$H-V$ - super magic labeling of H-factorable graphs

Sindhu Murugan ${ }^{1 *}$ and S. Chandra Kumar ${ }^{2}$

Abstract

An H-magic labeling in an H-decomposable graph G is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for every copy H in the decomposition, $\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is constant. The function f is said to be H - V-super magic labeling if $f(V(G))=\{1,2, \ldots, p\}$. In this article, we give a few fundamental properties of H - V-super magic labeling. Obtained the magic constant for H-factorable graphs which are H - V-super magic. Further we gave a necessary and sufficient condition for an even regular graph to be 2-factor- V-super magic.

Keywords

H-decomposable graph, H-factorable graph, H-magic labeling, H - V-super magic labeling, 2-factor- V-super magic.

AMS Subject Classification

05C78.
${ }^{1}$ Research Scholar, Reg No-18213162092011, Scott Christian College(Autonomous), Nagercoil-629003, Tamil Nadu, India.
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.
${ }^{2}$ Department of Mathematics, Scott Christian College(Autonomous), Nagercoil-629003, Tamil Nadu, India.
*Corresponding author: ${ }^{1}$ msindhu_87@yahoo.co.in; ${ }^{2}$ kumar.chandra82@yahoo.in
Article History: Received 24 November 2018; Accepted 09 March 2019

Contents

1 Introduction
2 H-V-Super magic graphs. 139
3 2-factor-V-super magic labeling. 139
4 Conclusion 141
References 141

1. Introduction

In this paper, we discuss only finite, simple and undirected graphs. The set of vertices and edges of a graph $G(p, q)$ will be denoted by $V(G)$ and $E(G)$ respectively, $p=|V(G)|$ and $q=|E(G)|$.

A labeling of a graph G is a mapping that carries a set of graph elements, usually vertices and or edges into a set of numbers, usually integers. Many kinds of labelings have been defined and studied by many authors and an excellent survey of graph labelings can be found in [3].

In 1963, Sedlàček [8] introduced the concept of magic labeling in graphs. A graph G is magic if the edges of G can be labeled by the set of numbers $\{1,2, \ldots, q\}$ so that the sum of labels of all the edges incident with any vertex is the same [6].

A graph G is said to be H-decomposable if G has a family of subgraphs $H_{1}, H_{2}, \ldots, H_{h}$ such that all the subgraphs are isomorphic to a graph $H, E\left(H_{i}\right) \bigcap E\left(H_{j}\right)=\phi$ for $j \neq i$ and $\bigcup_{i=1}^{h} E\left(H_{i}\right)=E(G)$. If each H_{i} is a spanning subgraph of G, then G is said to be H-factorable. When H is a m-regular graph then G is said to be a m-factorable. If G is a m-factorable graph, then necessarily G is r-regular for some integer r that is a multiple of m.
In 2014, P. Subbiah and J. Pandimadevi [9] introduced $H-E-$ super magic. A function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ is called an H-magic labeling of a H-decomposable graph G if there exists a positive integer k (called magic constant) such that for every copy H in the decomposition, $\sum f(H)=$
 $v \in V\left(H^{\prime}\right) \quad \sum_{e \in E\left(H^{\prime}\right)}$
a labeling is called an H-magic docomposable graph. An H-magic labeling f is called an H - E-super magic labeling if $f(E(G))=\{1,2, \ldots, q\}$. A graph that admits an H - E-super magic labeling is called an H - E-super magic decomposable graph.
By using this definition of H-magic labeling, we define a new labeling called $H-V$-super magic. An H-magic labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ in an H-factorable graph G is called H - V-super magic if $f(V(G))=\{1,2, \ldots, p\}$ and for every factor H of $G, \sum f(H)=M$, an integer. In this paper, we study some basic properties of H - V-super magic
labeling. The magic constant for H-factorable graphs which are $H-V$-super magic, has been obtained. Further, we provide a necessary and sufficient condition for an even regular graph to be 2 -factor- V-super magic. Through out this paper, we use the symbol h to denote the number of H-factors of G when G is H-factorable.

