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Abstract
A singularly perturbed boundary value problem for a linear system of two parabolic second order delay differential
equations of reaction-diffusion type is considered. As the highest order space derivatives are multiplied by
singular perturbation parameters, the solution exhibits boundary layers. Also, the delay term that occurs in the
space variable gives rise to interior layers. A numerical method which uses classical finite difference scheme on
a Shishkin piecewise uniform mesh is suggested to approximate the solution. The method is proved to be first
order convergent uniformly for all the values of the singular perturbation parameters. Numerical illustrations are
presented so that the theoretical results are supported.
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1. Introduction
Singularly perturbed differential equations with delay

have a wide range of applications - from population dynam-
ics [1] to human physiology and bio system dynamics [2, 3].

The solutions of these equations exhibit boundary layers due
to the presence of the singular perturbation parameter and
interior layers due to the presence of the delay term. The
derivatives of the solution of these problems exhibit propagat-
ing discontinuities depending on the nature of the problem.
Hence classical finite difference schemes on uniform meshes
are inadequate in providing good approximations. In a series
of papers published by Lange and Miura, [4–7] various as-
pects of solutions of singularly perturbed delay differential
equations were studied through asymptotic analysis and nu-
merical experiments. In [9], parameter uniform convergence
for a parabolic system of singularly perturbed differential
equations is established. In [11], parameter uniform numeri-
cal method has been suggested to solve systems of singularly
perturbed delay differential equations.

Here in this paper, a numerical method which uses stan-
dard finite difference scheme on a Shishkin piecewise uniform
mesh is constructed. It is proved that the numerical approxima-
tions obtained by this method converge to the exact solution
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uniformly for all the values of the parameter in the maximum
norm. The plan of the paper is as follows. In Section 2, the
problem is defined and existence and regularity of the solution
of the problem are discussed. In Section 3, the maximum
principle for the differential operator is proved and conse-
quently the stability result is established. And also standard
estimates of the derivatives of the solution are presented. Fur-
ther, improved estimates for the derivatives of components of
the solution are presented. In Section 4, piecewise-uniform
Shishkin meshes are introduced and in Section 5, the discrete
problem is defined and the discrete maximum principle and
the discrete stability properties are established. In Section 6,
numerical analysis is presented and the error bounds are es-
tablished. In Section 7, numerical illustrations are presented.

2. The Continuous Problem
A singularly perturbed boundary value problem for a system of
two linear parabolic second order delay differential equations
of reaction - diffusion type is considered as follows

~L~u(x, t) =
∂~u
∂ t

(x, t)−E
∂ 2~u
∂x2 (x, t)+A(x, t)~u(x, t)

+B(x, t)~u(x−1, t) = ~f (x, t) on Ω, (2.1)
~u given on Γ,

~u(x, t) =~χ(x, t),(x, t) ∈ [−1,0]× [0,T ],

where Ω = {(x, t) : 0 < x < 2,0 < t ≤ T}, Ω = Ω∪Γ,Ω̃ =

((0,1−)×(0,T ])∪((1+,2)×(0,T ]),Ω̃=([0,1−]× [0,T ])∪
([1+,2]× [0,T ]), Γ = ΓL∪ΓB∪ΓR with~u(0, t) =~χ(0, t) on
ΓL = {(0, t) : 0 ≤ t ≤ T},~u(x,0) = ~φB(x) on ΓB = {(x,0) :
0 ≤ x ≤ 2}, and ~u(2, t) = ~φR(t) on ΓR = {(2, t) : 0 ≤ t ≤
T}. For all (x, t) ∈ Ω,~u(x, t) = (u1(x),u2(x))T and ~f (x, t) =
( f1(x), f2(x))T . E,A(x, t) and B(x, t) are 2×2 matrices.
E = diag(ε̄), ε̄ = (ε1,ε2) with 0 < ε1 < ε2 << 1,
B(x, t) = diag(~b(x, t)),~b(x, t) = (b1(x, t),b2(x, t)).
For all (x, t) ∈ [0,2]× [0,T ], it is also assumed that the entries
ai j(x, t) of A(x, t) and the components bi(x, t) of~b(x, t) satisfy

bi(x, t),ai j(x, t)≤ 0 for 1≤ i 6= j ≤ 2,

aii(x, t)> ∑
i6= j
|ai j(x, t)+bi(x, t)| (2.2)

and 0 < α < min
(x,t)∈[0,2]×[0,T ]

(
2

∑
j=1

ai j(x)+bi(x)), for some α

(2.3)

The problem (2.1) can be rewritten as,

~L1~u(x, t) =
∂~u
∂ t

(x, t)−E
∂ 2~u
∂x2 (x, t)+A(x, t)~u(x, t)

= ~g(x, t), on Ω1 = (0,1)× (0,T ] (2.4)

where~g(x, t) = ~f (x, t)−B(x, t)~χ(x−1, t)

~L2~u(x, t) =
∂~u
∂ t

(x, t)−E
∂ 2~u
∂x2 (x, t)+A(x, t)~u(x, t)

+B(x, t)~u(x−1, t) = ~f (x, t), (2.5)
on Ω2 = (1,2)× (0,T ]

~u(x,0) = ~φB(x) on ΓB1 = {(x,0) : 0≤ x≤ 1−},
~u(x,0) = ~φB(x) on ΓB2 = {(x,0) : 1+≤ x≤ 2},
~u(1−, t) =~u(1+, t), ∂~u

∂x (1−, t) =
∂~u
∂x (1+, t),~u(0, t) =~χ(0, t),

~u(2, t) = ~φR(t) on ΓR.
The reduced problem corresponding to (2.4) - (2.5) is defined
by

∂~u0

∂ t
(x, t)+A(x, t)~u0(x, t) =~g(x, t), on (0,1)× (0,T ]

~u0(x,0) = ~φB(x),0≤ x≤ 1− (2.6)
∂~u0

∂ t
(x, t)+A(x, t)~u0(x, t)+B(x, t)~u0(x−1, t) = ~f (x, t),

on (1,2)× (0,T ],~u0(x,0) = ~φB(x),1+≤ x≤ 2. (2.7)

In general as ~u0(x, t) need not satisfy ~u0(0, t) = ~u(0, t) and
~u0(2, t) =~u(2, t), the solution~u(x, t) exhibits boundary layers
at x = 0 and x = 2. In addition to that, as~u0(1−, t) need not be
equal to~u0(1+, t), the solution~u(x, t) exhibits interior layers
at x = 1.
The norms, ||~V ||= max1≤k≤n |Vk| for any n-vector ~V , ||y||D =
sup{|y(x, t)| : (x, t) ∈ D} for any scalar-valued function y and
domain D, and ||~y|| = max1≤k≤n ||yk|| for any vector-valued
function~y, are introduced. When D = Ω or Ω the subscript
D is usually dropped. In a compact domain D a function is
said to be Hölder continuous of degree λ ,0 < λ ≤ 1, if, for
all (x1, t1),(x2, t2) ∈ D,

|u(x1, t1)−u(x2, t2)| ≤C(|x1− x2|2 + |t1− t2|)
λ/2

.

The set of Hölder continuous functions forms a normed linear
space C0

λ
(D) with the norm

||u||λ ,D = ||u||D+ sup
(x1,t1),(x2,t2)∈D

|u(x1, t1)−u(x2, t2)|
(|x1− x2|2 + |t1− t2|)λ/2 ,

where ||u||D = sup(x,t)∈D |u(x, t)|. For each integer k ≥ 1, the
subspaces Ck

λ
(D) of C0

λ
(D), which contain functions having

Hölder continuous derivatives, are defined as follows

Ck
λ
(D)= {u :

∂ l+mu
∂xl∂ tm ∈C0

λ
(D) for l,m≥ 0 and 0≤ l+2m≤ k}.

The norm on C0
λ
(D) is taken to be

||u||λ ,k,D = max
0≤l+2m≤k

|| ∂ l+mu
∂xl∂ tm ||λ ,D.

