_{h}^{i j}
\end{array}\right.
$$

Contracting (4.7) by $j=k$, we get

$$
\left\{\begin{array}{l}
n\left[-\left(c_{1}+2 c_{3} b^{2}\right) s_{h}^{i}+2 c_{3} s_{h} b^{i}\right] \tag{4.8}\\
=b_{h} m_{r}^{i r}+b_{r} m_{h}^{i r}
\end{array}\right.
$$

Transvecting (4.7) by $b_{j} b^{h}$, we obtain

$$
\left\{\begin{array}{l}
-\left(c_{1}+2 c_{3} b^{2}\right)\left[b^{2} s_{k}^{i}-s^{i} b_{k}-b^{i} s_{k}\right] \tag{4.9}\\
=b^{2} b_{r} m_{k}^{i r}+b_{k} b_{r} m_{s}^{i r} b^{s}
\end{array}\right.
$$

Further transvecting (4.9) with b^{k}, we get

$$
b_{r} m_{s}^{i r} b^{s}=\left(c_{1}+2 c_{3} b^{2}\right) s^{i}, \text { provided } b^{2} \neq 0
$$

Thus (4.9) gives

$$
\begin{equation*}
b^{2} b_{r} m_{k}^{i r}=\left(c_{1}+2 c_{3} b^{2}\right)\left(b^{i} s_{k}-b^{2} s_{k}^{i}\right) \tag{4.10}
\end{equation*}
$$

From (4.8) we have

$$
\begin{equation*}
b_{h} m_{r}^{i r}=n\left[-\left(c_{1}+2 c_{3} b^{2}\right) s_{h}^{i}+2 c_{3} s_{h} b^{i}\right]-b_{r} m_{h}^{i r} \tag{4.11}
\end{equation*}
$$

Using (4.10) in (4.11), we have

$$
\begin{equation*}
b_{h} m_{r}^{i r}=-\left(n-b^{2}\right) k_{0} s_{h}^{i}+\mu b^{i} s_{h} \tag{4.12}
\end{equation*}
$$

Where $k_{0}=c_{1}+2 c_{3} b^{2}$ and $\mu=2 c_{3}\left(1-b^{2}\right)-c_{1}$
If we put $m_{r}^{i r}=\mu m^{i}$ then (4.12) gives

$$
\left(n-b^{2}\right) k_{0} s_{h}^{i}=\mu\left[b^{i} s_{h}-b_{h} m^{i}\right]
$$

Or equivalently

$$
s_{i j}=\frac{\mu}{\left(n-b^{2}\right) k_{0}}\left(b_{i} s_{j}-b_{j} m_{i}\right)
$$

Since $s_{i j}$ is skew-symmetric, we have $m_{i}=s_{i}$ i.e. m_{i} and s_{i} have the same direction, therefore we have

$$
\begin{equation*}
s_{i j}=\frac{\lambda}{\left(n-b^{2}\right) k_{0}}\left(b_{i} s_{j}-b_{j} s_{i}\right) \tag{4.13}
\end{equation*}
$$

Theorem 4.1. Let F^{n} be a Douglas Space with (α, β) metric $L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\beta^{2}}{\alpha}+\frac{\beta^{3}}{\alpha^{2}}$ for which $b^{2} \neq 0$ and $\alpha^{2} \not \neq$ $0(\bmod \beta)$ then

$$
\left(\nabla_{j} b_{i}-\nabla_{i} b_{j}\right)=\frac{\mu}{\left(n-b^{2}\right) k_{0}}\left(b_{i} s_{j}-b_{j} s_{i}\right)
$$

Where $\mu=2 c_{3}\left(1-b^{2}\right)-c_{1}$ and $k_{0}=c_{1}+2 c_{3} b^{2}$.