2. H - V-Super magic graphs

This section will explore some fundamental properties of H - V-super magic graphs.

Lemma 2.1. If G is H - V-super magic, then the magic constant is given by $M=\frac{p(p+1)}{2}+\frac{p q}{h}+\frac{q(q+1)}{2 h}$, where h is the number of H -factors of G .

Proof. Let f be an H - V-super magic labeling of a graph G with the magic constant M. Then $f(E(G))=\{p+1, p+$ $2, \ldots, p+q\}, f(V(G))=\{1,2, \ldots, p\}$ and $M=\sum_{\left(H^{\prime}\right)} f(v)+$
$\sum_{\in E\left(H^{\prime}\right)} f(e)$ for every factor H^{\prime} in the factorization of G. Then $e \in E\left(H^{\prime}\right)$
$h M=h \sum_{v \in V(G)} f(v)+\sum_{e \in E(G)} f(e)=h[1+2+\ldots+p]+[(p+$

1) $+(p+2)+\ldots+(p+q)]=h \frac{p(p+1)}{2}+p q+\frac{q(q+1)}{2}$ and so $M=\frac{p(p+1)}{2}+\frac{p q}{h}+\frac{q(q+1)}{2 h}$.

If G is a H-factorable graph and G possesses a $H-V$-super magic labeling, then it is easy to find the sum of the vertex labels (denoted by k_{v}). This provides the following result.

Lemma 2.2. If G is H - V-super magic, then the sum of the edge labels of each factor is constant and is given by $k_{e}=$ $\frac{p q}{h}+\frac{q(q+1)}{2 h}$, where h is the number of H-factors of G.

Proof. As each H-factor G^{\prime} is a spanning subgraph of G, it results that $k_{v}=\frac{p(p+1)}{2}$ for every H-factor G^{\prime}. Since M is constant and $M=k_{v}+k_{e}, k_{e}$ must be constant and so from Lemma 2.1, it follows that $k_{e}=\frac{p q}{h}+\frac{q(q+1)}{2 h}$.

The next lemma gives a necessary and sufficient condition for an H -factorable graph to be $H-V$-super magic. This lemma is useful in deciding whether a particular graph is $H-V$-super magic or not.

Lemma 2.3. Let G be an H-factorable graph and let g be a bijection from $E(G)$ onto $\{p+1, p+2, \ldots, p+q\}$. Then g can be extended to an H - V-super magic labeling of G if and only if $\sum_{L_{\left(H^{\prime}\right)}} g(e)$ is constant for every H-factor H^{\prime} in the $e \in E\left(H^{\prime}\right)$
factorization of G.
Proof. Suppose g can be extended to an H - V-super magic labeling of G, say 'f'. Since f is an extension of $g, f(e)=g(e)$ for every $e \in E(G)$. Thus by Lemma 2.2, $\sum, f(e)$ is a $e \in E\left(H^{\prime}\right)$
constant for every H-factor H^{\prime} in the factorization of G and
so $\sum_{e \in E\left(H^{\prime}\right)} g(e)$ is also a constant for every H-factor H^{\prime} in the factorization of G.

Conversely, assume that $\sum_{e \in E\left(H^{\prime}\right)} g(e)$ is constant for every H-factor H^{\prime} in the factorization of G. Define a function f which is an extension of g, by $f: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, p+q\}$ such that $f(e)=g(e)$ for $e \in E(G)$ and $f\left(v_{i}\right)=$ i for all $i=1,2, \ldots, p$. Then $f(E(G))=\{p+1, p+2, \ldots, p+$ $q\}$ and $f(V(G))=\{1,2, \ldots, p\}$ and so $k_{v}=\frac{p(p+1)}{2}$ for every H-factor H^{\prime} of G. Therefore $k_{v}+k_{e}$ is constant for every H-factor of G. Thus f is an H - V-super magic labeling of G.