For a vector function~v = (v1,v2, . . . ,vn), the norm is defined
by ||~v||λ ,k,D = max1≤i≤n ||vi||λ ,k,D.
Sufficient conditions for the existence, uniqueness and regu-
larity of solution of (2.1) are given in the following theorem.
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Theorem 2.1. Assume that ai j(x, t),bi(x, t), i, j = 1,2, ~f ∈
C2

λ
(Ω), ~χ ∈ C1([−1,0]× [0,T ]),~φB ∈ C2(ΓB), ~φR ∈ C1(ΓR)

and that the following compatibility conditions are fulfilled at
the corners (0,0) and (2,0) of Γ,

φB1(0) = χ1(0, t) and φB1(2) = φR1(0)
φB2(0) = χ2(0, t) and φB2(2) = φR2(0)

(2.8)

∂ χ1

∂ t
(0,0)− ε1

d2φB1

dx2 (0)+a11(0,0)φB1(0)+a12(0,0)φB2(0)

+b1(0,0)χ1(0,0) = f1(0,0)

∂ χ2

∂ t
(0,0)− ε2

d2φB2

dx2 (0)+a21(0,0)φB1(0)+a22(0,0)φB2(0)

+b2(0,0)χ2(0,0) = f2(0,0)

dφR1

dt
(0)− ε1

d2φB1

dx2 (2)+a11(2,0)φB1(2)+a12(2,0)φB2(2)

+b1(2,0)φB1(2) = f1(2,0)

dφR2

dt
(0)− ε2

d2φB2

dx2 (2)+a21(2,0)φB1(2)+a22(2,0)φB2(2)

+b2(2,0)φB2(2) = f2(2,0)
(2.9)

∂ 2χ1

∂ t2 (0,0) = ε1
d4φB1

dx4 (0)− ε1[
∂ 2a11

∂x2 (0,0)φB1(0)

+
∂ 2a12

∂x2 (0,0)φB2(0)+2
∂a11

∂x
(0,0)

dφB1

dx
(0)

+2
∂a12

∂x
(0,0)

dφB2

dx
(0)+a11(0,0)

d2φB1

dx2 (0)

+a12(0,0)
d2φB2

dx2 (0)+
∂ 2b1

∂x2 (0,0)χ1(−1,0)

+2
∂b1

∂x
(0,0)

∂ χ1

∂x
(−1,0)

+b1(0,0)
∂ 2χ1

∂x2 (−1,0)]

−[∂a11

∂ t
(0,0)φB1(0)+

∂a12

∂ t
(0,0)φB2(0)+

b1(0,0)
∂ χ1

∂ t
(−1,0)+

∂b1

∂ t
(0,0)χ1(−1,0)]

+ε1
∂ 2 f1

∂x2 (0,0)+
∂ f1

∂ t
(0,0)

∂ 2χ2

∂ t2 (0,0) = ε2
d4φB2

dx4 (0)− ε2[
∂ 2a21

∂x2 (0,0)φB1(0)

+
∂ 2a22

∂x2 (0,0)φB2(0)+2
∂a21

∂x
(0,0)

dφB1

dx
(0)

+2
∂a22

∂x
(0,0)

dφB2

dx
(0)+a21(0,0)

d2φB1

dx2 (0)

+a22(0,0)
d2φB2

dx2 (0)+
∂ 2b2

∂x2 (0,0)χ2(−1,0)

+2
∂b2

∂x
(0,0)

∂ χ2

∂x
(−1,0)

+b2(0,0)
∂ 2χ2

∂x2 (−1,0)]

−[∂a21

∂ t
(0,0)φB1(0)+

∂a22

∂ t
(0,0)φB2(0)+

b2(0,0)
∂ χ2

∂ t
(−1,0)+

∂b2

∂ t
(0,0)χ2(−1,0)]

+ε2
∂ 2 f2

∂x2 (0,0)+
∂ f2

∂ t
(0,0) (2.10)

d2φR1

dt2 (0) = ε1
d4φB1

dx4 (2)− ε1[
∂ 2a11

∂x2 (2,0)φB1(2)

+
∂ 2a12

∂x2 (2,0)φB2(2)+2
∂a11

∂x
(2,0)

dφB1

dx
(2)

+2
∂a12

∂x
(2,0)

dφB2

dx
(2)+a11(2,0)

d2φB1

dx2 (2)

+a12(2,0)
d2φB2

dx2 (2)+
∂ 2b1

∂x2 (2,0)φB1(1)

+2
∂b1

∂x
(2,0)

dφB1

dx
(1)+b1(2,0)

d2φB1

dx2 (1)]

−[∂a11

∂ t
(2,0)φB1(2)+

∂a12

∂ t
(2,0)φB2(2)

+b1(2,0)
dφB1

dt
(1)+

∂b1

∂ t
(2,0)φB1(1)]

+ε1
∂ 2 f1

∂x2 (2,0)+
∂ f1

∂ t
(2,0)

d2φR2

dt2 (0) = ε2
d4φB2

dx4 (2)− ε2[
∂ 2a21

∂x2 (2,0)φB1(2)

+
∂ 2a22

∂x2 (2,0)φB2(2)+2
∂a21

∂x
(2,0)

dφB1

dx
(2)

+2
∂a22

∂x
(2,0)

dφB2

dx
(2)+a21(2,0)

d2φB1

dx2 (2)

+a22(2,0)
d2φB2

dx2 (2)+
∂ 2b2

∂x2 (2,0)φB2(1)

+2
∂b2

∂x
(2,0)

dφB2

dx
(1)+b2(2,0)

d2φB2

dx2 (1)]

−[∂a21

∂ t
(2,0)φB1(2)+

∂a22

∂ t
(2,0)φB2(2)

+b2(2,0)
dφB2

dt
(1)+

∂b2

∂ t
(2,0)φB2(1)]

+ε2
∂ 2 f2

∂x2 (2,0)+
∂ f2

∂ t
(2,0) (2.11)

Then there exists a unique solution ~u(x, t) of (2.1) satis-
fying ~u(x, t) ∈ C =C0

λ
([0,2]× [0,T ])∩C1

λ
((0,2)× (0,T ])∩

C4
λ
(Ω̃).

It is assumed throughout the paper that all of the assump-
tions (2.2), (2.3), (2.8), (2.9), (2.10) and (2.11) of this section
hold. Furthermore, C denotes a generic positive constant,
which is independent of x, t and of all singular perturbation
and discretization parameters.
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3. Analytical results

Lemma 3.1. Let conditions (2.2) and (2.3) hold. Let ~ψ =
(ψ1,ψ2)

T be any function in C such that ~ψ(x, t) ≥~0 on
Γ. ~L1~ψ(x, t) ≥~0 on (0,1)× (0,T ], ~L2~ψ(x, t) ≥~0 on (1,2)×
(0,T ] and [~ψ](1, t) =~0, [ ∂~ψ

∂x ](1, t) ≤~0 then ~ψ(x, t) ≥~0 on
[0,2]× [0,T ].

Proof. Let i∗,x∗, t∗ be such that
ψi∗(x∗, t∗) = min

i=1,2;(x,t)∈[0,2]×[0,T ]
ψi(x, t).

If ψi∗(x∗, t∗) ≥ 0, there is nothing to prove. Therefore sup-
pose that ψi∗(x∗, t∗) < 0. Then (x∗, t∗) /∈ Γ,

∂ψi∗
∂ t (x∗, t∗) ≤

0 and ∂ 2ψi∗
∂x2 (x∗, t∗)≥ 0. If (x∗, t∗) ∈ (0,1)× (0,T ], then

(~L1~ψ)i∗(x∗, t∗)< 0, which is a contradiction. And if (x∗, t∗)∈
(1,2)× (0,T ], then (~L2~ψ)i∗(x∗, t∗) < 0, which is also a con-
tradiction. Because of the boundary values, the only other pos-
sibility is that (x∗, t∗) = (1, t∗). In this case, the argument de-
pends on whether or not ~ψi∗ is differentiable at (x, t) = (1, t).
If ∂ψi∗

∂x (1, t∗) does not exist then
[

∂ψi∗
∂x

]
(1, t∗) 6= 0 and since

∂ψi∗
∂x (1−, t∗)≤ 0, ∂ψi∗

∂x (1+, t∗)≥ 0, it is clear that
[

∂ψi∗
∂x

]
(1, t∗)

> 0, which is a contradiction. On the other hand, let ψi∗ be dif-
ferentiable at (x, t) = (1, t). As ∑

2
j=1 ai∗ j(x, t)ψ j(x, t)< 0 and

all the entries of A(x, t) and ψ j(x, t) are in C([0,2]× [0,T ]),
there exist an interval [1−h,1) on which ∑

2
j=1 ai∗ j(x, t)ψ j(x, t)

< 0. If ∂ 2ψi∗
∂x2 (x̂) ≥ 0 at any point (x̂, t) ∈ [1− h,1)× (0,T ],

then (~L1~ψ)i∗(x, t) < 0, which is a contradiction. Thus we

can assume that ∂ 2ψi∗
∂x2 (x, t)< 0 on [1−h,1)× (0,T ]. But this

implies that ∂ψi∗
∂x (x, t) is strictly decreasing on [1− h,1)×

(0,T ]. Already we know that ∂ψi∗
∂x (1, t) = 0 and ∂ψi∗

∂x (x, t) ∈
C((0,2)×(0,T ]), so ∂ψi∗

∂x (x, t)> 0 on [1−h,1)×(0,T ]. Con-
sequently the continuous function ψi∗(x, t) cannot have a
minimum at (x, t) = (1, t), which contradicts the assumption
(x∗, t∗) = (1, t∗).