5. Finsler space with metric $L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$

For the metric $L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}\left(\right.$ for $b_{4} \neq 0, b_{1} \neq$ 0), we have

$$
\begin{aligned}
& L_{\alpha}=\frac{c_{1} \beta \alpha^{2}+2 c_{3} \alpha^{3^{\mathrm{fll}}}-\beta^{3}}{\alpha^{2} \beta}, L_{\beta}=\frac{c_{2} \alpha \beta^{2}-c_{3} \alpha^{3}+2 \beta^{3}}{\alpha \beta^{2}} \\
& L_{\alpha \alpha}=\frac{2 c_{3} \alpha^{3}+2 \beta^{3}}{\beta \alpha^{3}}
\end{aligned}
$$

Then the value of C^{*} given in (2.2) becomes

$$
C^{*}=\frac{\alpha}{2}\left[\frac{\beta r_{00}\left(c_{1} \beta \alpha^{2}+2 c_{3} \alpha^{3}-\beta^{3}\right)-2 s_{0}\left(c_{2} \alpha \beta^{2}-c_{3} \alpha^{2}+2 \beta^{3}\right) \alpha^{2}}{c_{1} \beta^{3} \alpha^{2}-3 \beta^{5}+2 c_{3} b^{2} \alpha^{5}+2 b^{2} \alpha^{2} \beta^{3}}\right]
$$

Therefore from (2.3), we have

$$
\left\{\begin{array}{l}
B^{i j}=\frac{\left(c_{2} \alpha^{3} \beta^{2}-c_{3} \alpha^{5}+2 \beta^{3} \alpha^{2}\right)}{\beta\left(c_{1} \beta \alpha^{2}+2 c_{3} \alpha^{3}-\beta^{3}\right)}\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{j}\right) \tag{5.1}\\
+\frac{\alpha^{2}\left(c_{3} \alpha^{3}+\beta^{3}\right)}{\beta\left(c_{1} \beta \alpha^{2}+2 c_{3} \alpha^{3}-\beta^{3}\right)} \\
\times\left[\frac{\beta r_{00}\left(c_{1} \beta \alpha^{2}+2 c_{3} \alpha^{3}-\beta^{3}\right)-2 s_{0}\left(c_{2} \alpha \beta^{2}-c_{3} \alpha^{2}+2 \beta^{3}\right) \alpha^{2}}{c_{1} \beta^{3} \alpha^{2}-3 \beta^{5}+2 c_{3} b^{2} \alpha^{5}+2 b^{2} \alpha^{2} \beta^{3}}\right] \\
\left(b^{i} y^{j}-b^{j} y^{i}\right)
\end{array}\right.
$$

This equation may be written as

$$
\left\{\begin{array}{l}
\beta\left(c_{1} \beta \alpha^{2}+2 c_{3} \alpha^{3}-\beta^{3}\right)\left(c_{1} \beta^{3} \alpha^{2}-3 \beta^{5}\right. \tag{5.2}\\
\left.+2 c_{3} b^{2} \alpha^{5}+2 b^{2} \alpha^{2} \beta^{3}\right) B^{i j}-\left(c_{2} \alpha^{3} \beta^{2}-c_{3} \alpha^{5}\right. \\
\left.+2 \beta^{3} \alpha^{2}\right)\left(c_{1} \beta^{3} \alpha^{2}-3 \beta^{5}+2 c_{3} b^{2} \alpha^{5}\right. \\
\left.+2 b^{2} \alpha^{2} \beta^{3}\right)\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-\alpha^{2}\left(c_{3} \alpha^{3}\right. \\
\left.+\beta^{3}\right)\left[\beta r_{00}\left(c_{1} \beta \alpha^{2}+2 c_{3} \alpha^{3}-\beta^{3}\right)-\right. \\
\left.2 s_{0}\left(c_{2} \alpha \beta^{2}-c_{3} \alpha^{2}+2 \beta^{3}\right) \alpha^{2}\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)=0
\end{array}\right.
$$

