Malaya Journal of Matematik, Vol. 7, No. 2, 177-181, 2019
https://doi.org/10.26637/MJM0702/0008

About m-domination humber of graphs
D. K. Thakkar' and Neha P. Jamvecha®*

Abstract

In this paper, we have defined the concept of m-dominating set in graphs. In order to define this concept we
have used the notion of m-adjacent vertices. We have also defined the concepts of minimal m-dominating set,
minimum m-dominating set and m-domination number which is the minimum cardinality of an m-dominating
set. We prove that the complement of a minimal m-dominating set is an m-dominating set. Also we prove a
necessary and sufficient condition under which the m-domination number increases or decreases when a vertex
is removed from the graph. Further we have also studied the concept of m-removing a vertex from the graph and
we prove that the m-removal of a vertex from the graph always increases or does not change the m-domination

number. Some examples have also been given.
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1. Introduction

In the area of mixed domination several new concepts have
been appeared. The concept of a vertex which m-dominates an
edge and the concept of an edge which m-dominates a vertex
have been defined and studied by some authors like R. Laskar,

K. Peters, E. Sampathkumar, S. S. Kamath and others [3-5].

The above concepts can be used to define m-adjacent vertices
and m-adjacent edges. In fact, we have defined m-adjacent
vertices and m-adjacent edges in [1]. We observe that these
concepts give rise to new concept called m-dominating set
using m-adjacent vertices.

We also introduce the concepts of minimal m-dominating
set, minimum m-dominating set and m-domination number
which is the minimum cardinality of an m-dominating set.

We have also a concept called m-removal of a vertex in
graphs which has been introduced in [2]. We proved the effect
of m-removing a vertex on m-domination number.

2. Preliminaries and Notations

If G is a graph then E (G) denotes the edge set and V (G)
denotes the vertex set of the graph. If v is a vertex of G then
G\v denotes the subgraph of G obtained by removing the ver-
tex v and all the edges incident to v. N (v) denotes the set of
vertices which are adjacent to v. N[v] = N (v)Uv. If x is any
vertex then d (x) denotes the degree of x and is the number of
edges incident at x.

Definition 2.1. [/] Let u and v be two vertices of G. Then u
and v are said to be m-adjacent vertices in G if there is an
edge of G which m-dominates both u and v in G.

Definition 2.2. [2] Let G be a graph and v € V (G). We
obtain a subgraph of G by removing vertex v and certain
edges which is called the subgraph obtained by m-removing
the vertex v from the graph G.

Definition 2.3. [2] Let G be a graph and v € V (G). The
subgraph obtained by m-removing vertex v from G has the
vertex set V (G) \{v} and by removing all the edges of G which
m-dominate vertex v. This subgraph is denoted as G\"{v}.



3. Main Results

Definition 3.1. Let G be a graph and S C V (G). Then S is
said to be an m-dominating set if for every vertex vin'V (G)\S,
there is a vertex u in S such that u and v are m-adjacent.

Note that every dominating set is an m-dominating set but
m-dominating set need not be a dominating set.

Example 3.2. Consider the path graph Ps with vertices
{vi,v2,v3,v4,v5}

o o o oo

Figure 1. Ps

Let S = {v3} then S is an m-dominating set but not domi-
nating set.

Definition 3.3. Let G be a graph and S C V (G) be an m-
dominating set. Then S is said to be a minimal m-dominating
set if S\{v} is not an m-dominating set for every v in S.

Definition 3.4. An m-dominating set with minimum cardinal-
ity is called a minimum m-dominating set. The cardinality of
minimum m-dominating set is the m-domination number of
the graph G and it is denoted as Y, (G).

Definition 3.5. Let G be a graph and v € V (G). Then v is
said to be an m-isolated vertex of G if for every other vertex u
of G, u is not m-adjacent to v.

Obviously, a vertex v is isolated if and only if it is m-
isolated.

Theorem 3.6. Let G be a graph and S C V (G) be an m-
dominating set of G. Then S is a minimal m- dominating set
of G if and only if for every u € S atleast one of the following
two conditions holds.

(i) u is not m-adjacent to any other vertex of S.

(ii) There exist avertexv € V (G)\S such that v is m-adjacent
to only one vertex of S namely u.

Proof. Suppose S is a minimal m-dominating set. Let u € S.
Now S\{u} is not an m-dominating set. Therefore, there is
a vertex v outside S\{u} such that v is not m-adjacent to any
vertex of S\ {u}.

Case(i):v=u

Then u is not m-adjacent to any other vertex of S.

Case (ii): v £ u

Thenv ¢ S.

Subcase (i): v is not m-adjacent to any vertex of S\{u}.
Subcase (ii): v is m-adjacent to some vertex of S.

Therefore, v is m-adjacent to only one vertex of § namely u.
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Conversely, suppose any of condition (i) and (ii) is satisfied
forany u € S.
LetueS.
Case (i): Suppose condition (i) is satisfied.
Therefore, u is not m-adjacent to any vertex of S\{u} and also
Case (ii): Suppose condition (ii) is satisfied.
Let v € V (G)\S such that v is m-adjacent to only one vertex
of S namely u. Then v is not m-adjacent to any vertex of
S\{u}. Thus it follows that S\{u} is not an m-dominating set
of G forany u € S.
Therefore, S is a minimal m-dominating set.

