

https://doi.org/10.26637/MJM0702/0005

Operation approaches on decompositions of γ **-continuous function**

E. Hatir¹*

Abstract

In this paper, we introduce the notions of $\alpha^* - \gamma - set$, $t - \gamma - set$, $s - \gamma - set$, $\beta^* - \gamma - set$, $C_{\gamma} - continuity$, $B_{\gamma} - continuity$, $S_{\gamma} - continuity$ and $\beta_{\gamma} - continuity$. Thus we have decompositions of $\gamma - continuity$.

Keywords

 $\alpha - \gamma - open$, semi $- \gamma - open$, pre $- \gamma - open$, $\beta - \gamma - open$.

AMS Subject Classification

54A05, 54C08.

¹A. K. Education Faculty, Konya Necmettin Erbakan University, Meram-Konya, Turkey.
*Corresponding author: ¹ hatir10@yahoo.com
Article History: Received 06 November 2018; Accepted 17 March 2019

©2019 MJM.

Contents

1	Introduction16	51
2	Preliminaries 16	61
3	$C_{\gamma}-sets, B_{\gamma}-sets, S_{\gamma}-sets$ and $\beta_{\gamma}-sets$ 16	62
4	Decompositions of γ – <i>continuity</i> 16	63
5	Conclusion 16	64
	References 16	64

1. Introduction

In [13], Kasahara unified several known characterizations of compactness, nearly compact spaces and H-closed spaces by introducing a certain operation on a topology. By using operation Jankovic [14] investigated functions with closed graphs. Ogata [7] defined the concept of γ – open sets with an operation γ in the manner of Kasahara [13] and introduced some new separation axioms of topological spaces. In [11], the authors introduced and investigated the notions of $\alpha - \gamma - open$ sets. In [5, 6] the authors introduced and investigated the notions of semi – γ – open set, pre – γ – open set and $\beta - \gamma - open$ set. A decomposition of γ -continuity is a pair of properties of functions between topological spaces with an operation γ each of which is weaker than γ -continuity, and which are together equivalent to γ -continuity. One member of the pair is a γ -continuity dual of the other. In this paper, we introduce the notions of $\alpha^* - \gamma - set$, $t - \gamma - set$, $s - \gamma - set$, $\beta - \gamma - set$, $C_{\gamma} - continuity$, $B_{\gamma} - continuity$, $S_{\gamma} - continv$, $S_{\gamma} - continv$, $S_{\gamma} - continuity$, $S_{\gamma} - continuity$ continuity, β_{γ} – continuity. Thus we have decompositions of

 γ – continuity.

2. Preliminaries

Let (X, τ) be a topological space. Let γ be an operation on τ , that is, γ is a function from τ into the power set $\mathscr{P}(X)$ of X such that $V \subset \gamma(V)$ for any $V \in \tau$ where $\gamma(V)$ denotes the value of γ at V. This operation denoted by $\gamma: \tau \to \mathscr{P}(X)$. Let us take a topological space (X, τ) and $W \subset X$ with an operation γ on τ . Then W is called $\gamma - open$ [7] if for each $x \in W$, there exists an open neighbourhood U of x such that $\gamma(U) \subset W$. The empty set ϕ is γ -open for any operation $\gamma: \tau \to \mathscr{P}(X)$. Let τ_{γ} be the collections of all $\gamma - open$ sets of (X, τ) with τ_{γ} . For any topological space $(X, \tau), \tau_{\gamma} \subset \tau$ [7]. Complements of $\gamma - open$ sets are defined as $\gamma - closed$. The $\gamma - closure$ of $W \subset X$ with an operation γ is denoted by $Cl_{\gamma}(W)$, is defined as

$$Cl_{\gamma}(W) = \cap \{B : B \text{ is } \gamma - closed \text{ and } W \subset B\}.$$

The γ -interior of $W \subset X$ with an operation γ on τ is denoted by $Int_{\gamma}(W)$, is defined as

 $Int_{\gamma}(W) = \bigcup \{B : B \text{ is a } \gamma - open \text{ set and } B \subset W\}.$

A topological space *X* with an operation γ on τ is said to be γ -*regular* if for each $x \in X$ and each neighbourhood *V* of *x*, there exists an open neighbourhood *U* of *x* with $\gamma(U) \subset V$. According to this notion, $\tau = \tau_{\gamma} \Leftrightarrow X$ is a γ -*regular* space [7].