Since α is irrational in y^{i}, the equation (5.2) are divide into two equation as follows:

$$
\left\{\begin{array}{l}
\beta\left[c_{1}^{2} \alpha^{4} \beta^{4}-4 c_{1} \beta^{6} \alpha^{2}+2 c_{1} b^{2} \alpha^{4} \beta^{4}+4 c_{3}^{2} b^{2} \alpha^{8}\right. \\
\left.-2 b^{2} \alpha^{2} \beta^{6}+3 \beta^{8}\right] B^{i j}-\left[2 c_{2} c_{3} b^{2} \alpha^{8} \beta^{2}-2 c_{3}^{2} b^{2} \alpha^{10}\right. \\
\left.+2 c_{1} \alpha^{4} \beta^{6}-6 \beta^{8} \alpha^{2}+4 b^{2} \beta^{6} \alpha^{4}\right]\left(s_{0}^{i} y^{j}\right. \\
\left.-s_{0}^{j} y^{i}\right)-\alpha^{2}\left[2 c_{3}^{2} \beta r_{00} \alpha^{6}+c_{1} \beta^{5} r_{00} \alpha^{2}-\beta^{7} r_{00}\right. \\
\left.-2 s_{0}\left(c_{2} c_{3} \beta^{2} \alpha^{4}-c_{3}^{2} \alpha^{6}+2 \beta^{6}\right) \alpha^{2}\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)=0
\end{array}\right.
$$

And

$$
\left\{\begin{array}{l}
\beta\left[2 c_{1} c_{3} b^{2} \beta \alpha^{7}+2 c_{1} c_{3} \beta^{3} \alpha^{5}-6 c_{3} \alpha^{3} \beta^{5}\right. \tag{5.4}\\
\left.+2 c_{3} b^{2} \alpha^{5} \beta^{3}\right] B^{i j}-\left[c_{1} c_{2} \alpha^{5} \beta^{5}-3 c_{2} \alpha^{3} \beta^{7}\right. \\
\left.+2 c_{2} b^{2} \beta^{5} \alpha^{5}-c_{1} c_{2} \beta^{3} \alpha^{7}+3 c_{3} \alpha^{5} \beta^{5}+2 c_{3} b^{2} \alpha^{7} \beta^{3}\right] \\
\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-\alpha^{2}\left[c_{1} c_{3} \beta^{2} r_{00} \alpha^{5}+c_{3} r_{00} \alpha^{3} \beta^{4}\right. \\
\left.-2 s_{0}\left(c_{3} \alpha^{3} \beta^{3}+c_{2} \alpha \beta^{5}\right) \alpha^{2}\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)=0
\end{array}\right.
$$

Only the term $3 \beta^{9} B^{i j}$ of (5.3) seemingly does not contain α^{2}. Therefore there exists a $h p(10) K_{(10)}^{i j}$ such that it is equal to $\alpha^{2} K_{(10)}^{i j}$.
Hence we have $B^{i j}=\alpha^{2} K^{i j}$, where we put $K_{(10)}^{i j}=3 \beta^{9} K^{i j}$ with $h p(1) K^{i j}$.
Therefore (5.3) reduces to

$$
\left\{\begin{array}{l}
\beta\left[c_{1}^{2} \beta^{4} \alpha^{4}-4 c_{1} \beta^{6} \alpha^{2}+2 c_{1} b^{2} \alpha^{4} \beta^{4}+4 c_{3}^{2} b^{2} \alpha^{8}\right. \tag{5.5}\\
\left.-2 b^{2} \alpha^{2} \beta^{6}+3 \beta^{8}\right] k^{i j}-\left[2 c_{2} c_{3} b^{2} \alpha^{6} \beta^{2}\right. \\
\left.-2 c_{3}^{2} b^{2} \alpha^{8}+2 c_{1} \alpha^{2} \beta^{6}-6 \beta^{8}+4 b^{2} \beta^{6} \alpha^{2}\right] \\
\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-\left[2 c_{3}^{2} \beta r_{00} \alpha^{6}+c_{1} \beta^{5} r_{00} \alpha^{2}-\beta^{7} r_{00}\right. \\
\left.-2 s_{0}\left(c_{2} c_{3} \alpha^{4} \beta^{2}-c_{3}^{2} \beta^{6}+2 \beta^{6}\right) \alpha^{2}\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)=0
\end{array}\right.
$$

