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A queueing-inventory system with perishable items
and retrial of customers
P. S. Reshmi1 and K. P. Jose2*

Abstract
In this paper, we consider a continuous review perishable (s,Q) inventory system in which the customers arrive
according to a Poisson process. Service time and lead time are assumed to be independent exponential
distributions. A customer who arrives during server busy or stock out period either enters into an orbit of
infinite capacity or leaves the system. The time between any two successive retrials of the orbiting customer is
distributed as an exponential with parameter depending on the number of customers in the orbit. Decay time
of items is also assumed to be exponentially distributed with linear rate. Some relevant system performance
measures are derived. A suitable cost function is constructed and analyzed. Some numerical and graphical
illustrations are also included to highlight the results.
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1. Introduction
The stochastic modeling of perishable inventory received

attention of researchers in the past few decades. An unrealistic
assumption in most of the inventory models was indefinite
life time of items to meet future demands. But, the practical
situation is different; there are valuable inventories which are
deteriorating. This leads to the necessity of the assumption
of randomness in decay time. In the case of inventory system
with service facility, the customer demand is satisfied only

after a random time of service. Furthermore, the procurement
of items actually takes place with a minimum delay of trans-
portation or production of goods. These facts force to the
assumption of positive service time and lead time. Besides,
these assumptions make the modeling of inventory systems
more realistic.

Kalpakam and shanthi [1] analyzed a lost sale (S−1,S)
perishable system in which reorders are placed at every de-
mand epoch with arbitrary resupply time distribution. Ja-
yaraman et al.[2] modeled a continuous review perishable
inventory system in which the customer who arrives during
the stock-out periods are offered to join a pool of infinite
capacity or leaves the system. The demands in the pool are
selected one by one by the server only when the inventory
level is above s. Jeganathan et al. [3] considered an inventory
model with finite customer waiting area and instantaneous re-
plenishment of items having exponential life times. Kalpakam
and Arivarignan [4] discussed an inventory model with Pois-
son demand and negative exponential life times. The items
are removed from stock one at a time either due to random
demand or random failure of item is considered. Jayaraman et
al. [5] studied a continuous review perishable inventory sys-
tem with infinite pool and the waiting customer independently
renege the system after an exponentially distributed amount of
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time. Sivakumar [6] analysed a perishable inventory system
with N policy, Poisson arrivals, exponentially distributed lead
times, service times and life times. Berman and Sapna [7]
optimized the service rates for an inventory system of perish-
able products where arrivals are Poisson-distributed, lifetime
of items has exponential distribution and replenishment is in-
stantaneous. Periyasamy [8] studied a deteriorating inventory
with exponential life time. Both lead time and service time are
exponentially distributed. Melikov et.al [9] considered a finite
life time inventory system with repeated customer demand in
which restocking time is positive.

Retrial demand associated with inventory was introduced
by Artalejo [10], it is an alternative to classical approaches
such as lost sale and backlogged demand. For the comprehen-
sive survey on retrial queues, one can refer Artalejo ([11],[12])
and Falin [13]. Krishnamoorthy and Jose [14] considered an
(s,S) inventory system with positive service and lead time in
which the retrial rate depends on the number of customers in
the orbit.

This paper is organized as follows. Section 2 describes
mathematical modeling and analysis of the system. Section
3,4 explains system stability and performance measures re-
spectively. Section 6 contains the cost analysis of the system
and the result is illustrated numerically and graphically.

2. Mathematical Modeling and Analysis
The following are the assumptions and notations used in this
model

Assumptions

a) Inter-arrival times of demands are exponentially distributed
with parameter λ

b) If the arriving customer finds the inventory level zero or
server busy, proceeds to an orbit with probability γ and
is lost forever with probability (1− γ)

c) Service time is exponentially distributed with parameter µ

d) Inter-retrial times are exponential with linear rate iθ , when
there are i customers in the orbit

e) A retrial customer in the orbit, who finds the inventory
level zero or server busy, returns to the orbit with prob-
ability δ and is lost forever with probability (1−δ )

f) Life time of each item is exponential with linear rate jω ,
when there are j items in the inventory

g) Lead time is exponentially distributed with parameter β

Notations

N(t) : Number of customers in the orbit at time t

J(t) :

{
0, if the server is idle
1, if the server is busy

I(t) : Inventory level at time t

e : column vector of 1’s of appropriate order

Then {(N(t),J(t), I(t)); t ≥ 0} is a Level Dependent Quasi-
Birth Death Process on the state space {(i,0, j); i≥ 0,0≤ j≤
S}∪{(i,1, j); i≥ 0,1≤ j ≤ S}.