As a consequence of the maximum principle, there is estab-
lished the stability result for the problem (2.1) in the follow-
ing.

Lemma 3.2. Let conditions (2.2) and (2.3) hold. Let ~ψ be
any function in C , such that [~ψ](1, t) =~0 and

[
∂~ψ
∂x

]
(1, t) =~0,

then for each i = 1,2 and (x, t) ∈ [0,2]× [0,T ],

|ψi(x, t)| ≤max
{
‖ ~ψ ‖Γ,

1
α
‖ ~L1~ψ ‖,

1
α
‖ ~L2~ψ ‖

}
.

Proof. Let

M = max
{
‖ ~ψ ‖Γ,

1
α
‖ ~L1~ψ ‖,

1
α
‖ ~L2~ψ ‖

}
.

Define two functions ~θ±(x, t)=M~e±~ψ(x, t) where~e=(1,1)T .
Using the properties of A(x, t) and B(x, t), it is not hard to ver-
ify that ~θ±(x, t) ≥~0 for (x, t) ∈ Γ and ~L1 ~θ± ≥~0 on (0,1)×

(0,T ] and ~L2 ~θ± ≥~0 on (1,2)× (0,T ]. Moreover [ ~θ±](1, t) =

±[~ψ](1, t) =~0 and
[

∂ ~θ±
∂x

]
(1, t) = ±

[
∂~ψ
∂x

]
(1, t) =~0. It fol-

lows from Lemma 3.1 that ~θ±(x, t)≥~0 on [0,2]× [0,T ].

Standard estimates of the solution of (2.1) and its derivatives
are contained in the following lemma.

Lemma 3.3. Let conditions (2.2) and (2.3) hold. Let ~u be
the solution of (2.1). Then for all (x, t) ∈ [0,2]× [0,T ] and
i = 1,2,

|∂
kui

∂ tk (x, t)| ≤C(||ui||Γ +∑
k
q=0 ||

∂ q fi

∂ tq ||),k = 0,1,2

|∂
kui

∂xk (x, t)| ≤Cε
−k
2

i (||ui||Γ + || fi||+ ||
∂ fi

∂ t
||),k = 1,2

|∂
kui

∂xk (x, t)| ≤Cε
−1
i ε

−(k−2)
2

1 (||ui||Γ + || fi||+ ||
∂ fi

∂ t
||+ ||∂

2 fi

∂ t2 ||

+ε
k−2

2
1 ||∂

k−2 fi

∂xk−2 ||),k = 3,4

| ∂ kui

∂xk−1∂ t
(x, t)| ≤Cε

1−k
2

i (||ui||Γ + || fi||+ ||
∂ fi

∂ t
||+ ||∂

2 fi

∂ t2 ||),
k= 2,3.

Proof. The proof is by the method of steps. First, the bounds
of~u and its derivatives are estimated in [0,1−]× [0,T ]. Next,
these bounds of ~u and its derivatives are used to get the es-
timates in [1+,2]× [0,T ]. The bound on ~u is an immediate
consequence of Lemma 3.2 in [9]. To bound ∂ui

∂ t (x, t) and
∂ 2ui
∂ t2 (x, t), on [0,1−]× [0,T ] and [1+,2]× [0,T ], differentiat-

ing (2.1) partially with respect to time once and twice respec-
tively, and applying Lemma 3.2 in [9] in the domain [0,1−]×
[0,T ], the bounds on ∂ui

∂ t (x, t), respectively ∂ 2ui
∂ t2 (x, t) are ob-

tained. To bound ∂ui
∂x (x, t), on the interval [0,1−]× [0,T ],

consider an interval I = [a,a+
√

ε i], i = 1,2,a≥ 0 such that
x∈ I. Then for some y such that a< y< a+

√
ε i and t ∈ (0,T ]

∂ui

∂x
(y, t) =

ui(a+
√

ε i, t)−ui(a, t)√
ε i

|∂ui

∂x
(y, t)| ≤Cε

− 1
2

i ||ui||. (3.1)

Then for any x ∈ I ,

∂ui

∂x
(x, t) =

∂ui

∂x
(y, t)+

∫ x

y

∂ 2ui

∂x2 (s, t)ds

∂ui
∂x (x, t) =

∂ui
∂x (y, t)+ ε

−1
i
∫ x

y (
∂ui
∂ t (s, t)− fi(s, t)

+∑
2
j=1 ai j(s, t)ui(s, t)+bi(s, t)χi(x−1, t))ds

|∂ui

∂x
(x, t)| ≤ |∂ui

∂x
(y, t)|+Cε

−1
i

∫ x

y
(||ui||Γ+ || fi||+ ||

∂ fi

∂ t
||)ds

Using (3.1) in the above equation

|∂ui

∂x
(x, t)| ≤Cεi

−1
2 (||ui||Γ + || fi||+ ||

∂ fi

∂ t
||).
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Rearranging the terms in (2.1), it is easy to get

|∂
2ui

∂x2 (x, t)| ≤Cεi
−1(||ui||Γ + || fi||+ ||

∂ fi

∂ t
||)

To bound ∂ui
∂x (x, t),

∂ 2ui
∂x2 (x, t) on [1+,2]× [0,T ], following the

same steps and using the bounds established for [0,1−]×
[0,T ], it is not hard to get the bounds in the domain [1+,2]×
[0,T ].
Analogous steps are used to get the rest of the estimates.
Rearranging the differential equation (2.1) and differentiating
once and twice give ∂ 3ui

∂x3 (x, t),
∂ 4ui
∂x4 (x, t) and the bounds on

∂ 3ui
∂x3 (x, t) and ∂ 4ui

∂x4 (x, t) follow from those on ∂ui
∂x (x, t) and

∂ 2ui
∂x2 (x, t).

The Shishkin decomposition of the exact solution ~u of
(2.1) is~u =~v+~w where the smooth component~v is the solu-
tion of

~L1~v =~g on (0,1−)× (0,T ],
~v(0, t) = ~u0(0, t),~v(x,0) = ~u0(x,0),~v(1−, t) = ~u0(1−, t)

(3.2)

~L2~v = ~f on (1+,2)× (0,T ],
~v(2, t) = ~u0(2, t),~v(x,0) = ~u0(x,0),~v(1+, t) = ~u0(1+, t)

(3.3)

and the singular component ~w is the solution of

~L1~w =~0 on (0,1)× (0,T ], ~L2~w =~0 on (1,2)× (0,T ]
with ~w(0, t) =~u(0, t)−~v(0, t), [~w](1, t) =−[~v](1, t),

[
∂~w
∂x

](1, t) =−[∂~v
∂x

](1, t),~w(2, t) =~u(2, t)−~v(2, t).

(3.4)

The singular component is given a further decomposition

~w(x, t) = ~̃w(x, t)+ ~̂w(x, t) (3.5)

where ~̃w is the solution of

∂ ~̃w
∂ t

(x, t)−E
∂ 2~̃w
∂x2 (x, t)+A(x, t)~̃w(x, t) =~0 on (0,1)× (0,T ],

~̃w(0, t) = ~w(0, t), ~̃w(1, t) = K1, ~̃w =~0 on (1,2)× (0,T ]

and ~̂w is the solution of

∂ ~̂w
∂ t

(x, t)−E
∂ 2~̂w
∂x2 (x, t)+A(x, t)~̂w(x, t)+B(x, t)~̂w(x−1, t) =~0

on (1,2)× (0,T ],
~̂w(1, t) = K2, ~̂w(2, t) = ~w(2, t), ~̂w =~0on (0,1)× (0,T ]

Here, K1 and K2 are constants to be chosen in such a way
that the jump conditions at x = 1 are satisfied. Bounds on
the smooth component and its derivatives are contained in the
following lemma.

Lemma 3.4. Let conditions (2.2) and (2.3) hold. The smooth
component ~v and its derivatives satisfy, for each (x, t) ∈
[0,2]× [0,T ] and i = 1,2,

|∂
kvi

∂ tk (x, t)| ≤C, for k = 0,1,2

|∂
kvi

∂xk (x, t)| ≤C(1+ ε
1− k

2
i ), for k = 0,1,2,3,4

| ∂ kvi

∂xk−1∂ t
(x, t)| ≤C, for k = 2,3.