The term in (5.5) which seemingly does not contain β is

$$
2 c_{3}^{2} b^{2} \alpha^{8}\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-2 s_{0} c_{3}^{2} \alpha^{8}\left(b^{i} y^{j}-b^{j} y^{i}\right)
$$

Hence we must have $h p(1) m^{i j}$ such that above is equal to $-2 c_{3}^{2} \alpha^{8} \beta m^{i j}$.
Therefore we have

$$
\begin{equation*}
\left\{-b^{2}\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)+s_{0}\left(b^{i} y^{j}-b^{j} y^{i}\right)=\beta m^{i j}\right. \tag{5.6}
\end{equation*}
$$

By putting $m^{i j}=m_{k}^{i j}(x) y^{k}$, then equation (5.6) may be written as

$$
\left\{\begin{array}{l}
-b^{2}\left[s_{h}^{i} \delta_{k}^{j}+s_{k}^{i} \delta_{h}^{j}-s_{h}^{j} \delta_{k}^{i}-s_{k}^{j} \delta_{h}^{i}\right] \tag{5.7}\\
+\left[\left(s_{h} \delta_{k}^{j}+s_{k} \delta_{h}^{j}\right) b^{i}-\left(s_{h} \delta_{k}^{i}+s_{k} \delta_{h}^{i}\right) b^{j}\right] \\
=b_{h} m_{k}^{i j}+b_{k} m_{h}^{i j}
\end{array}\right.
$$

Contracting (5.7) by $j=k$, we get

$$
\begin{align*}
& n\left[-b^{2} s_{h}^{i}+s_{h} b^{i}\right] \tag{5.8}\\
& =b_{h} m_{r}^{i r}+b_{r} m_{h}^{i r} \tag{5.9}
\end{align*}
$$

Transvecting (5.7) by $b_{j} b^{h}$, we obtain

$$
\left\{\begin{array}{l}
-b^{2}\left(b^{2} s_{k}^{i}-s_{k}^{i} b_{k}-b^{i} s_{k}\right) \tag{5.10}\\
=b^{2} b_{r} m_{k}^{i r}+b_{k} b_{r} m_{s}^{i r} b^{s}
\end{array}\right.
$$

Further contracting (5.9) by b^{k}, we get $b_{r} m_{s}^{i r} b^{s}=b^{2} s^{i}$, provided $b^{2} \neq 0$.
Thus (5.9) gives

$$
\begin{equation*}
b^{2} b_{r} m_{k}^{i r}=b^{2}\left(b^{i} s_{k}-b^{2} s_{k}^{i}\right) \tag{5.11}
\end{equation*}
$$

Then (5.8) is written as

$$
\begin{equation*}
b_{h} m_{r}^{i r}=n\left[-b^{2} s_{h}^{i}+s_{h} b^{i}\right]-b_{r} m_{h}^{i r} \tag{5.12}
\end{equation*}
$$

Using (5.10) in (5.11), we get

$$
\begin{equation*}
b_{h} m_{r}^{i r}=-b^{2}(n-1) s_{h}^{i}+(n-1) s_{h} b^{i} \tag{5.13}
\end{equation*}
$$

If we put $m_{r}^{i r}=(n-1) m^{i}$, then from (5.12) we have

$$
\begin{gathered}
b^{2}(n-1) s_{h}^{i}=(n-1)\left[b^{i} s_{h}-m^{i} b_{h}\right] \\
\Rightarrow b^{2} s_{h}^{i}=\left[b^{i} s_{h}-m^{i} b_{h}\right] \\
\text { or equivalently } \\
s_{i j}=\frac{1}{b^{2}}\left[b_{i} s_{j}-b_{j} m_{i}\right]
\end{gathered}
$$

Since $s_{i j}$ is skew-symmetric, then we have $m_{i}=s_{i}$, therefore

$$
s_{i j}=\frac{1}{b^{2}}\left[b_{i} s_{j}-b_{j} m_{i}\right]
$$

Theorem 5.1. Let F^{n} be a Douglas space with $(\alpha, \beta)-$ metric $L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$ for which $b^{2} \neq 0$ and $\alpha^{2} \nexists$ $0(\bmod \beta)$, then

$$
\left(\nabla_{j} b_{i}-\nabla_{i} b_{j}\right)=\frac{1}{b^{2}}\left[b_{i} s_{j}-b_{j} s_{i}\right]
$$