Now, we describe the transitions of the process
Transitions due to arrival of customers:

• (i,0,0)
λγ−−−−−→ (i+1,0,0); i≥ 0

• (i,1, j)
λγ−−−−−→ (i+1,1, j); i≥ 0,1≤ j ≤ S

• (i,0, j) λ−−−−−→ (i,1, j); i≥ 0,1≤ j ≤ S

Transitions due to service completion:

• (i,1, j)
µ−−−−−→ (i,0, j−1); i≥ 0,1≤ j ≤ S

Transitions due to retrials of orbiting customers:

• (i,0,0)
iθ(1−δ )−−−−−→ (i−1,0,0); i≥ 1

• (i,0, j) iθ−−−−−→ (i−1,1, j); i≥ 1,1≤ j ≤ S

• (i,1, j)
iθ(1−δ )−−−−−→ (i−1,1, j); i≥ 1,1≤ j ≤ S

Transitions due to completion of production of an item:

• (i,k, j)
β−−−−−→ (i,k, j+Q); i≥ 0,k ≤ j ≤ s,k = 0,1

Transition due to decay of items:

• (i,k, j)
jω−−→ (i,k, j−1); i≥ 0,k+1≤ j ≤ S,k = 0,1

Transitions that leaves the coordinates fixed:

• (i,0, j)
∆ j−−−−−→ (i,0, j); i≥ 0,0≤ j ≤ S, where

∆ j =


−λγ−β − iθ(1−δ ), j = 0
−λ −β − jω− iθ , 1≤ j ≤ s
−λ − jω− iθ , s+1≤ j ≤ S

• (i,1, j)
∇ j−−−−−→ (i,1, j); i≥ 0,1≤ j ≤ S, where

∇ j=


−λγ−β −µ− iθ(1−δ ), j = 1
−λγ−β −µ− jω− iθ(1−δ ),2≤ j ≤ s
−λ −µ− jω− iθ(1−δ ), s+1≤ j ≤ S

The infinitesimal generator of the process is

Q =


A1,0 A0
A2,1 A1,1 A0

A2,2 A1,2 A0
A2,3 A1,3 A0

. . . . . . . . .


where A0 represents transitions from level i to i+1; A1,i(i≥
0), transitions within the level i and A2,i(i ≥ 1) represents
transitions from level i to i− 1. The Neuts and Rao [15]
truncation modifies the infinitesimal generator as A1,i = A1
and A2,i = A2 for (i≥ N).

166



A queueing-inventory system with perishable items and retrial of customers — 167/170

3. System stability
Define, Lyapunov test function (see Falin and Templeton [16])
as

φ(r) = i, if r is a state in the level i

The mean drift yr, for any r belonging to the level i ≥ 1 is
given by,

yr = ∑
p6=r

qrp(φ(p)−φ(r))

=∑
u

qru(φ(u)−φ(r))+∑
v

qrv(φ(v)−φ(r))

+∑
w

qrw(φ(w)−φ(r))

where u,v and w vary over the states belonging to the levels
(i−1), i and (i+1) respectively.

yr =

{
−iθ , if server idle with positive inventory level
−iθ(1−δ )+λγ, otherwise

Since (1−δ )> 0, for any ε > 0, we can find N′ large enough
so that yr <−ε , for any r belonging to the level i≥ N′. Ac-
cording to Tweedie[17], the system under consideration is
stable.

4. System Performance Measures

Let the steady state probability vector be x = (x0,x1,x2...);

xi = (yi,0,0,yi,0,1, ...,yi,0,S,yi,1,1,yi,1,2, ...,yi,1,S)(i≥ 0)

Expected inventory level,

Einv =
∞

∑
i=0

S

∑
j=0

jyi,0, j +
∞

∑
i=0

S

∑
j=1

jyi,1, j

Expected number of customers in the orbit,

Eorbit =

(
∞

∑
i=1

ixi

)
e

Expected reorder rate,

Ero = µ

∞

∑
i=0

yi,1,s+1 +(s+1)ω

(
∞

∑
i=0

1

∑
k=0

yi,k,s+1

)