In this paper, (X, τ) and (Y, σ) denotes topological space. Furthermore, there is no separation axioms on them unless otherwise mentioned. Cl(W) and Int(W) denote the closure of W and the interior of W, respectively, in topological space (X, τ) . Let us recall some of basic definitions.

Definition 2.1. *Let* (X, τ) *be a topological space and* $W \subset X$ *. Then*

1. W is called an α – open set [12] if $W \subset Int(Cl(Int(W)))$, 2. W is called a pre – open set [2] if $W \subset Int(Cl(W))$, 3. W is called a semi – open set [10] if $W \subset Cl(Int(W))$,

4. *W* is called a β – open set [9] if $W \subset Cl(Int(Cl(W)))$,

5. W is called an α^* - set [4] if Int(Cl(Int(W))) = Int(W),

6. W is called a C – set [4] if $W = U \cap V$, where $U \in \tau$ and V is an α^* – set,

7. W is called a t – set [8] if Int(Cl(W)) = Int(W),

8. W is called a B-set [8] if $W = U \cap V$, where $U \in \tau$ and V is a t-set,

Definition 2.2. Let (X, τ) be a topological space and $W \subset X$ with an operation γ on τ . Then

1. W is called an $\alpha - \gamma - open$ set [11] if $W \subset Int_{\gamma}(Cl_{\gamma}(Int_{\gamma}(W)))$ 2. W is called a pre $-\gamma - open$ set [6] if $W \subset Int_{\gamma}(Cl_{\gamma}(W))$, 3. W is called a semi $-\gamma - open$ set [5] if $W \subset Cl_{\gamma}(Int_{\gamma}(W))$, 4. W is called a $R - \gamma - open$ set [6] if $W \subset Cl_{\gamma}(Int_{\gamma}(W))$,

4. W is called a $\beta - \gamma - open set [6] if W \subset Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(W))))$,

5. W is called a γ -regular open set [1] if $Int_{\gamma}(Cl_{\gamma}(W)) = W$. Let (X, τ) be a topological space and γ be an operation

on τ . The $\beta - \gamma$ – interior of $W \subset X$ with an operation γ is denoted by $\beta Int_{\gamma}(W)$ [3], is defined as

 $\beta Int_{\gamma}(W) = \bigcap \{B : B \text{ is } \beta - \gamma - open \text{ and } B \subset W\}$. Complements of $\beta - \gamma - open$ sets are defined as $\beta - \gamma - closed$. Therefore, we have $\beta Int_{\gamma}(W) = W \cap Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(W)))$.

Definition 2.3. Let (X, τ) and (Y, σ) be two topological spaces and let $\gamma : \tau \longrightarrow \wp(X)$ be the operation on τ . A mapping $f : (X, \tau) \longrightarrow (Y, \sigma)$ is said to be γ -continuous [3] (resp. $\alpha - \gamma$ -continuous [11], pre- γ -continuous [6], semi- γ continuous [5], $\beta - \gamma$ -continuous [6]) if for each $x \in X$ and each open set V of Y containing f(x), there exists a γ -open set U containing x (resp. $\alpha - \gamma$ -open set, pre- γ -open set, semi- γ -open set, $\beta - \gamma$ -open set) such that $f(U) \subset V$.

3. C_{γ} - sets, B_{γ} - sets, S_{γ} - sets and β_{γ} - sets

Definition 3.1. Let (X, τ) be a topological space and $W \subset X$ with an operation γ on τ . Then

1. W is called an $\alpha^* - \gamma - set$ if $Int_{\gamma}(Cl_{\gamma}(Int_{\gamma}(W))) = Int_{\gamma}(W)$, 2. W is called a $t - \gamma - set$ if $Int_{\gamma}(Cl_{\gamma}(W)) = Int_{\gamma}(W)$, 3. W is called a $s - \gamma - set$ if $Cl_{\gamma}(Int_{\gamma}(W)) = Int_{\gamma}(W)$, 4. W is called a $\beta^* - \gamma - set$ if $Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(W))) = Int_{\gamma}(W)$.