3. 2-factor-V-super magic labeling

In this section, we explore the 2 -factor- V-super magic labeling of 2-factorable graphs. Petersen [7] have proved the next theorem which is helpful in obtaining classes of graphs that are not 2-factor- V-super magic.

Theorem 3.1. [7] Every $2 r$-regular graph has a $2 k$-factor for every integer $k, 0<k<r$.

Lemma 3.2. Let G be an even regular graph of odd order. If h is even, then G is not 2 -factor- V-super magic.

Proof. Let G be an even regular graph of odd order. Then by Theorem 3.1, G is 2-factorable and so $q=p h$. Suppose G admits an 2-factor- V-super magic labeling. By Lemma 2.1, we have $M=\frac{p(p+1)}{2}+\frac{p q}{h}+\frac{q(q+1)}{2 h}=\frac{p(p+1)}{2}+\frac{p(p h)}{h}+\frac{p h(p h+1)}{2 h}=$ $\frac{p(p+1)}{2}+p^{2}+\frac{p(p h+1)}{2}$, which is not an integer since p is odd and h is even, a contradiction.

Magic squares are one of the most admired mathematical recreations. A classical reference on magic squares is [1], while one of the better recent book is [2]. A magic square of side n is an $n \times n$ array whose entries are an arrangement of a set of integers $\left\{1,2, \ldots, n^{2}\right\}$ in which all elements in any row, any column or either main diagonal or back-diagonal, add to the same sum. Furthermore, we represent this sum as magic number $M N=\frac{1}{2} n\left(n^{2}+1\right)$.

Theorem 3.3. An even regular graph G of odd order is 2-factor-V-super magic if and only if h is odd, where h is the number of 2-factors of G.

Proof. Let G be an even regular graph of odd order p. If G is 2 -factor- V-super magic, then by Lemma 3.2, h is odd.

	F_{1}	F_{2}	\ldots	F_{h}
h edges of F_{i}		$(h \times h$ magic square $)+p$		
$p-h$ edges of F_{i}	$h^{2}+p+1$	$h^{2}+p+2$	\cdots	$h^{2}+p+h$
	$h^{2}+p+2 h$	$h^{2}+p+2 h-1$	\cdots	$h^{2}+p+h+1$
	$h^{2}+p+2 h+1$	$h^{2}+p+2 h+2$	\cdots	$h^{2}+p+3 h$
	\ldots	$h^{2}+p+4 h$	\cdots	\cdots
	$h^{2}+p+(p-h-2) h+1$	$h^{2}+p+(p-h-2) h+2$	\cdots	\cdots
	$h^{2}+p+(p-h) h$	$h^{2}+p+(p-h) h-1$	\cdots	$h^{2}+p+(p-h-1) h$
$h^{2}+p+(p-h-1) h+1$				

Table 1.

Conversely suppose h is odd. Then by Theorem 3.1, G is 2-factorable. Let $F_{1}, F_{2}, \ldots, F_{h}$ be the 2-factors of G. We label the edges of G by using the set of numbers $\{p+1, p+$ $2, \ldots, p+p h\}$ as shown in Table 1.