Proof. The proof is by the method of steps. Applying lemma
3.2 in [9], the estimates of derivatives of~v on [0,1−]× [0,T ]
follow. The arguments used to bound~v and its derivatives in
the interval [1+,2]× [0,T ] are given below. The bound on
~v is an immediate consequence of the defining equations for
~v and Lemma 3.2 in [9] in the domain [1+,2]× [0,T ]. The
bounds on the partial derivatives of~v with respect to x and t
are found as follows. Differentiating the equation (3.2) twice
partially with respect to x and applying Lemma 3.2 in [9] in
the domain [1+,2]× [0,T ] we get

|∂
2vi

∂x2 (x, t)| ≤C(1+ ||∂~v
∂x
||). (3.6)

Let

∂vi∗

∂x
(x∗, t∗) = ||∂~v

∂x
||[1,2]×[0,T ] for some i= i∗,x = x∗, t = t∗.

(3.7)

Using Taylor expansion, it follows that, for some y ∈ [1−
x∗,2− x∗] and some η , such that x∗ < η < x∗+ y,

vi∗(x∗+y, t∗) = vi∗(x∗, t∗)+y
∂vi∗

∂x
(x∗, t∗)+

y2

2
∂ 2vi∗

∂x2 (η , t∗).

(3.8)

Rearranging (3.8) yields

∂vi∗

∂x
(x∗, t∗) =

vi∗(x∗+ y, t∗)− vi∗(x∗, t∗)
y

− y
2

∂ 2vi∗

∂x2 (η , t∗)

⇒|∂vi∗

∂x
(x∗, t∗)|[1,2]×[0,T ]≤

2
y
||~v||[1,2]×[0,T ]+

y
2
||∂

2~v
∂x2 ||[1,2]×[0,T ].

(3.9)

Using (3.7) and (3.9) in (3.6),

| ∂
2vi

∂x2 (x, t)|[1,2]×[0,T ]≤C(1+ 2
y ||~v||[1,2]×[0,T ]+

y
2 ||

∂ 2~v
∂x2 ||[1,2]×[0,T ]).

This leads to

(1−Cy
2
)||∂

2~v
∂x2 ||[1,2]×[0,T ] ≤C(1+

2
y
||~v||[1,2]×[0,T ]). (3.10)

Choosing y = min( 1
C ,2− x∗), (3.10) then gives

||∂
2~v

∂x2 ||[1,2]×[0,T ] ≤C
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and from (3.9)

||∂~v
∂x
||[1,2]×[0,T ] ≤C

as required. The bounds on ∂ 3~v
∂x3 (x, t),

∂ 4~v
∂x4 (x, t) are derived by

similar arguments. Repeating the above steps with ∂~v
∂ t (x, t), it

is easy to get the required bounds on the mixed derivatives.

The layer functions BL
1,i,B

R
1,i,B

L
2,i,B

R
2,i,B1,i,B2,i, i = 1,2, asso-

ciated with the solution~u, are defined by

BL
1,i(x) = e

−x
√

α√
εi ,BR

1,i(x) = e
−(1−x)

√
α√
εi ,

B1,i(x) = BL
1,i(x)+BR

1,i(x), on [0,1]× [0,T ],

BL
2,i(x) = e

−(x−1)
√

α√
εi ,BR

2,i(x) = e
−(2−x)

√
α√
εi ,

B2,i(x) = BL
2,i(x)+BR

2,i(x), on [1,2]× [0,T ].

It has to be noted that for i = 1,2,B1,i(x− 1) = B2,i(x) for
x ∈ [1,2]

Definition 3.5. For BL
1,1,B

L
1,2, let x(s),1≤ i 6= j ≤ 2,s > 0 be

the point defined by
BL

1,1(x
(s))

ε1
=

BL
1,2(x

(s))

ε2
.

Then
BR

1,1(1−x(s))
ε1

=
BR

1,2(1−x(s))
ε2

,
BL

2,1(1+x(s))
ε1

=
BL

2,2(1+x(s))
ε2

and
BR

2,1(2−x(s))
ε1

=
BR

2,2(2−x(s))
ε2

.

The existence, uniqueness and the properties of x(s) can
be verified as in [9, 11]. Bounds on the singular component ~w
of~u(x, t) and their derivatives are contained in the following
lemma.

Lemma 3.6. Let conditions (2.2) and (2.3) hold. Then there
exists a constant C, such that, for (x, t) ∈ [0,1]× [0,T ] and
i = 1,2,

|∂
kwi

∂ tk (x, t)| ≤CB1,2(x), for k = 0,1,2

|∂
kwi

∂xk (x, t)| ≤C ∑
2
q=i

B1,q(x)

ε
k
2

q

, for k = 0,1,2

|∂
kwi

∂xk (x, t)| ≤C ∑
2
q=1

B1,q(x)

ε
k
2

q

, for k = 3

|εi
∂ kwi

∂xk (x, t)| ≤C ∑
2
q=1

B1,q(x)
εq

, for k = 4

| ∂ kwi

∂xk−1∂ t
(x, t)| ≤C ∑

2
q=i

B1,q(x)

ε
k
2

q

, for k = 2,3

and for (x, t) ∈ [1,2]× [0,T ],

|∂
kwi

∂ tk (x, t)| ≤CB2,2(x), for k = 0,1,2

|∂
kwi

∂xk (x, t)| ≤C ∑
2
q=i

B2,q(x)

ε
k
2

q

, for k = 0,1,2

|∂
kwi

∂xk (x, t)| ≤C ∑
2
q=1

B2,q(x)

ε
k
2

q

, for k = 3

|εi
∂ kwi

∂xk (x, t)| ≤C ∑
2
q=1

B2,q(x)
εq

, for k = 4

| ∂ kwi

∂xk−1∂ t
(x, t)| ≤C ∑

2
q=i

B2,q(x)

ε
k
2

q

, for k = 2,3.

Proof. First we derive the bound on ~w on (0,1)× (0,T ]. To
obtain the bound of ~w, define the functions

ψ
±
i (x, t) =CB1,2±wi(x, t), i = 1,2.

It is clear that, for (x, t) ∈ (0,1)× (0,T ],ψ±i (0, t),ψ±i (x,0),
ψ
±
i (1, t) and L1ψ

±
i (x, t) are non-negative. By Lemma 3.1 in

[9], ψ
±
i (x, t)≥ 0 for (x, t) ∈ [0,1]× [0,T ]. It follows that

|wi(x, t)| ≤CB1,2(x) (3.11)

Now use the temporary notation
∂wi

∂x
(x, t) = yi(x, t). Hence

we have

L1yi(x, t) =−
2

∑
j=1

∂ai j

∂x
(x, t)w j(x, t).

Now construct the barrier functions

ψ
±
i (x, t) =Cε

−1
2

i B1,2(x)± yi(x, t)

ψ
±
i (0, t) =Cε

−1
2

i ± yi(0, t)≥ 0,

ψ
±
i (1, t) =Cε

−1
2

i ± yi(1, t)≥ 0,ψ±i (x,0) = 0 and

L1ψ
±
i (x, t) =Cε

−1
2

i (∑2
j=1 ai j(x, t)−α)B1,2(x)

∓∑
2
j=1

∂ai j
∂x (x, t)w j(x, t)

≥ 0 ( since ∑
2
j=1 ai j(x, t)> α

and |wi(x, t)| ≤CB1,2(x)).

Thus by Lemma 3.1 in [9], ψ
±
i (x, t)≥ 0 for all (x, t)∈ [0,1]×

[0,T ].

⇒ |∂wi

∂x
(x, t)| ≤Cε

−1
2

i B1,2(x). (3.12)

The bounds on
∂ 2wi

∂x2 (x, t) and
∂ 3wi

∂x3 (x, t) are derived by simi-
lar arguments.

To obtain the bound for
∂wi

∂ t
(x, t), define the two functions

θi
±(x, t) =CB1,2(x)±

∂wi

∂ t
(x, t).

Differentiating the homogeneous equation satisfied by wi,
partially with respect to t and rearranging yields

∂ 2wi

∂ t2 (x, t)− εi
∂ 3wi

∂x2∂ t
(x, t)+

2

∑
j=1

ai j(x, t)
∂w j

∂ t
(x, t)

=−
2

∑
j=1

∂ai j

∂ t
(x, t)w j(x, t)

(3.13)
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and we get
|L1

∂wi
∂ t (x, t)| ≤CB1,2(x)

| ∂wi
∂ t (0, t)| ≤ |

∂ui
∂ t (0, t)|+ |

∂vi
∂ t (0, t)| ≤C, | ∂wi

∂ t (1, t)|=C,

| ∂wi
∂ t (x,0)|= 0 as wi(0, t) = w(0),wi(1, t) = K1

and wi(x,0) = 0.
By Lemma 3.2 in [9], for a proper choice of C, it follows that

|∂wi

∂ t
(x, t)| ≤CB1,2(x). (3.14)

Now the bound for
∂ 2wi

∂x∂ t
is obtained by using Lemma 3.3 and

Lemma 3.4

|∂
2wi

∂x∂ t
(x, t)| ≤ | ∂

2ui

∂x∂ t
(x, t)|+ | ∂

2vi

∂x∂ t
(x, t)|

|∂
2wi

∂x∂ t
(x, t)| ≤Cεi

−1
2 (||ui||Γ + || fi||+ ||

∂ fi

∂ t
||+ ||∂

2 fi

∂ t2 ||).