6. Finsler space with metric

$$
L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\alpha^{2}}{\beta}+\frac{\alpha^{2}}{\beta}
$$

For the metric $L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\alpha^{2}}{\beta}+\frac{\alpha^{2}}{\beta}\left(\right.$ forb $\left._{1} \neq 0, b_{2} \neq 0\right)$, we have

$$
L_{\alpha}=\frac{c_{1} \beta+2 c_{3} \alpha+2 \alpha}{\beta}, L_{\beta}=\frac{c_{3} \beta^{2}-c_{3} \alpha^{2}-\alpha^{2}}{\beta^{2}}, L_{\alpha \alpha}=\frac{2 c_{3}+2}{\beta}
$$

Therefore the value of C^{*} given in (2.2) becomes

$$
C^{*}=\frac{\alpha}{2}\left[\frac{\beta r_{00}\left(c_{1} \beta+2 c_{3} \alpha+2 \alpha\right)-2 \alpha s_{0}\left(c_{2} \beta^{2}-c_{3} \alpha^{2}-\alpha^{2}\right)}{c_{1} \beta^{3}+2 c_{3} \alpha^{3} b^{2}+2 b^{2} \alpha^{3}}\right]
$$

Then from (2.3), we have

$$
\left\{\begin{array}{l}
B^{i j}=\frac{\alpha\left(c_{2} \beta^{2}-c_{3} \alpha^{2}-\alpha^{2}\right)}{\beta\left(c_{1} \beta+2 c_{3} \alpha+2 \alpha\right)}\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right) \tag{6.1}\\
+\frac{\alpha^{3}\left(c_{3}+1\right)}{\beta\left(c_{1} \beta+2 c_{3} \alpha+2 \alpha\right)} \\
\times\left[\frac{\beta r_{00}\left(c_{1} \beta+2 c_{3} \alpha+2 \alpha\right)-2 \alpha s_{0}\left(c_{2} \beta^{2}-c_{3} \alpha^{2}-\alpha^{2}\right)}{c_{3} \beta^{3}+2 c_{3} \alpha^{3} b^{2}+2 b^{2} \alpha^{3}}\right] \\
\times\left(b^{i} y^{j}-b^{j} y^{i}\right)
\end{array}\right.
$$

Which may be written as

$$
\left\{\begin{array}{l}
\beta\left[c_{1}^{2} \beta^{4}+2 c_{1} c_{3} b^{2} \alpha^{3} \beta+2 c_{1} \beta b^{2} \alpha^{3}+2 c_{1} c_{3} \alpha \beta^{3}\right. \tag{6.2}\\
\left.+4 c_{3}^{2} b^{2} \alpha^{4}+8 c_{3} b^{2} \alpha^{4}+2 c_{1} \alpha \beta^{3}+4 b^{2} \alpha^{4}\right] B^{i j} \\
-\alpha\left[c_{1} c_{2} \alpha^{5}+2 c_{2} c_{3} b^{2} \beta^{2} \alpha^{3}+2 c_{2} b^{2} \alpha^{3} \beta^{2}\right. \\
-c_{1} c_{3} \alpha^{2} \beta^{3}-2 c_{3}^{2} \alpha^{5} b^{2}-4 c_{3} b^{2} \alpha^{5}-c_{1} \alpha^{2} \beta^{3} \\
\left.-2 b^{2} \alpha^{5}\right]\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-\alpha^{3}\left[c_{1} c_{3} \beta^{2} r_{00}\right. \\
+2 c_{3}^{2} \alpha \beta r_{00}+2 c_{3} \alpha \beta r_{00}+c_{1} \beta^{2} r_{00} \\
+2 c_{3} \alpha \beta r_{00}+2 \alpha \beta r_{00}-2 \alpha s_{0}\left(c_{2} c_{3} \beta^{2}-c_{3}^{2} \alpha^{2}\right. \\
\left.\left.-2 c_{3} \alpha^{2}+c_{2} \beta^{2}-\alpha^{2}\right)\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)=0
\end{array}\right.
$$