Note that the entries of the $h \times h$ magic square are $1,2, \ldots, h^{2}$ and so the entries of ($h \times h$-magic square) $+p$ are $p+1, p+$ $2, \ldots, p+h^{2}$. From Table 1, the sum of the edge labels of each 2-factor F_{i} when i is odd, is calculated as follows: $k_{e}=\sum f\left(E\left(F_{i}\right)\right)=\frac{1}{2} h\left(h^{2}+1\right)+p h+\left[\left(h^{2}+p\right)+i\right]+\left[\left(h^{2}+\right.\right.$ p) $+2 h-(i-1)]$ $+\left[\left(h^{2}+p\right)+2 h+i\right]+\left[\left(h^{2}+p\right)+4 h-(i-1)\right]$
$+\left[\left(h^{2}+p\right)+4 h+i\right]+\left[\left(h^{2}+p\right)+6 h-(i-1)\right]$ $\left.+\quad \cdots+\stackrel{+}{+}+\stackrel{+}{+}+\left(h^{2}+p\right)+(p-h-2) h+i\right]+\left[\left(h^{2}+p\right)+(p-h) h-(i-1)\right]$ $=\frac{1}{2} h\left(h^{2}+1\right)+p h+\left[\frac{(p-h)\left(h^{2}+p\right)}{2}+\frac{(p-h) i}{2}\right]$
$+[0+2+4+\ldots+(p-h-2) h]+\left[\frac{(p-h)\left(h^{2}+p\right)}{2}\right]$
$+[2+4+\ldots+(p-h) h]+\left[\frac{(p-h)(-i)}{2}\right]+\left[\frac{(p-h)}{2}\right]=\frac{1}{2} h\left(h^{2}+1\right)+$ $p h+\left[\frac{2(p-h)\left(h^{2}+p\right)}{2}\right]+\left[\left(\frac{(p-h))}{2}\right)\left(\frac{(p-h+2))}{2}\right) h\right]$
$+\left[\left(\frac{(p-h)}{2}\right)\left(\frac{(p-h-2))}{2}\right) h\right]+\left[\frac{(p-h)}{2}\right]=\frac{p^{2}(2+h)+p}{2}$.
In a same way, we can have $k_{e}=\frac{p^{2}(2+h)+p}{2}$ for each factor F_{i} when i is even. Thus by Lemma 2.3, this labeling can be extended to an 2-factor- V-super magic labeling.

Example 3.4. Note that the complete graph K_{7} is 2-factorable and the number of 2-factors is 3 (by Theorem 3.1), let it be F_{1}, F_{2}, F_{3}. Note that $p=7$ and $h=3$. As discussed in Theorem 3.3, the labels of F_{1}, F_{2} and F_{3} are given in Table 2.

Figure 1: K_{7}

Figure 2: The 2-factors of K_{7}

	F_{1}	F_{2}	F_{3}
	11	10	15
h=3 edges of F_{i}	16	12	8
	9	14	13
	17	18	19
$p-h=4$ edges of F_{i}	22	21	20
	23	24	25
	28	27	26
sum of the labels			
of edges	126	126	126

Table 2. A 2 -factor- V-super magic labeling of K_{7}
From Table 2, the sum of the edge labels at each factor is $k_{e}=126$. Thus K_{7} is 2-factor- V-super magic.

Theorem 3.5. Let G be an even regular graph of even order. Then G is 2-factor- V-super magic.

Proof. Let G be an even regular graph of even order p. By Theorem 3.1, G is 2-factorable. Let $F_{1}, F_{2}, \ldots, F_{h}$ be the 2factors of G. We label the edges of G by using the set of numbers $\{p+1, p+2, \ldots, p+p h\}$ as shown in Table 3.

F_{1}	F_{2}	\cdots	F_{h-1}	F_{h}
$p+1$	$p+2$	\cdots	$p+h-1$	$p+h$
$p+2 h$	$p+2 h-1$	\cdots	$p+2 h-(h-2)$	$p+2 h-(h-1)$
$p+2 h+1$	$p+2 h+2$	\cdots	$p+2 h+(h-1)$	$p+2 h+h$
$p+4 h$	$p+4 h-1$	\cdots	$p+4 h-(h-2)$	$p+4 h-(h-1)$
\cdots	\cdots	\cdots	$p+(p-2) h+(h-1)$	$p+(p-2) h+h$
$p+(p-2) h+1$	$p+(p-2) h+2$	\cdots	$p+(h-1)$	
$p+p h$	$p+p h-1$	\cdots	$p+p h-(h-2)$	$p+p h-(h-1)$

Table 3.