O

Theorem 3.7. Let G be a graph without m-isolated vertices
and S be a minimal m-dominating set of G. Then V (G)\S is
an m-dominating set of G.

Proof. Letv € S. Since S is a minimal m-dominating set, (i)
or (i) of theorem (3.6) is satisfied.
Suppose (i) is satisfied. Then v is not m-adjacent with any
other vertex of S. Since v is not an m-isolated vertex of G, v
is m-adjacent to some vertex u of G. Then u € V (G)\S.
Suppose (if) is satisfied and suppose v is m-adjacent to some
vertex of S. Now, there is a vertex u in V (G) \ S such that u is
m-adjacent to v and u is not m-adjacent to any other vertex of
S.
Thus in both the cases v is m-adjacent to some vertex of
V (G)\S. Therefore, V (G)\S is an m-dominating set of G.
O

Corollary 3.8. Let G be a graph without m-isolated vertices.
Then Yy (G) <n/2.

Proof. Let S be a minimum m-dominating set of G. Then
Ymv (G) = |S|. Now by the theorem(3.7), V (G) \S is also an
m-dominating set. Therefore, ¥, (G) < |V (G)\S|. Therefore,
Yo (G) = min{|S|, |V (G)\S|}. If |S] < n/2 then Y, (G) <
n/2. If |V (G)\S| > n/2 then |S| < n/2 and therefore };,, (G) <
n/2. O

Definition 3.9. Let G be a graph and x € V (G). The m-vertex
open neighbourhood of x (or simply m-open neighbourhood
of x) is the set Ny, (x) = {u € V (G) such that u is m-adjacent
fo x}.

Also the m-vertex closed neighbourhood of x is the set Ny, [x] =
Ny (x) U{x}.

Now we state and prove a necessary and sufficient con-
dition under which the m-domination number of a graph in-
creases when a vertex is removed from the graph.

Theorem 3.10. Let G be a graph and v € V (G). Then
Y (G\V) > Yy (G) if and only if following conditions are
satisfied

(i) v is not an m-isolated vertex of G.



(i) If S is a minimum m-dominating set of G and v ¢ S then
there is a vertex x in V (G)\S such that x # v and
d (x,S) > 3 in the subgraph G\v.

(iii) There is no subset S of V (G) \Nmy [v] such that |S| <
Yy (G) and it is an m-dominating set of G\v.

Proof. Suppose Yy (G\V) > Y (G).

(i) Suppose v is an m-isolated vertex of G. Let S be any
minimum m-dominating set of G. Then v € §. Let
S1 = S\{v}. Let x be any vertex of G\v such that x ¢
Si. Then, x ¢ S. Since S is an m-dominating set of
G, d(x,5) <3 in G. Now v is an m-isolated vertex,
d(x,81) in G =d(x,S1) in G\v. Therefore, d(x,S)
in G\v < 3. Thus, x is m-adjacent to some member
of S; in G\v. This proves that S; is an m-dominating
set in G\v. Therefore ¥, (G\v) <|S1| < |S| = Y (G),
which is a contradiction. Therefore, v cannot be an
m-isolated vertex of G.

(ii) Suppose, there is a minimum m-dominating set S of G
such that v ¢ S. Suppose for every vertex x which is
notin S and x # v, d (x,S) < 3 in G\v. Then S is an m-
dominating set in G\v. This implies that },, (G\v) <
|S| = Yy (G) which is a contradiction. Therefore (ii) is
satisfied.

(iii) Suppose, there is a subset S of V (G) \N,y [v] such that
IS| < %y (G) and S is an m-dominating set of G\v.
Then ¥, (G\v) < |S| < ¥y (G) which is again a con-
tradiction. Therefore, (iif) holds.

Conversely, suppose condition (i), (ii) and (iii) are satisfied.
First suppose that ¥, (G\v) = ¥y (G). Let S be a minimum
m-dominating set of G\v. Let x be any vertex of G such that
x¢ Sandx#v. Thend (x,S) in G < d(x,S) in G\v which
is < 3. Now suppose v is m-adjacent to some vertex of S.
Then S is a minimum m-dominating set of G and v ¢ S. If
x €V (G)\S such that x # v then d (x,S) <3 in G\v. This con-
tradicts condition (ii). Therefore, v cannot be an m-adjacent
to any vertex of S. Then S is a subset of V (G) \Nyy [v]. Also,
IS| < ¥y (G). Also, S is an m-dominating set of G\v. This
contradicts condition (iii). Thus, Y%, (G\v) = ¥y (G) is not
possible.