Proposition 3.2. The following are equivalent for a subset W of a space (X, τ) with an operator γ ,

1. W is $\alpha^* - \gamma - set$,

2. W is $\beta - \gamma - closed$ set,

3. $Int_{\gamma}(W)$ is γ - regular - open set.

Proof. Straightforward.

Proposition 3.3. Let *W* be a subset of a space (X, τ) with an operator γ ,

1. A semi $-\gamma$ - open set W is a $t - \gamma$ - set if and only if W is an $\alpha^* - \gamma$ - set.

2. A is an $\alpha - \gamma$ - open set and W is $\alpha^* - \gamma$ - set if and only if W is γ - regular - open set.

Proof. 1. Let *W* be a *semi* – γ – *open* and *W* be an $\alpha^* - \gamma$ – *set*. Since *W* is a *semi* – γ – *open*, $Cl_{\gamma}(Int_{\gamma}(W)) = Cl_{\gamma}(W)$ and $Int_{\gamma}(Cl_{\gamma}(W)) = Int_{\gamma}(Cl_{\gamma}(Int_{\gamma}(W))) = Int_{\gamma}(W)$. Therefore, *W* is a *t* – γ – *set*.

2. Let *W* be an $\alpha - \gamma - open$ set and *W* be an $\alpha^* - \gamma - set$. By Proposition 1 and the definition of $\alpha - \gamma - open$ set, we have $Int_{\gamma}(Cl_{\gamma}(W)) = W$ and hence $Int_{\gamma}(Cl_{\gamma}(W)) = Int_{\gamma}(Cl_{\gamma}(Int_{\gamma}(W))) = W$.

The converse is obvious.

Definition 3.4. Let (X, τ) be a topological space and $W \subset X$

with an operation γ on τ . Then 1. W is called a C_{γ} – set if $W = U \cap V$, where $U \in \tau_{\gamma}$ and V

1. W is called a C_{γ} -set if w = 0 + v, where $0 \in \tau_{\gamma}$ and v is an $\alpha^* - \gamma$ -set,

2. W is called a B_{γ} - set if $W = U \cap V$, where $U \in \tau_{\gamma}$ and V is a $t - \gamma$ - set,

3. W is called a S_{γ} - set if $W = U \cap V$, where $U \in \tau_{\gamma}$ and V is a $s - \gamma$ - set,

4. W is called a β_{γ} - set if $W = U \cap V$, where $U \in \tau_{\gamma}$ and V is a $\beta^* - \gamma$ - set,

5. W is called a $\gamma - \gamma - \beta$ - open set [3] if $\beta Int_{\gamma}(W) = Int_{\gamma}(W)$.

Proposition 3.5. Let (X, τ) be a topological space with an operation γ and $W \subset X$. Then the following hold:

1. If W is a $t - \gamma - set$, then W is an $\alpha^* - \gamma - set$,

2. If W is a $s - \gamma - set$, then W is an $\alpha^* - \gamma - set$,

3. If W is a $\beta^* - \gamma$ - set, then W is both $t - \gamma$ - set and $s - \gamma$ - set.

4. $t - \gamma$ – set and $s - \gamma$ – set are independent.

Proof. Straightforward from the definitions of γ -interior and γ -closure.

Remark 3.6. The converses are false. See the followig examples.

Example 3.7. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$. We define an operator $\gamma : \tau \longrightarrow \wp(X)$ by $\gamma(W) = W \cup \{a, c\}$ if $W \neq \{a\}$ and $\gamma(W) = W$ if $W = \{a\}$. Then $\tau_{\gamma} = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$. If we take $W = \{a\}$, then W is an $\alpha^* - \gamma$ -set and $at - \gamma$ -set, but it is not a $s - \gamma$ -set and not a $\beta^* - \gamma$ -set.

Example 3.8. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. We define an operator $\gamma : \tau \longrightarrow \wp(X)$ by $\gamma(W) = W$ if $W = \{a, c\}$ or $W = \phi$ and $\gamma(W) = X$ if otherwise. Then $\tau_{\gamma} = \{\phi, X\}$. If we take $W = \{b\}$, then W is an $\alpha^* - \gamma$ -set and a $s - \gamma$ -set, but it is not a $t - \gamma$ -set and not a $\beta^* - \gamma$ -set.