Since α is irrational in y^{i}, then the equation (6.2) are divided into two equations as follows:

$$
\left\{\begin{array}{l}
\beta\left[c_{1}^{2} \beta^{4}+4 c_{3}^{2} \alpha^{4} b^{2}+8 c_{3} b^{2} \alpha^{4}+4 b^{2} \alpha^{4}\right] B^{i j} \tag{6.3}\\
-\left[2 c_{2} c_{3} b^{2} \beta^{2} \alpha^{4}+2 c_{2} b^{2} \alpha^{4} \beta^{2}-2 c_{3}^{2} b^{2} \alpha^{6}\right. \\
\left.-4 c_{3} b^{2} \alpha^{6}-2 b^{2} \alpha^{6}\right]\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-\left[2 c_{3}^{2} \alpha^{4} \beta r_{00}\right. \\
+4 c_{3} \alpha^{4} \beta r_{00}+2 \alpha^{4} \beta r_{00}-2 \alpha^{4} s_{0}\left(c_{2} c_{3} \beta^{2}\right. \\
\left.\left.-c_{3}^{2} \alpha^{2}-2 c_{3} \alpha^{2}-c_{2} \beta^{2}-\alpha^{2}\right)\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)=0
\end{array}\right.
$$

And

$$
\left\{\begin{array}{l}
\beta\left[2 c_{1} c_{3} b^{2} \alpha^{3} \beta+2 c_{1} b^{2} \alpha^{3} \beta+2 c_{1} c_{3} \alpha \beta^{3}+2 c_{1} \alpha \beta^{3}\right] \tag{6.4}\\
B^{i j}-\left[c_{1} c_{2} \alpha \beta^{5}-c_{1} c_{3} \alpha^{3} \beta^{3}-c_{1} \alpha^{3} \beta^{3}\right]\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right) \\
-\left[c_{1} c_{2} \alpha^{3} \beta^{2} r_{00}+c_{1} \alpha^{3} \beta^{2} r_{00}\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)=0
\end{array}\right.
$$

Only term $c_{1}^{2} \beta^{5} B^{i j}$ of (6.3) seemingly does not contain α^{2}. Therefore there exists a $\mathrm{hp}(6) K_{(6)}^{i j}$ such that it is equal to $\alpha^{2} K_{(6)}^{i j}$.
Hence we have $B^{i j}=\alpha^{2} K^{i j}$, where we put $K_{(6)}^{i j}=c_{1}^{2} \beta^{5} K^{i j}$ with $\mathrm{hp}(1) K^{i j}$.
Therefore (6.3) reduces to

$$
\left\{\begin{array}{l}
\beta\left[c_{1}^{2} \beta^{4}+4 c_{3}^{2} \alpha^{4} b^{2}+8 c_{3} b^{2} \alpha^{4}+4 b^{2} \alpha^{4}\right] K^{i j} \tag{6.5}\\
-\left[2 c_{2} c_{3} b^{2} \beta^{2} \alpha^{2}+2 c_{2} b^{2} \alpha^{2} \beta^{2}-2 c_{3}^{2} \alpha^{4} b^{2}\right. \\
\left.-4 c_{3} b^{2} \alpha^{4}-2 b^{2} \alpha^{4}\right]\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-\left[2 c_{3}^{2} \alpha^{2} \beta r_{00}\right. \\
+4 c_{3} \alpha^{2} \beta r_{00}+2 \alpha^{2} \beta r_{00}-2 \alpha^{2} s_{0}\left(c_{2} c_{3} \beta^{2}\right. \\
\left.\left.-c_{3}^{2} \alpha^{2}-2 c_{3} \alpha^{2}-c_{2} \beta^{2}-\alpha^{2}\right)\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)=0
\end{array}\right.
$$