Similarly,

| ∂ 3wi

∂x2∂ t
(x, t)| ≤Cε

−1
i (||ui||Γ+ || fi||+ ||

∂ fi

∂ t
||+ ||∂

2 fi

∂ t2 ||).

(3.15)

Using (3.11), (3.14) and (3.15) in (3.13),

|∂
2wi

∂ t2 (x, t)| ≤C.

We now derive the bound on wi on [1,2]× [0,T ]. From the
defining equation for wi, we have

L2wi(x, t) =
∂wi

∂ t
(x, t)− εi

∂ 2wi

∂x2 (x, t)+
2

∑
j=1

ai j(x, t)w j(x, t)

+bi(x, t)wi(x−1, t) = 0
(3.16)

or

L1wi(x) =
∂wi

∂ t
(x, t)− εi

∂ 2wi

∂x2 (x, t)+
2

∑
j=1

ai j(x, t)w j(x, t)

=−bi(x, t)wi(x−1, t)
(3.17)

⇒ |L1wi(x, t)| ≤C B1,2(x−1) =CB2,2(x) (3.18)

Also, wi(1, t) = K1,wi(2, t) = 0.
Consider the differential equation

L2wi = 0,x ∈ (1,2)× (0,T ].

Then ∂ 2wi
∂x2 (x, t) = ε

−1
i ( ∂wi

∂ t (x, t)+∑
2
j=1 ai j(x, t)w j(x, t)

+bi(x, t)wi(x−1, t)).

Hence

|∂
2wi

∂x2 (x, t)| ≤ Cε
−1
i (B2,2(x)+B2,2(x)+B1,2(x−1))

≤ Cε
−1
i B2,2(x) (since B1,2(x−1) = B2,2(x)

for x ∈ [1,2]).

Using the mean value theorem and the bound of wi(x, t),
arguments similar to those used to bound ∂ui

∂x lead to the

bound of ∂wi
∂x (x, t). The bounds on ∂ 3wi

∂x3 (x, t) and ∂ 4wi
∂x4 (x, t) are

derived similarly.

To obtain the bound for
∂wi

∂ t
(x, t), define the two functions

θi
±(x, t) =CB2,2(x)±

∂wi

∂ t
(x, t).

Differentiating the homogeneous equation satisfied by wi,
partially with respect to t and rearranging yields

∂ 2wi

∂ t2 (x, t)− εi
∂ 3wi

∂x2∂ t
(x, t)+

2

∑
j=1

ai j(x, t)
∂w j

∂ t
(x, t)

+bi(x, t)
∂wi

∂ t
(x−1, t)

=−
2

∑
j=1

∂ai j

∂ t
(x, t)w j(x, t)−

∂bi

∂ t
(x, t)wi(x−1, t)

(3.19)

and we get

|L2
∂wi

∂ t
(x, t)| ≤C(B2,2(x)+B1,2(x−1))

| ∂wi
∂ t (1, t)| ≤ |

∂ui
∂ t (1, t)|+ |

∂vi
∂ t (1, t)| ≤C, | ∂wi

∂ t (2, t)|= 0,
| ∂wi

∂ t (x,0)|= 0 as wi(1, t) = K1,wi(2, t) = 0 and wi(x,0) = 0.
By Lemma 3.2 in [9], for a proper choice of C, it follows that

|∂wi

∂ t
(x, t)| ≤CB2,2(x). (3.20)

Now the bound for
∂ 2wi

∂x∂ t
is obtained by using Lemma 3.3 and

Lemma 3.4

|∂
2wi

∂x∂ t
(x, t)| ≤ | ∂

2ui

∂x∂ t
(x, t)|+ | ∂

2vi

∂x∂ t
(x, t)|

|∂
2wi

∂x∂ t
(x, t)| ≤Cεi

−1
2 (||ui||Γ + || f ||+ ||

∂ fi

∂ t
||+ ||∂

2 fi

∂ t2 ||).

Similarly,

| ∂ 3wi

∂x2∂ t
(x, t)| ≤Cε

−1
i (||ui||Γ+ || fi||+ ||

∂ fi

∂ t
||+ ||∂

2 fi

∂ t2 ||).

(3.21)

Using (3.18), (3.20) and (3.21) in (3.19),

|∂
2wi

∂ t2 (x, t)| ≤C.
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4. Improved estimates
In the following lemma, sharper estimates of the smooth com-
ponent are presented.

Lemma 4.1. Let conditions (2.2) and (2.3) hold. Then the
smooth component ~v of the solution ~u of (2.1) satisfies for
i = 1,2,k = 0,1,2,3 and for all (x, t) ∈ [0,1−]× [0,T ],

| ∂vk
i

∂xk (x, t)| ≤C

(
1+∑

2
q=i

B1,q(x)

ε

k
2−1

q

)
and for (x, t) ∈ [1+,2]× [0,T ],

| ∂vk
i

∂xk (x, t)| ≤C

(
1+∑

2
q=i

B2,q(x)

ε

k
2−1

q

)
.

Proof. Define barrier functions ψ
±
i (x, t) =C(1+B1,2(x))±

∂ kvi
∂xk (x, t), i = 1,2,k = 0,1,2 and (x, t) ∈ [0,1−]× [0,T ].
Using Lemma 3.4, it follows that, for proper choice of C,

ψ
±
i (0, t) =C± ∂ kvi

∂xk (0, t)≥ 0

ψ
±(1−, t) =C± ∂ kvi

∂xk (1−, t)≥ 0,

ψ
±(x,0) =C[1+B1,2(x)]±

∂ kvi

∂xk ≥ 0

and Lψ
±
i (x, t)≥ 0 by lemma 3.2 in [9],

|∂
kvi

∂xk (x, t)| ≤C[1+B1,2(x)] for k = 0,1,2. (4.1)

Consider the equation

L
∂ 2vi

∂x2 (x, t) =
∂ 2 fi

∂x2 (x, t)−2
2

∑
j=1

∂ai j

∂x
(x, t)

∂v j

∂x
(x, t)

−
2

∑
j=1

∂ 2ai j

∂x2 (x, t)v j(x, t)

−2
∂bi

∂x
(x, t)

∂vi

∂x
(x−1, t)− ∂ 2bi

∂x2 (x, t)vi(x−1, t)(4.2)

with

∂ 2vi

∂x2 (0, t)= 0,
∂ 2vi

∂x2 (1−, t)= 0,
∂ 2~v
∂x2 (x,0)=

∂ 2~φB(x)
∂x2 . (4.3)

For convenience, let ~p denote
∂ 2~v
∂x2 . Then

~L~p =~h with ~p(0, t) = 0,~p(1−, t) = 0,~p(x,0) =~s (4.4)

where

hi =
∂ 2 fi

∂x2 (x, t)−2
2

∑
j=1

∂ai j

∂x
(x, t)

∂v j

∂x
(x, t)

−
2

∑
j=1

∂ 2ai j

∂x2 (x, t)v j(x, t)−2
∂bi

∂x
(x, t)

∂vi

∂x
(x−1, t)

−∂ 2bi

∂x2 (x, t)vi(x−1, t) and ~s =
∂ 2~φB(x)

∂x2 .

Let~q and~r be the smooth and singular components of ~p given
by

~L~q =~h with ~q(0, t) = ~p0(0, t),~q(1−, t) = ~p0(1, t),
~q(x,0) = ~p(x,0)

(4.5)

where ~p0 is the solution of the reduced problem

∂ ~p0

∂ t
+A~p0 =~g with ~p0(x,0) = ~p(x,0) =~s

and

~L~r =~0, with ~r(0, t) =−~q(0, t),~r(1−, t) =−~q(1−, t),
~r(x,0) =~0.

(4.6)

Using Lemma 3.4 and Lemma 3.6, it follows that, for i = 1,2
and (x, t) ∈ [0,1−]× [0,T ],

|∂qi

∂x
(x, t)| ≤C

and

|∂ ri

∂x
(x, t)| ≤C

[
B1,1(x)√

ε1
+

B1,2(x)√
ε2

.

]

Hence, for (x, t) ∈ [0,1−]× [0,T ] and i = 1,2

|∂
3vi

∂x3 (x, t)|= |
∂ pi

∂x
(x, t)| ≤C

[
1+

B1,1(x)√
ε1

+
B1,2(x)√

ε2

]
. (4.7)

Then (4.1) and (4.7), for k = 0,1,2,3 and (x, t) ∈ [0,1−]×
[0,T ], lead to

|∂
kvi

∂xk (x, t)| ≤C
[

1+ ε
1− k

2
1 B1,1(x)+ ε

1− k
2

2 B1,2(x)
]

The bounds on~v and its derivatives are similarly derived when
(x, t) ∈ [1+,2]× [0,T ].