Proposition 3.9. Let (X, τ) be a topological space with an operation γ and $W \subset X$. Then the following hold:

- 1. If W is an $\alpha^* \gamma set$, then W is $C_{\gamma} set$,
- 2. If W is a $t \gamma set$, then W is $B_{\gamma} set$,
- 3. If W is a $s \gamma set$, then W is $S_{\gamma} set$,
- 4. If W is a $\beta^* \gamma set$, then W is $\beta_{\gamma} set$.

Proof. 1. Let *W* be an $\alpha^* - \gamma$ -set. If we take $U = X \in \tau_{\gamma}$, then $W = U \cap W$ and hence *W* is a C_{γ} -set.

The proof of (2), (3) and (4) are same. \Box

Remark 3.10. *The converses are false. See the following examples.*

Example 3.11. In Example 1, if we take $W = \{a, c\}$, then W is a C_{γ} -set (resp. B_{γ} -set, S_{γ} -set, β_{γ} -set), but it is not an $\alpha^* - \gamma$ -set (resp. $t - \gamma$ -set, $s - \gamma$ -set, $\beta^* - \gamma$ -set).

Proposition 3.12. *1.* $A B_{\gamma} - set$ *is a* $C_{\gamma} - set$, *2.* $A S_{\gamma} - set$ *is a* $C_{\gamma} - set$, *3.* $A \beta_{\gamma} - set$ *is both a* $B_{\gamma} - set$ *and a* $S_{\gamma} - set$.

Remark 3.13. The converses are false. B_{γ} – set and S_{γ} – set are independent notions. See the following examples.

Example 3.14. In Example 1, if we take $W = \{a, b\}$, then W is a B_{γ} – set, but it is not a S_{γ} – set and not a β_{γ} – set.

In Example 2, if we take $W = \{b\}$, then W is a C_{γ} – set and a S_{γ} – set, but it is not a B_{γ} – set and not a β_{γ} – set.

Proposition 3.15. Let (X, τ) be a topological space with an operation γ and $W \subset X$. Then $\gamma - \gamma - \beta$ – open set [3] and β_{γ} – set are equivalent.

Proof. Let W be a $\beta^* - \gamma - set$. Then $Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(W))) = Int_{\gamma}(W)$. Hence by Proposition 4(4), W is $\beta_{\gamma} - set$. Therefore, $\beta Int_{\gamma}(W) = W \cap Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(W))) = W \cap Int_{\gamma}(W) = Int_{\gamma}(W)$. Thus W is $\gamma - \gamma - \beta - open$ set.

Conversely, let W be a $\gamma - \gamma - \beta - open$ set. Then $\beta Int_{\gamma}(W) = Int_{\gamma}(W)$. Hence $\beta Int_{\gamma}(W)$ is a $\gamma - open$ set. Since $W = W \cap X$, W is $\beta_{\gamma} - set$.

Remark 3.16. We have the following diagram according to sets defined above. It is shown in Examples 1-2 that the notion of S_{γ} – sets is different from that of B_{γ} – sets.

Theorem 3.17. For a subset W of a space (X, τ) with an operation γ , the following properties are equivalent: *1.* W is γ -open,

 $w is \gamma - open,$

2. W is an $\alpha - \gamma$ - open set and a C_{γ} - set,

3. W is a pre $-\gamma$ - open set and a B_{γ} - set,

4. W is a semi – γ – open set and a S_{γ} – set,

5. W is a $\beta - \gamma - open$ set and a $\beta_{\gamma} - set$.

Proof. The proof of $(1) \Rightarrow (2)$, $(1) \Rightarrow (3)$, $(1) \Rightarrow (4)$, $(1) \Rightarrow (5)$ are obvious.