The terms in (6.5) which seemingly does not contain β are

$$
\begin{gathered}
-2 \alpha^{4}\left[-c_{3}^{2} b^{2}-2 c_{3} b^{2}-b^{2}\right]\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)+2 \alpha^{4} s_{0}\left[-c_{3}^{2}-\right. \\
\left.2 c_{3}-1\right]\left(b^{i} y^{j}-b^{j} y^{i}\right)
\end{gathered}
$$

We can write this in the form

$$
\begin{gathered}
-2 \alpha^{4}\left\{-\left(c_{3}+1\right)^{2}\right\} b^{2}\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)+2 \alpha^{4} s_{0}\left\{-\left(c_{3}+\right.\right. \\
\left.1)^{2}\right\}\left(b^{i} y^{j}-b^{j} y^{i}\right)
\end{gathered}
$$

Hence we must have $\mathrm{hp}(1) \mathrm{m}^{i j}$ such that above is equal to $2 \alpha^{4}\left\{-\left(c_{3}+1\right)^{2}\right\} \beta m^{i j}$ 。
Then we have

$$
\left\{\begin{array}{l}
-b^{2}\left(s_{0^{i}}^{i} y^{j}-s_{0}^{j} y^{i}\right)+s_{0}\left(b^{i} y^{j}-b^{j} y^{i}\right) \tag{6.6}\\
=\beta m^{i j}
\end{array}\right.
$$

By putting $m^{i j}=m_{k}^{i j}(x) y^{k}$, equation (6.6) may be written as

$$
\left\{\begin{array}{l}
-b^{2}\left[s_{h}^{i} \delta_{k}^{j}+s_{k}^{i} \delta_{h}^{j}-s_{h}^{j} \delta_{k}^{i}-s_{k}^{j} \delta_{h}^{i}\right] \tag{6.7}\\
+\left[\left(s_{h} \delta_{k}^{j}+s_{k} \delta_{h}^{j}\right) b^{i}-\left(s_{h} \delta_{k}^{i}+s_{k} \delta_{h}^{i}\right) b^{j}\right] \\
=b_{h} m_{k}^{i j}+b_{k} m_{h}^{i j}
\end{array}\right.
$$

Contracting (6.7) by $j=k$ we get

$$
\begin{equation*}
n\left[-b^{2} s_{h}^{i}+s_{h} b^{i}\right]=b_{h} m_{r}^{i r}+b_{r} m_{h}^{i r} \tag{6.8}
\end{equation*}
$$

Transvecting (6.8) by $b_{j} b^{h}$ we get

$$
\begin{equation*}
-b^{2}\left(b^{2} s_{k}^{i}-s^{i} b_{k}-b^{i} s_{k}\right)=b^{2} b_{r} m_{k}^{i r}+b_{k} b_{r} m_{s}^{i r} b^{s} \tag{6.9}
\end{equation*}
$$

Further transvecting (6.9) by b^{k}, we get

$$
b_{r} m_{s}^{i r} b^{s}=b^{2} s^{i} \quad \text { provided } b^{2} \neq 0
$$

Thus (6.9) gives

$$
b^{2} b_{r} m_{k}^{i r}=b^{2}\left(b^{i} s_{k}-b^{2} s_{k}^{i}\right)
$$

Therefore we get

$$
\begin{equation*}
b_{r} m_{k}^{i r}=\left(b^{i} s_{k}-b^{2} s_{k}^{i}\right) \tag{6.10}
\end{equation*}
$$

Equation (6.8) may be written as

$$
\begin{equation*}
b_{h} m_{r}^{i r}=n\left[-b^{2} s_{h}^{i}+s_{h} b^{i}\right]-b_{r} m_{h}^{i r} \tag{6.11}
\end{equation*}
$$

Using (6.10) in (6.11) we have

$$
\begin{equation*}
b_{h} m_{r}^{i r}=-b^{2}(n-1) s_{h}^{i}+\mu b^{i} s_{h} \tag{6.12}
\end{equation*}
$$