5. The Shishkin mesh
A piecewise uniform Shishkin mesh with M×N mesh-intervals
is now constructed.
Let ΩM

t = {tk}M
k=1,Ω

M
t = {tk}M

k=0,Ω
N
x = {x j}N−1

j=1 ,

Ω
N
x = {x j}N

j=0,Ω
M,N = ΩM

t ×ΩN
x ,Ω

M,N
= Ω

M
t ×Ω

N
x ,

Ω−N
x = {x j}

N
2 −1
j=1 ,Ω

−N
x = {x j}

N
2
j=0,Ω

+N
x = {x j}N−1

j=N
2 +1

,

Ω
+N
x = {x j}N

j=N
2
,Ω−M,N = ΩM

t ×Ω−N
x ,Ω

−M,N
= Ω

M
t ×Ω

−N
x ,

Ω+M,N = ΩM
t ×Ω+N

x ,Ω
+M,N

= Ω
M
t ×Ω

+N
x and ΓM,N = Γ∩

Ω
M,N

. The mesh Ω
M
t is chosen to be a uniform mesh with

M mesh-intervals on [0,T ]. The mesh Ω
N
x is chosen to be a

piecewise-uniform mesh with N mesh-intervals on [0,2]. The
interval [0,1] is divided into 5 sub-intervals as follows

[0,τ1]∪(τ1,τ2]∪(τ2,1−τ2]∪(1−τ2,1−τ1]∪(1−τ1,1].
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The parameters τ1,τ2, which determine the points separating
the uniform meshes, are defined by

τ2 = min
{

1
4
,

2
√

ε2√
α

lnN
}

and

τ1 = min
{

τ2

2
,

2
√

ε1√
α

lnN
}
.

(5.1)

Then, on the sub-interval (τ2,1− τ2] a uniform mesh with
N
4 mesh points is placed and on each of the sub-intervals
[0,τ1],(τ1,τ2],(1− τ2,1− τ1]and(1− τ1,1], a uniform mesh
of N

16 mesh points is placed.
Similarly, the interval (1,2] is also divided into 5 sub-intervals
(1,1+τ1],(1+τ1,1+τ2],(1+τ2,2−τ2],(2−τ2,2−τ1] and
(2− τ1,2], having a total of N

2 mesh points, using the same
parameters τ1 and τ2. In particular, when both the parameters
τ1 and τ2 take on their lefthand value, the Shishkin mesh Ω

N

becomes a classical uniform mesh throughout from 0 to 2.
In practice, it is convenient to take

N = 16k, k ≥ 2. (5.2)

From the above construction of Ω
N
, it is clear that the tran-

sition points {τr,1− τr,1+ τr,2− τr},r = 1,2, are the only
points at which the mesh-size can change and that it does not
necessarily change at each of these points. The following
notations are introduced: h j = x j− x j−1 and if x j = τ , then
h−j = x j− x j−1,h+j = x j+1− x j, J = {x j : h+j 6= h−j }.

6. The discrete problem
In this section, a classical finite difference operator with an
appropriate Shishkin mesh is used to construct a numeri-
cal method for (2.1), which is shown later to be first order
parameter-uniform convergent in time and essentially first
order parameter-uniform convergent in the space variable.
The discrete two-point boundary value problem is now defined
on any mesh by the finite difference method

~LM,N~U(x j, tk) = D−t ~U(x j, tk)−Eδ
2
x
~U(x j, tk)+

A(x j, tk)~U(x j, tk)+B(x j, tk)~U(x j−1, tk)

= ~f (x j, tk) on Ω
M,N (6.1)

~U =~u on Γ
M,N

The problem (6.1) can be rewritten as

~L1
M,N~U(x j, tk) = D−t ~U(x j, tk)−Eδ

2
x
~U(x j, tk)+

A(x j, tk)~U(x j, tk)

= ~g(x j, tk) on Ω
−M,N (6.2)

where~g(x j, tk) = ~f (x j, tk)−B(x j, tk)~χ(x j−1, tk)

~L2
M,N~U(x j, tk) = D−t ~U(x j, tk)−Eδ

2
x
~U(x j, tk)+

A(x j, tk)~U(x j, tk)+B(x j, tk)~U(x j−1, tk)

= ~f (x j, tk) on Ω
+M,N (6.3)

~U =~u on Γ
M,N , D−x ~U(x N

2
, tk) = D+

x
~U(x N

2
, tk)

where D−t ~U(x j, tk) =
~U(x j ,tk)−~U(x j ,tk−1)

tk−tk−1
,

δ 2
x
~U(x j, tk) =

D+
x ~U(x j ,tk)−D−x ~U(x j ,tk)

x j+1−x j−1
2

,

D−x ~U(x j, tk) =
~U(x j+1,tk)−~U(x j ,tk)

x j+1−x j
and

D+
x
~U(x j, tk) =

~U(x j ,tk)−~U(x j−1,tk)
x j−x j−1

This is used to compute numerical approximations to the exact
solution of (2.1). The following discrete results are analogous
to those for the continuous case.

Lemma 6.1. Let conditions (2.2) and (2.3) hold. Then, for
any mesh function ~Ψ(x j, tk),0 ≤ j ≤ N,0 ≤ k ≤ M, the in-

equalities ~Ψ ≥~0 on ΓM,N ,~L1
M,N~Ψ(x j, tk) ≥~0, on Ω−M,N ,

~L2
M,N~Ψ(x j, tk)≥~0 on Ω+M,N and

D+
x
~Ψ(xN/2, tk)−D−x ~Ψ(xN/2, tk) ≤~0 imply that ~Ψ(x j, tk) ≥~0

on Ω
M,N

.

Proof. Let i∗, j∗,k∗ be such that Ψi∗(x j∗ , tk∗) = min
i, j,k

Ψi(x j, tk)

and assume that the lemma is false. Then Ψi∗(x j∗ , tk∗) < 0.
From the hypothesis it is clear that (x j∗ , tk∗) /∈ ΓM,N ,
Ψi∗(x j∗ , tk∗)−Ψi∗(x j∗ , tk∗−1)≤ 0,
Ψi∗(x j∗ , tk∗)−Ψi∗(x j∗−1, tk∗)≤ 0,
Ψi∗(x j∗+1, tk∗)−Ψi∗(x j∗ , tk∗)≥ 0 so δ 2

x Ψi∗(x j∗ , tk∗)≥ 0.
It follows that

(~L1
M,N~Ψ)i∗(x j∗ , tk∗)< 0

which is a contradiction. If (x j∗ , tk∗) ∈Ω+M,N , a similar argu-
ment shows that

(~L2
M,N~Ψ)i∗(x j∗ , tk∗)< 0

which is a contradiction. Because of the boundary values, the
only other possibility is that x j∗ = xN/2. Then

D−x Ψi∗(xN/2, tk∗)≤ 0≤D+
x Ψi∗(xN/2, tk∗)≤D−x Ψi∗(xN/2, tk∗),

by the hypothesis and so

Ψi∗(x N
2 −1, tk∗) = Ψi∗(xN/2, tk∗) = Ψi∗(x N

2 +1, tk∗)< 0.

Then (~L1
M,N~Ψ)i∗(x N

2 −1, tk∗) < 0, a contradiction. This con-
cludes the proof of the lemma.

An immediate consequence of this is the following discrete
stability result.

Lemma 6.2. Let conditions (2.2) and (2.3) hold. Then, for
any mesh function ~Ψ satisfying D+

x
~Ψ(xN/2, tk)=D−x ~Ψ(xN/2, tk),

|Ψi(x j, tk)| ≤max{||Ψi||ΓM,N , 1
α
||~L1

M,N
Ψi||Ω−M,N ,

1
α
||~L2

M,N
Ψi||Ω+M,N},

for each i = 1,2 and 0≤ j ≤ N,0≤ k ≤M.
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Proof. Let M = max{||Ψi||ΓM,N , 1
α
||~L1

M,N
Ψi||Ω−M,N ,

1
α
||~L2

M,N
Ψi||Ω+M,N}.

Define two functions

~Θ±(x j, tk) = M~e±~Ψ(x j, tk) where~e = (1,1)T .