(5) \Rightarrow (1) Let *W* be a $\beta - \gamma - open$ set and a $\beta_{\gamma} - set$. Since *W* is a $\beta_{\gamma} - set$, we have $W = U \cap V$, where *U* is a $\gamma - open$ set and *V* is a $\beta^* - \gamma - set$. By the hypothesis, *W* is also $\beta - \gamma - open$ and we have

$$\begin{split} W &\subset Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(W))) = Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(U \cap V))) \\ &\subset Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(U) \cap Cl_{\gamma}(V))) \\ &= Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(U)) \cap Int_{\gamma}(Cl_{\gamma}(V))) \\ &\subset Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(U))) \cap Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(V))) \\ &\subset Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(U))) \cap Int_{\gamma}(V). \end{split}$$

Hence

 $W = U \cap V = (U \cap V) \cap U$ $\subset (Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(U))) \cap Int_{\gamma}(V)) \cap U$ $= (Cl_{\gamma}(Int_{\gamma}(Cl_{\gamma}(U))) \cap U) \cap Int_{\gamma}(V).$

Notice $W = U \cap V \supset U \cap Int_{\gamma}(V)$. Therefore, we obtain $W = U \cap Int_{\gamma}(V)$.

 $(2) \Rightarrow (1), (3) \Rightarrow (1), (4) \Rightarrow (1)$ are shown similarly.

Remark 3.18. If (X, τ) is a γ -regular space, then the concept of $\alpha - \gamma$ -open and α -open (resp. pre $-\gamma$ -open and pre - open, semi $-\gamma$ -open and semi - open, $\beta - \gamma$ -open and β -open, $B\gamma$ -set and B-set, $C\gamma$ -set and C-set) coincide.

4. Decompositions of γ – *continuity*

Definition 4.1. Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a function and let $\gamma : \tau \longrightarrow \mathcal{P}(X)$ be the operation on τ . If for each $V \in \sigma$, $f^{-1}(V)$ is a C_{γ} -set (resp. B_{γ} -set, S_{γ} -set, β_{γ} -set), then f is said to be C_{γ} -continuous (resp. B_{γ} -continuous, S_{γ} -continuous, β_{γ} -continuous).

By Proposition 5, we get the following proposition.

Proposition 4.2. 1. $A B_{\gamma}$ - continuous function is C_{γ} - continuous, 2. $A S_{\gamma}$ - continuous function is C_{γ} - continuous, 3. $A \beta_{\gamma}$ - continuous is both B_{γ} - continuous and S_{γ} - continuous.

Theorem 4.3. For a function $f : (X, \tau) \longrightarrow (Y, \sigma)$ with the operation γ on τ , the following properties are equivalent: 1. f is γ -continuous

2. *f* is $\alpha - \gamma - continuous$ and $C_{\gamma} - continuous$,

3. *f* is $pre - \gamma - continuous$ and $B_{\gamma} - continuous$,.

4. *f* is semi – γ – continuous and S_{γ} – continuous,

5. *f* is $\beta - \gamma$ - continuous and β_{γ} - continuous.

Proof. This is an immediate consequence of Theorem 1. \Box

Remark 4.4. $\alpha - \gamma - continuity$ and $C_{\gamma} - continuity$, $pre - \gamma - continuity$ and $B_{\gamma} - continuity$, $semi - \gamma - continuity$ and $S_{\gamma} - continuity$, $\beta - \gamma - continuity$ and $\beta_{\gamma} - continuity$ are independent of each other. See the following examples.

Example 4.5. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{c\}, \{a, c\}\}$. We define an operator $\gamma: \tau \longrightarrow \mathcal{O}(X)$ by $\gamma(W) = W \cup \{a, c\}$ if $W \neq \{a\}$ and $\gamma(W) = W$ if $W = \{a\}$. Then $\tau_{\gamma} = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$. Define a function $f: (X, \tau) \longrightarrow (Y, \sigma)$ as f(a) = f(b) = a, f(c) = c. Then f is C_{γ} - continuous (resp. B_{γ} - continuous, semi – γ - continuous and $\beta - \gamma$ - continuous), but it is not $\alpha - \gamma$ - continuous (resp. $pre - \gamma$ - continuous, S_{γ} - continuous and β_{γ} - continuous).