Where $m u=(n+1)$
If we put $m_{r}^{i r}=\mu m^{i}$ then equation (6.12) gives

$$
b^{2}(n-1) s_{h}^{i}=\mu\left[b^{i} s_{h}-m^{i} b_{h}\right]
$$

Or equivalently

$$
s_{i j}=\frac{\mu}{b^{2}(n-1)}\left(b_{i} s_{j}-b_{j} m_{i}\right)
$$

Since $s_{i j}$ is skew symmetric, we have $m_{i}=s_{i}$ i.e. m_{i} and s_{i} have same direction, therefore

$$
\begin{equation*}
s_{i j}=\frac{\lambda}{b^{2}(n-1)}\left(b_{i} s_{j}-b_{j} s_{i}\right) \tag{6.13}
\end{equation*}
$$

Theorem 6.1. Let F^{n} be a Douglas Space with (α, β)-metric $L=c_{1} \alpha+c_{2} \beta+c_{3} \frac{\alpha^{2}}{\beta}+\frac{\alpha^{2}}{\beta}$ for which $b^{2} \neq 0$ and $\alpha^{2} \not \equiv 0(\bmod \beta)$, then

$$
\left(\nabla_{j} b_{i}-\nabla_{i} b_{j}\right)=\frac{\mu}{b^{2}(n-1)}\left(b_{i} s_{j}-b_{j} s_{i}\right),
$$

Where $\mu=n+1$.

References

${ }^{[1]}$ T.Aikou, M. Hashiguchi and K. Yamaguchi, On Matsumoto's Finsler space with time measure, Rep. Fac. Sci. Kagoshima Univ., (Math. Phy. Chem.), 23(1990), 1-12.
${ }^{[2]}$ P. L.Antonelli, Handbook of Finsler geometry, Kluwer Academic Publishers, Netherlands, 1993.
${ }^{[3]}$ P. L.Antonelli, R. S.Ingarden and M. Matsumoto, The theory of sparys and Finsler spaces with applications in physics and biology,Kluwer Academic Publishers, Dordrecht, 1993.
[4] S.Basco and M.Matsumoto, On Finsler spaces of Douglas type. A generalisation of the notion of the Berwald space, Publ. Math. Debrecen, 51(1997), 358-406.
${ }^{\text {[5] Roberto Bonola, Non-Euclidean Geometry, Dover Publi- }}$ cation, 1955.
[6] M.Hashiguchi,S.Hojo,and M. Matsumoto, Landsberg spaces of dimension two with $(\alpha, \beta)-$ metric, Tensor, N.S. 57(1996), 145-153.
${ }^{[7]}$ S.Kikuchi,On the Condition that a space with (α, β) metric be locally Minkowskian, Tensor, N.S.,33(1979), 242-246.
${ }^{[8]}$ M.Kitayama,M. Azuma and M. Matsumoto, On Finsler spaces with (α, β)-metric. Regularity, Gerodesics and Main scalars, J. Hokkaido Univ., Edu., 46(1), (1995), $1-10$.
${ }^{[9]}$ I.L.Lee and M. H.Lee, On weakly-Berwald spaces of special (α, β)-metrics,Bull. Korean Math. Soc., 43(2006), 477-498.
${ }^{[10]}$ M.Matsumoto, Theory of Finsler spaces with (α, β) metric,Rep. Math. Phys., 31(1992), 43-83.
[11] M.Matsumoto,Finsler spaces with $(\alpha, \beta)-$ metric of Douglas type, Tensor, N.S., 60(1998), 123-134.
${ }^{[12]}$ M.Matsumoto,The Berwald connection of a Finsler spaces with an $(\alpha, \beta)-$ metric, Tensor, N.S., 50(1991), 18-21.
${ }^{[13]}$ H.S.Park and I. Y.Lee, The Randers changes of Finsler space with (α, β)-metrics of Douglas type, J. Korean Math. Soc., 38(3)(2001), 503-521.
${ }^{[14]}$ B.N.Prasad and Bindu Kumari,Finsler spaces with special (α, β) - metric of Douglas type (under publication).
$\operatorname{ISSN}(\mathrm{P}): 2319-3786$
Malaya Journal of Matematik
ISSN(O):2321-5666