Using the properties of A(x j, tk) and B(x j, tk), it is not hard to
find that ~Θ±(x j, tk)≥~0 for ΓM,N ,
~L1

M,N~Θ±(x j, tk)≥~0 for (x j, tk) ∈Ω−M,N and
~L2

M,N~Θ±(x j, tk)≥ 0 for (x j, tk) ∈Ω+M,N . At j = N
2 ,

D+
x
~Θ±(xN/2, tk)−D−x ~Θ

±(xN/2, tk)
= ±D+

x
~Ψ(xN/2, tk)−D−x ~Ψ(xN/2, tk) =~0.

Hence by Lemma 6.1, ~Θ± ≥~0 on Ω
M,N

.

7. Error estimate

Analogous to the continuous case, the discrete solution ~U can
be decomposed into ~V and ~W which are defined to be the
solutions of the following discrete problems

~L1
M,N~V (x j, tk) = ~g(x j, tk),(x j, tk) ∈Ω

−M,N , (7.1)

0≤ j ≤ N
2
−1,0≤ k ≤M

~V (0, tk)=~v(0, tk),~V (xN/2−1, tk)=~v(1−, tk),~V (x j,0)= ~φB(x j),

~L2
M,N~V (x j, tk) = ~f (x j, tk),(x j, tk) ∈Ω

+M,N , (7.2)
N
2
+1≤ j ≤ N,0≤ k ≤M

~V (xN/2+1, tk)=~v(1+, tk),~V (2, tk)=~v(2, tk),~V (x j,0)= ~φB(x j)
and

~L1
M,N~W (x j, tk) =~0,(x j, tk) ∈Ω−M,N , ~W (0, tk) = ~w(0, tk),

0≤ j ≤ N
2 −1,0≤ k ≤M

~L2
M,N~W (x j, tk) =~0,(x j, tk) ∈Ω+M,N , ~W (2, tk) = ~w(2, tk),

N
2 +1≤ j ≤ N,0≤ k ≤M

(7.3)

~V (xN/2+1, tk)+~W (xN/2+1, tk)=~V (xN/2−1, tk)+~W (xN/2−1, tk),
D−x ~W (xN/2, tk)+D−x ~V (xN/2, tk)

= D+
x
~W (xN/2, tk)+D+

x
~V (xN/2, tk).

~W (x j,0) =~0.
The error at each point (x j, tk) ∈Ω

M,N is denoted by
~e(x j, tk) = ~U(x j, tk)−~u(x j, tk).
Then the local truncation error~LM,N~e(x j, tk), for j 6= N/2, has
the decomposition

~LM,N~e(x j, tk) =~LM,N(~V −~v)(x j, tk)+~LM,N(~W −~w)(x j, tk).

The error in the smooth and singular components are bounded
in the following theorem.

Lemma 7.1. Let~v(x j, tk) denote the smooth component of the
exact solution from (2.1) and ~V (x j, tk) the smooth component
of the solution from (6.1), then for j 6= N

2

||(~L1
M,N

(~V −~v))i(x j, tk)|| ≤C(M−1 +(N−1 lnN)2),

0≤ j ≤ N
2
−1,0≤ k ≤M,

(7.4)

||(~L2
M,N

(~V −~v))i(x j, tk)|| ≤C(M−1 +(N−1 lnN)2),

N
2
+1≤ j ≤ N,0≤ k ≤M.

(7.5)

Let ~w(x j, tk) denote the singular component of the exact solu-
tion from (2.1) and ~W (x j, tk) the singular component of the
solution from (6.1), then for j 6= N

2

||(~L1
M,N

(~W −~w))i(x j, tk)|| ≤C(M−1 +(N−1 lnN)2),

0≤ j ≤ N
2
−1,0≤ k ≤M,

(7.6)

||(~L2
M,N

(~W −~w))i(x j, tk)|| ≤C(M−1 +(N−1 lnN)2),

N
2
+1≤ j ≤ N,0≤ k ≤M.

(7.7)

Proof. For j 6= N
2 , as the expression derived for the local

truncation error in ~V and ~W and estimates for the derivatives
of the smooth and singular components are exactly in the form
found in [9], the required bounds hold good.
At the point x j = xN/2,

(D+
x −D−x )~e(xN/2, tk) = (D+

x −D−x )(~U−~u)(xN/2, tk),

0≤ k ≤M

Recall that (D+
x −D−x )~U(xN/2, tk) = 0.

Let h∗ = h−N/2 = h+N/2, where h−N/2 = xN/2− xN/2−1 and
h+N/2 = xN/2+1− xN/2.
Then

|(D+
x −D−x )~e(xN/2, tk)| = |(D+

x −D−x )~u(xN/2, tk)|

≤ |(D+
x −

∂

∂x
)~u(xN/2, tk)|

+|(D−x −
∂

∂x
)~u(xN/2, tk)|

≤ 1
2

h+N/2 max
η1∈(1,2)

|∂
2~u

∂x2 (η1, tk)|

+
1
2

h−N/2 max
η2∈(0,1)

|∂
2~u

∂x2 (η2, tk)|

≤ Ch∗ max
x∈(0,1)∪(1,2)

∣∣∣∣∂ 2~u
∂x2 (x, t)

∣∣∣∣ .
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Therefore,

|(D+
x −D−x )~e(xN/2, tk)| ≤C

h∗

ε
. (7.8)

Define, for i = 1,2 and for each tk, a set of discrete barrier
functions on Ω

M,N by

ωi(x j, tk) =
Π

j
q=1(1+

√
αhq/

√
2εi)

Π
N/2
q=1(1+

√
αhq/

√
2εi)

,0≤ j ≤ N/2 (7.9)

Π
N−1
q= j (1+

√
αhq+1/

√
2εi)

Π
N−1
q=N/2(1+

√
αhq+1/

√
2εi)

,N/2≤ j ≤ N.

(7.10)

Note that

ωi(0, tk) = 0, ωi(1, tk) = 1, ωi(2, tk) = 0 (7.11)

and from (7.9), for any i and 0≤ j ≤ N/2,

ωi(x j, tk) =
1

∏
N/2
q= j+1

(
1+
√

αhq/
√

2εi
) ,

ωi+1(x j, tk) =
1

∏
N/2
q= j+1

(
1+
√

αhq/
√

2εi+1
) ,

1
1+
√

αhq/
√

2εi
< 1

1+
√

αhq/
√

2εi+1
implies that, for any i and

0≤ j ≤ N/2,

ωi(x j, tk)< ωi+1(x j, tk) (7.12)

Similarly, for any i and N/2≤ j ≤ N, (7.12) holds.

0≤ ωi(x j, tk)< ωi+1(x j, tk)≤ 1. (7.13)

For (x j, tk) ∈Ω
−M,N

D+
x ωi(x j, tk) =

ωi(x j+1, tk)−ωi(x j, tk)
h j+1

=
√

α/2εiωi(x j, tk).

Therefore,

D+
x ωi(x j, tk) =

√
α/2εiωi(x j, tk). (7.14)

D−x ωi(x j, tk) =
ωi(x j, tk)−ωi(x j−1, tk)

h j

=

√
α√

2εi(1+
√

αh j/
√

2εi)
ωi(x j, tk).

Therefore,

D−x ωi(x j, tk) =
√

α√
2εi(1+

√
αh j/

√
2εi)

ωi(x j, tk). (7.15)

δ
2
x ωi(x j, tk) =

D+
x ωi(x j, tk)−D−x ωi(x j, tk)

(h j +h j+1)/2
≤ α

εi
ωi(x j, tk).

Therefore,

δ
2
x ωi(x j, tk)≤

α

εi
ωi(x j, tk). (7.16)

Similarly, for (x j, tk) ∈Ω
+M,N

D+
x ωi(x j, tk) = −

√
α√

2εi(1+
√

αh j+1/
√

2εi)
ωi(x j, tk),

D−x ω(x j, tk) = −
√

α√
2εi

ωi(x j, tk)and

δ
2
x ωi(x j, tk) ≤ α

εi
ωi(x j, tk). (7.17)

In particular, at x j = xN/2, using (7.17), (7.15) and (7.11),

(D+
x −D−x )ωi(x j, tk) = −

√
α/2εi

1
(1+
√

αh+N/2/
√

2εi)

−
√

α/2εi
1

(1+
√

αh−N/2/
√

2εi)

≤ − C
√

εi
. (7.18)

From (7.16) and (7.17),

−εi δ
2
x ωi(x j, tk)≥−αωi(x j, tk).