Example 4.6. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$. We define an operator $\gamma : \tau \longrightarrow \wp(X)$ by $\gamma(W) = W$ if $W = \{a, c\}$ or $W = \phi$ and $\gamma(W) = X$ if otherwise. Then $\tau_{\gamma} = \{\phi, X\}$. Define a function $f : (X, \tau) \longrightarrow (Y, \sigma)$ as f(a) = f(c) = a, f(b) = b. Then fis both S_{γ} - continuous and pre $-\gamma$ - continuous, but it is neither semi $-\gamma$ - continuous nor B_{γ} - continuous.

Example 4.7. Let $X = Y = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$. We define an operator $\gamma : \tau \longrightarrow \mathcal{O}(X)$ by $\gamma(W) = Cl(W)$ if $W \neq \{a\}$ and $\gamma(W) = Int(Cl(W))$ if $W = \{a\}$. Then $\tau_{\gamma} = \{\phi, \{a\}, \{c\}, \{a, c\}, \{a, b, d\}, X\}$. Define a function $f : (X, \tau) \longrightarrow (Y, \sigma)$ as f(a) = f(c) = a, f(b) = f(d) = b. Then f is β_{γ} - continuous, but it is not $\beta - \gamma$ - continuous.

Example 4.8. Let $X = Y = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$ and $\sigma = \{\phi, Y, \{a\}\}$. We define an operator $\gamma : \tau \longrightarrow \wp(X)$ by $\gamma(W) = Int(Cl(W))$ if $W = \{a\}$ and $\gamma(W) = X$ if $W \neq \{a\}$. Then $\tau_{\gamma} = \{\phi, \{a\}, X\}$. Define a function $f : (X, \tau) \longrightarrow (Y, \sigma)$ as f(a) = f(c) = a, f(b) = b. Then f is $\alpha - \gamma - continuous$, but it is not $C_{\gamma} - continuous$.

Corollary 4.9. Let (X, τ) be a γ -regular space. For a function $f : (X, \tau) \longrightarrow (Y, \sigma)$, the following properties are equivalent:

1. f is continuous,

2. f is pre – continuous and B – continuous [8],

3. *f* is α – continuous and *C* – continuous [4].

Proof. In γ – *regular* space, we have $\tau = \tau_{\gamma}$.

5. Conclusion

A decomposition of γ -continuity is a pair of properties of functions between topological spaces with an operation γ each of which is weaker than γ -continuity, and which are together equivalent to γ -continuity. One member of the pair is a γ -continuity dual of the other. In this paper, we have obtain decompositions of γ -continuity.

Acknowledgment

The author would like to thanks to the referees.

References

- ^[1] A. A. Baravan, A. Nazihah and O. Zurni, γ *regular open* sets and γ *extremally disconnected* spaces, Mathematical Theory and Modelling, 3(12)(2013), 132-141.
- [2] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- ^[3] C. K. Basu, B. M. U. Afsan and M. K. Ghosh, A class of functions and separation axioms with respect to an operation, Hacettepe Journal of Mathematics and Statistics, 38(2)(2009), 1103-118.
- [4] E. Hatir, T. Noiri and Ş. Yüksel, A decomposition of continuity, Acta Math. Hungar., 70(1996), 145-150.
- ^[5] G. Sai Sundara Krishnan and K. Balachandran, On *semi* γ *open* sets in topological spaces, Bull. Calcutta Math. Soc., 98(6)(2006), 517-530.
- ^[6] G. Sai Sundara Krishnan and K. Balachandran, On a class of *pre* $-\gamma$ *open* sets on a topological spaces, East Asian Math. J., 22(2)(2006), 131-140.
- [7] H. Ogata, Operation on topological spaces and associated topology, Mathematica Japonica, 36(1)(1991), 175-184.
- [8] J. Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar., 54(1989), 51-55.
- [9] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β – open sets and β – continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- ^[11] N. Kalaivani and G. Sai Sundara Krishnan, Operation approaches on $\alpha \gamma open$ sets in topological spaces, Int. J. Math. Anal., 7(10)(2013), 491-498.
- [12] O Nijastad, On some classes of nearly open sets, Pasific J. Math., 15(1965), 961-970.
- [13] S. Kasahara, Operation-compact spaces, Mathematice Japonica, 24(1)(1979), 97-105.
- ^[14] S. D. Janković, On functions with α *closed* graphs, Glasnik Mat. 18(19839, 141-148.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666