Expected perishable rate,

Ep = ω

∞

∑
i=0

S

∑
j=0

jyi,0, j +ω

∞

∑
i=0

S

∑
j=1

jyi,1, j

Expected number of departures,

Eds = µ

∞

∑
i=0

S

∑
j=1

yi,1, j

Expected number of customers lost before entering the orbit,

Elb = (1− γ)λ
∞

∑
i=0

(
yi,0,0 +

S

∑
j=1

yi,1, j

)

Expected number of customers lost due to retrials,

Elr = θ(1−δ )
∞

∑
i=1

i

(
yi,0,0 +

S

∑
j=1

yi,1, j

)

Overall retrial rate,

θ
∗
1 = θ

(
∞

∑
i=1

ixi

)
e

Successful retrial rate,

θ
∗
2 = θ

∞

∑
i=0

i

(
S

∑
j=1

yi,0, j

)

5. Cost Analysis
we define the expected total cost per unit time as

C(s,S) =(CF +(S− s)c1)Ero + c2Einv + c3Eorbit

+ c4(Elb +Elr)+ c5Eds + c6Ep

where, CF =fixed cost, c1=procurement cost per unit per unit
time, c2=holding cost of inventory per unit per unit time,
c3=holding cost of customers per unit per unit time, c4=cost
due to loss of customers per unit per unit time, c5=cost due to
service per unit per unit time, c6=cost due to decay of items
per unit per unit time.

5.1 Numerical Results and Interpretations
The following tables represent the effect of variation different
parameters on the overall and successful rate of retrials

Table 1. Variation in λ

λ θ ∗1 θ ∗2
2.0 1.4098 0.080379
2.1 1.5070 0.086583
2.2 1.6075 0.093005
2.3 1.7111 0.099638
2.4 1.8179 0.106470
2.5 1.9276 0.113490
2.6 2.0403 0.120700
2.7 2.1557 0.128070
2.8 2.2738 0.135600
2.9 2.3945 0.143280

Fix (S,s,µ,ω,β ,θ ,γ,δ ) = (20,5,3,0.3,1.5,1.2,0.7,0.6)
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Table 2. Variation in µ

µ θ ∗1 θ ∗2
3.0 1.4098 0.080379
3.1 1.3881 0.080238
3.2 1.3676 0.080114
3.3 1.3483 0.080005
3.4 1.3302 0.079909
3.5 1.3131 0.079826
3.6 1.2969 0.079754
3.7 1.2817 0.079692
3.8 1.2672 0.079639
3.9 1.2535 0.079595

Fix (S,s,λ ,ω,β ,θ ,γ,δ ) = (20,5,2,0.3,1.5,1.2,0.7,0.6)

Table 3. Variation in ω

ω θ ∗1 θ ∗2
0.3 1.4098 0.080379
0.4 1.4104 0.081409
0.5 1.4136 0.082939
0.6 1.4202 0.084894
0.7 1.4302 0.087203
0.8 1.4438 0.089797
0.9 1.4609 0.092604
1.0 1.4813 0.095555
1.2 1.5049 0.098588

Fix (S,s,λ ,µ,β ,θ ,γ,δ ) = (20,5,2,3,1.5,1.2,0.7,0.6)

Table 4. Variation in β

β θ ∗1 θ ∗2
1.1 1.4275 0.095610
1.2 1.4202 0.090481
1.3 1.4153 0.086416
1.4 1.4120 0.083116
1.5 1.4098 0.080379
1.6 1.4084 0.078063
1.7 1.4075 0.076072
1.8 1.4069 0.074335
1.9 1.4066 0.072799

Fix (S,s,λ ,µ,ω,θ ,γ,δ ) = (20,5,2,3,0.3,1.2,0.7,0.6)

Table 5. Variation in θ

θ θ ∗1 θ ∗2
0.4 2.1769 0.13384
0.5 2.2081 0.13619
0.6 2.2393 0.13824
0.7 2.2697 0.13993
0.8 2.2986 0.14126
0.9 2.3257 0.14223
1.0 2.3507 0.14287
1.1 2.3736 0.14321
1.2 2.3945 0.14328

Fix (S,s,λ ,µ,ω,β ,γ,δ ) = (20,5,2.9,3,0.3,1.5,0.7,0.6)

Table 6. Variation in γ

γ θ ∗1 θ ∗2
0.1 0.17556 0.007849
0.2 0.35950 0.016904
0.3 0.55190 0.027191
0.4 0.75293 0.038710
0.5 0.96276 0.051439
0.6 1.18160 0.065344
0.7 1.40980 0.080379
0.8 1.64760 0.096491
0.9 1.89510 0.113630