Therefore

(~L1
M,N

~ω)i(x j, tk) = D−t ωi(x j, tk)− εi δ
2
x ωi(x j, tk)

+
n

∑
l=1

ail(x j, tk)ωl(x j, tk)

> −αωi(x j, tk)+
i

∑
l=1

ail(x j, tk)ωi(x j, tk)

+
2

∑
l=i+1

ail(x j, tk). (7.19)

And

(~L2
M,N

~ω)i(x j, tk) = D−t ωi(x j, tk)− εi δ
2
x ωi(x j, tk)

+
2

∑
l=1

ail(x j, tk)ωl(x j, tk)

+bi(x j, tk)ωi(x j−1, tk)

≥ −αωi(x j, tk)+
i

∑
l=1

ail(x j, tk)ωi(x j, tk)

+
2

∑
l=i+1

ail(x j, tk)+bi(x j, tk). (7.20)

We now state and prove the main theoretical result of this
paper.
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Lemma 7.2. Let ~u(x j, tk) denote the exact solution of (2.1)
and ~U(x j, tk) the solution of (6.1). Then, for 0≤ j ≤ N,0≤
k ≤M,

||~U(x j, tk)−~u(x j, tk)|| ≤C(M−1 +N−1 lnN). (7.21)

Proof: Consider the mesh function ~Ψ given by
~Ψ(x j, tk) =C1(M−1+N−1 lnN)+C2

h∗√
εi

ωi(x j, tk)±ei(x j, tk),
i = 1,2,0≤ j≤ N,0≤ k≤M, where C1 and C2 are constants.
Then for x j ∈Ω−N

x ,

(~L1
M,N~Ψ)i(x j, tk) =C1

2

∑
j=1

ai j(x j, tk)(M−1 +N−1 lnN)

+C2
h∗
√

εi
(~L1

M,N
ωi)i(x j, tk)± (~L1

M,N
~e)i(x j, tk).

(7.22)

Using (7.19) in (7.22) and Theorem 7.1,

(~L1
M,N~Ψ)i(x j, tk) ≥ C1

2

∑
j=1

ai j(x j, tk)(M−1 +N−1 lnN)

+C2
h∗
√

εi
[−αωi(x j, tk)

+
i

∑
l=1

ail(x j, tk)ωi(x j, tk)

+
2

∑
l=i+1

ail(x j, tk)]

±C (M−1 +N−1 lnN)

= C1

2

∑
j=1

ai j(x j, tk)(M−1 +N−1 lnN)+

C2
h∗
√

εi

[
i

∑
l=1

ail(x j, tk)−α

]
ωi(x j, tk)

+C2
h∗
√

εi

2

∑
l=i+1

ail(x j, tk)

±C (M−1 +N−1 lnN),

Let λi(x j)=
(
∑

i
l=1 ail(x j, tk)−α

)
ωi(x j, tk)+∑

2
l=i+1 ail(x j, tk),

i = 1,2. Then choosing C1 >C2||λ ||+C,

(~L1
M,N~Ψ)i(x j, tk)≥ 0, for i = 1,2.

For x j ∈Ω+N
x ,

(~L2
M,N~Ψ)i(x j, tk) = C1

(
2

∑
l=1

ail(x j, tk)+bi(x j, tk)

)
(M−1 +N−1 lnN)

+C2
h∗
√

εi
(~L2

M,N
ωi)i(x j, tk)

± (~L2
M,N

~e)i(x j, tk). (7.23)

Using (7.20) in (7.23) and Theorem 9,

(~L2
M,N~Ψ)i(x j, tk) ≥ C1

(
2

∑
l=1

ail(x j, tk)+bi(x j, tk)

)
(M−1 +N−1 lnN)

+C2
h∗
√

εi
[−αωi(x j, tk)

+
i

∑
l=1

ail(x j, tk)ωi(x j, tk)

+
2

∑
l=i+1

ail(x j, tk)+bi(x j, tk)]

±C(M−1 +N−1 lnN)

= C1

2

∑
j=1

ai j(x j, tk)(M−1 +N−1 lnN)+

C2
h∗
√

εi

[
i

∑
l=1

ail(x j, tk)−α

]
ωi(x j, tk)

+C2
h∗
√

εi

[
2

∑
l=i+1

ail(x j, tk)+bi(x j, tk)

]
± C (M−1 +N−1 lnN).

Let µi(x j)=
(
∑

i
l=1 ail(x j, tk)−α

)
ωi(x j, tk)+∑

2
l=i+1 ail(x j, tk)

+bi(x j, tk), i = 1,2.

Then choosing C1 > C2||µ||+C,(~L2
M,N~Ψ)i(x j, tk) ≥ 0, for

i = 1,2.
Further,

D+
x Ψi(1, tk)−D−x Ψi(1, tk) ≤ −C2

Ch∗

εi
±C

h∗

εi
,

using (7.8) and (7.18)
≤ 0, for proper choice of C2.

(7.24)

Also, using (7.11), Ψi(0, tk) =C1(M−1 +N−1 lnN)≥ 0,
Ψi(2, tk) =C1(M−1 +N−1 lnN)≥ 0,
Ψi(x j,0) =C1(M−1 +N−1 lnN)≥ 0.
Therefore, using Lemma 6.1 for ~Ψ, it follows that Ψi(x j, tk)≥
0 for all i = 1,2,0 ≤ j ≤ N,0 ≤ k ≤ M. As, from (7.13),
ωi(x j, tk)≤ 1 for 0≤ j ≤ N,0≤ k ≤M

|(~U−~u)(x j, tk)| ≤C(M−1 +N−1 lnN),

which completes the proof.

8. Numerical Illustration
The ε–uniform convergence of the numerical method pro-
posed in this paper is illustrated through an example presented
in this section.
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Example 8.1. For (x, t) ∈ [0,2]× [0,T ],
∂u1
∂ t (x, t)− ε1

∂ 2u1
∂x2 (x, t)+5u1(x, t)−2u2(x, t)−u1(x−1, t)

= 1,
∂u2
∂ t (x, t)−ε2

∂ 2u2
∂x2 (x, t)−u1(x, t)+4u2(x, t)−u2(x−1, t) = 5

u1(x, t) = 1 for x ∈ [−1,0]× [0,T ],u1(0, t) = 1,
u1(x,0) = 1,u1(2, t) = 1,
u2(x, t) = 1 for x ∈ [−1,0]× [0,T ],u2(0, t) = 1,
u2(x,0) = 1,u2(2, t) = 1

Fixing a fine Shishkin mesh with 32 points horizontally,
the problem is solved by the method suggested above. The
order of convergence and the error constant are calculated for
t and the results are presented in Table 1. A fine uniform mesh
on t with 32 points is considered and the order of convergence
in the variable x is calculated. The results are presented in
Table 2. A graph of the numerical solution is presented in the
figure 1.

Table 1. Values of DN , pN , p∗ and CN
p∗ for

ε1 = η/32,ε2 = η/16 and α = 0.9
η Number of mesh points N

64 128 256 512 1024
2−3 0.411094E-02 0.207861E-02 0.104757E-02 0.526658E-03 0.264056E-03
2−6 0.399695E-02 0.202648E-02 0.102043E-02 0.512040E-03 0.256480E-03
2−9 0.399651E-02 0.202636E-02 0.102040E-02 0.512032E-03 0.256478E-03
2−12 0.399635E-02 0.202632E-02 0.102039E-02 0.512029E-03 0.256477E-03
2−15 0.399630E-02 0.202631E-02 0.102039E-02 0.512028E-03 0.256477E-03
DN 0.411094E-02 0.207861E-02 0.104757E-02 0.526658E-03 0.264056E-03
pN 0.983848E+00 0.988567E+00 0.992114E+00 0.996020E+00
CN

p 0.497616E+00 0.497616E+00 0.495991E+00 0.493157E+00 0.489014E+00
t-order of convergence= 0.983848E +00

The error constant= 0.497616E +00

Table 2. Values of DN , pN , p∗ and CN
p∗ for ε1 = η/32,

ε2 = η/16 and α = 0.9

η Number of mesh points N
64 128 256 512 1024

2−3 0.74375E-02 0.40016E-02 0.20374E-02 0.10228E-02 0.51181E-03
2−6 0.23723E-01 0.95874E-02 0.55212E-02 0.28643E-02 0.14447E-02
2−9 0.93245E-02 0.91796E-02 0.66289E-02 0.40901E-02 0.23577E-02
2−12 0.93245E-02 0.91796E-02 0.66289E-02 0.40901E-02 0.23577E-02
2−15 0.93245E-02 0.91796E-02 0.66289E-02 0.40901E-02 0.23577E-02
DN 0.23723E-01 0.95874E-02 0.66289E-02 0.40901E-02 0.23577E-02
pN 0.13071E+01 0.53237E+00 0.69663E+00 0.79475E+00
CN

p 0.70366E+00 0.41129E+00 0.41129E+00 0.36703E+00 0.30600E+00
x- order of convergence= 0.53237E +00

The error constant= 0.70366E +00

Figure 1
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9. Conclusion
Thus in this paper, a linear parabolic system of singularly

perturbed equations of reaction diffusion type with delay is
considered and the suggested numerical method has been
proved to be first order convergent, with respect to space and
time, theoretically and numerically.
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