From Table 3, the sum of the edge labels of 2-factor F_{i} when i is odd, is calculated as follows:
$k_{e}=\sum f\left(E\left(F_{i}\right)\right)=[(p)+i]+[(p+2 h)-(i-1)]+[(p+2 h)+$ $i]+[(p+4 h)-(i-1)]+[(p+4 h)+i]+[(p+6 h)-(i-1)]$ $+\ldots+$
$+[(p+(p-2) h)+i]+[(p+p h)-(i-1)]$
$=p\left(\frac{p}{2}\right)+[2+4+\ldots+(p-2)] h+\frac{p}{2}(i)$
$+p\left(\frac{p}{2}\right)+[2+4+\ldots+p] h-\frac{p}{2}(i)+\frac{p}{2}$
$=p^{2}+2\left[1+2+\ldots+\frac{(p-2)}{2}\right] h+2\left[1+2+\ldots+\frac{p}{2}\right] h+\frac{p}{2}$
$=\frac{p^{2}(2+h)+p}{2}$. Similary, we can prove that $k_{e}=\frac{p^{2}(2+h)+p}{2}$ for each factor F_{i} when i is even. Thus by Lemma 2.3, this labeling can be extended to an 2 -factor- V-super magic labeling.

Example 3.6. The following graph G can be factorized into three 2 -factors say F_{1}, F_{2} and F_{3}. observe that one of the factors is disconnected.

Figure 3 : G

Figure 4: The 2-factor factorization of G:

F_{1}	F_{2}	F_{3}
9	10	11
14	13	12
15	16	17
20	19	18
21	22	23
26	25	24
27	28	29
32	31	30

Table 4. 2-factor- V-super magic labeling of G
The edges of each factor of G are labeled as shown in Table 4. From Table 4, the sum of the edge labels at each factor is $k_{e}=164$. Thus the graph G is 2 -factor- V-super magic.

4. Conclusion

We have characterized the 2 -factor- V-super magic labeling of even regular graphs. Furthermore, we have found a few examples for 1 -factor- V-super magic graphs(see Figure 5 and 6). The complete graph K_{6} can be factorized into five 1-factors, say $F_{1}, F_{2}, F_{3}, F_{4}$ and F_{5}. From Figure 6, the sum of the edge labels at each factor is $k_{e}=42$ and so K_{6} is 1-factor-V-super magic.

Figure 5: The graph K_{6} is 1 -factor- V-super magic.

Thus, we finalize this article followed by an open problem.
Proposition 4.1. Characterize all the r-factor- V-super magic graphs for $r \geq 3$.

References

${ }^{[1]}$ W. S. Andrews, Magic Squares and Cubes, Dover 1960.
${ }^{[2]}$ S. S. Block, S. A. Tavares, Before Sudoku : The World of Magic Squares, Oxford University Press, 2009.
[3] J.A. Gallian, A Dynamic Survey of Graph Labeling, Electron. J. Combin., (2017), \#DS6.
[4] J.A. MacDougall, M. Miller, Slamin, W.D.Wallis, Vertexmagic total labelings of graphs, Util. Math., 61(2002), 3-21.
[5] J.A. MacDougall, M. Miller, K.A. Sugeng, Super vertexmagic total labelings of graphs, in: Proceedings of the 15th Australian Workshop on Combinatorial Algorithms, (2004), 222-229.
[6] G. Marimuthu, M.Balakrishnan, E-super vertex magic labeling of graphs, Discrete Appl. Math., 160 (2012), 1766-1774.
${ }^{[7]}$ J. Petersen, Die Theorie der regularen Graphen, Acta Math., 15(1891), 19-32.
${ }^{[8]}$ Sedlàček, Problem 27, in Theory of Graphs and its Applications, Proc. Symposium Smolenice, (1963), 163-167.
${ }^{[9]}$ S. P. Subbiah, J. Pandimadevi, H-E-Super magic decomposition of graphs, Electronic Journal of Graph Theory and Applications, 2(2)(2014), 115-128.
[10] V. Swaminathan, P. Jeyanthi, Super vertex - Magic labeling, Indian J. Pure Appl. Math., 34(6)(2003), 935-939.

$$
\operatorname{ISSN}(\mathrm{P}): 2319-3786
$$

Malaya Journal of Matematik
ISSN(O): $2321-5666$