Fix (S,s,λ ,µ,ω,β ,θ ,δ ) = (20,5,2,3,0.3,1.5,1.2,0.6)

Table 7. Variation in δ

δ θ ∗1 θ ∗2
0.1 0.9167 0.043151
0.2 0.9833 0.047769
0.3 1.0613 0.053363
0.4 1.1542 0.060268
0.5 1.2675 0.068996
0.6 1.4098 0.080379
0.7 1.5967 0.095891
0.8 1.8592 0.118510
0.9 2.2750 0.155740

Fix (S,s,λ ,µ,ω,β ,θ ,γ) = (20,5,2,3,0.3,1.5,1.2,0.7)

The number of customers in the orbit increases when
the arrival rate λ increases. From table 1, it is clear that
the overall and successful rate of retrials increase with the
increase in λ . From table 3, if ω increases then the inventory
level reduces due to decay, the overall and successful rates
of retrials increase because the number of customers in the
orbit gets increased. The increase in either the service rate µ

or the replenishment rate β , the number of orbiting customers
get decreased so that the overall and successful rate of retrials
decrease (see tables 2, 4). When the probabilities γ and δ

increase, the number of customers in the orbit also increases
so that the overall and successful rate of retrials from the orbit
increase. (see tables 6 and 7). It is obvious that as θ increases,
the overall and successful rate of retrials also increase. (see
table 5).

5.2 Graphical Illustrations and Interpretation
The optimum value of the expected total cost per unit time by
varying the parameter one at a time and keeping others fixed.
Here, we fixed maximum inventory level as 20 unit and reorder
level as 5 unit. By fixing all the parameter except the arrival
rate λ . It is clear from fig.1 that the cost function attains its
minimum value 131.8 at λ = 2.5. As perishable rate increases
and keeping other parameters fixed, one can observe that the
cost function attains the minimum value 145.05 at ω = 0.4
(see fig.3). One can also observe the minimum value of the
objective function by changing other parameters µ,β ,θ ,γ and
δ (see fig.2, fig.4, fig.5, fig.6 and fig.7).
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µ = 3;ω = 0.3;β = 1.5;θ = 1.2;γ = 0.7;δ = 0.6;
CF = 20;c1 = 1;c2 = 12;c3 = c4 = c5 = 1;c6 = 0.01;

Figure 1. λ vs C(s,S)
λ = 2;ω = 0.3;β = 1.5;θ = 1.2;γ = 0.7;δ = 0.6;

CF = 20;c1 = c2 = 1;c3 = 6.3;c4 = 1;c5 = 0.1;c6 = 1;

Figure 2. µ vs C(s,S)
λ = 2; µ = 3;β = 1.5;θ = 1.2;γ = 0.7;δ = 0.6;
CF = 20;c1 = 1.1;c2 = 13;c3 = c4 = c5 = c6 = 1;

Figure 3. ω vs C(s,S)

λ = 2; µ = 3; ;ω = 0.3;θ = 1.2;γ = 0.7;δ = 0.6;
CF = 20;c1 = c2 = 1;c3 = 46;c4 = 1;c5 = 3;c6 = 1;

Figure 4. β vs C(s,S)
λ = 2; µ = 3;ω = 0.3;β = 1.5;γ = 0.7;δ = 0.6;
CF = 20;c1 = c2 = c3 = c4 = 1;c5 = 0.01;c6 = 1;

Figure 5. θ vs C(s,S)
λ = 2; µ = 3;ω = 0.3;β = 1.5;θ = 1.2;δ = 0.6;

CF = 20;c1 = 4;c2 = c6 = 1;c3 = 2.3;c4 = 1;c5 = 0.01;

Figure 6. γ vs C(s,S)
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λ = 2; µ = 3;β = 1.5;θ = 1.2;ω = 0.3;γ = 0.7;
CF = 20;c1 = 1;c2 = 0.6;c3 = c4 = c5 = c6 = 1;

Figure 7. δ vs C(s,S)

6. Concluding remarks

We studied a continues review perishable inventory sys-
tem with exponentially distributed service time and lead time.
We assumed that the inter arrival time of customers follows
exponential distribution. The successful rates of retrial out
of all retrials were tabulated. The minimum values of the
expected total cost for the variations of different parameters
were illustrated graphically. One can extend this model by
considering the changes in the arrival process or service time
distribution.
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