Suppose, Yy (G\V) < Yy (G)-

Let S be a minimum m-dominating set of G\v. Since |S| <
Ymv (G), S cannot be an m-dominating set of G. Therefore,
v cannot be m-adjacent to any vertex of G. Therefore, S
is a subset of V (G) \Nyy [v]. Also |S| < Yy (G). Also S is
an m-dominating set of G\v. This again contradicts (iif).
Therefore, Y, (G\V) < Yy (G) is also not possible. Thus,
Y (G\V) > Yy (G). O

Corollary 3.11. Let G be a graph and v € V (G) be such
that Yy (G\V) > Yy (G) then d (v,S) < 2 for every minimum
m-dominating set S of G.
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Proof. Let S be any minimum m-dominating set of G. Sup-
pose v ¢ S. By (ii) of theorem(3.10), there is a vertex x in
V (G)\S such that d (x,S) > 3 in G\v. However, d (x,5) <3
in G. Therefore, there is a vertex y in S such that d (x,y) < 3.
Any path from x to y in G must contain v as an internal vertex
(otherwise v does not appear in the path and therefore there
is a path of length less than or equal to 3 between x and y in
G\v). Obviously, there is a path from v to y of length < 2.
Therefore, d (v,S) < 2. . O

Definition 3.12. Let G be a graph, v €V (G) and S C V (G)
such that v € S. Then private m-neighbourhood of v with
respect to S is defined as Pyn [v,S] = {u € V(G) such that
Ny [u] NS = {v}}.

Remark 3.13. Note that if v € S and v is not m-adjacent to
any other vertex of S then v € Py, [v,S]. If u € V(G)\S then
u € Py [v,S) if and only if u is m-adjacent to only one vertex
of S namely v.

Now we state and prove a necessary and sufficient con-
dition under which the m-domination number of a graph de-
creases when a vertex is removed from the graph.

Theorem 3.14. Let G be a graph and v € V (G). Then
Y (G\V) < Yy (G) if and only if there is a minimum m-
dominating set S of G such that v € S and Py, [v,S] = {v}.

Proof. Suppose Yy (G\V) < Yy (G). Let S| be a minimum m-
dominating set of G\v. Then S cannot be an m-dominating
set of G. Therefore, d (v,S1) > 3. Let S =S, U{v}. Let
x € V(G)\S then x ¢ S;. Since S} is an m-dominating set of
G\, x is m-adjacent to some vertex z of S; in G\v. Then x is
m-adjacent to z in G also. Thus S is an m-dominating set of G
and v € S. Note that as mentioned above v is not m-adjacent
to any other vertex of S in G. Therefore, v € Py, [v,S]. Let
x € V(G)\S such that x is m-adjacent to v in G. Now, x is
m-adjacent to y in S(in G\v) such that y # v. Then x is also
m-adjacent to y in G. Thus x is m-adjacent to two distinct
vertices of S. Therefore, x ¢ Py, [v,S] if x € V (G)\S. Thus
P[] = {}.

Conversely, suppose there is a minimum m-dominating set .S
of G such that v € S and P, [v,S] = {v}. Let S| = S\{v}. Let
x be a vertex of G\v such that x ¢ S;. Then x ¢ S. Since S is
an m-dominating set of G, x is m-adjacent to some vertex y
of S. Suppose y = v. Now x & Py, [v,S]. Therefore, x is m-
adjacent to some vertex z of S in G such that z # v. Therefore,
d(x,z) <3in G. Let P be a path in G joining xto z. If vis a
vertex in this path then it will imply that d (v,z) < 3 and this
implies that v is m-adjacent to z and z € S. This contradicts
the fact that v € P, [v,S]. Thus, v does not appear in this path.
Thus P is a path in G\v joining x to z. Therefore, x is m-
adjacent to zin G\v and z € S|. Thus S is an m-dominating
set in G\v. Thus, ¥, (G\v) < |S1]| < |S| = Y (G). O

Corollary 3.15. Let G be a graph and v € V (G) be such that
v is not m-isolated vertex of G. If Yy (G\V) < Yy (G) then
there is a minimum m-dominating set S such that v ¢ S.



Proof. There is a minimum m-dominating set S of G such
that v € Sy and Py, [v,S1] = {v}. Since v is not an m-isolated
vertex in G, there is a vertex x which is m-adjacent to v in G.
Since v is not m-adjacent to any vertex of Si, x € V(G)\S;.
Let S = (S1\{v})U{x}. Then |S| = |Si| = Y (G). Alsov & S.
Letz € V(G)\S. If z = v then z is m-adjacent to x and x € S.
Suppose z # v. Then z ¢ S;. Since S is an m-dominating set
of G, z is m-adjacent to some vertex ¢ of S1. If # = v then z
is m-adjacent to some vertex ' of Sy such that ¢’ # v because
2 & Pyn[v,S1]. Thus, z is m-adjacent to some vertex ¢’ of S.
Thus § is an m-dominating set of G. Thus, S is a minimum
m-dominating set of G such thatv ¢ S. O

Theorem 3.16. Let G be a graph and v € V (G) such that v
is not an m-isolated vertex in G. Then Y, (G\V) < Y (G)
if and only if there is a minimum m-dominating set S not
containing v and a vertex x in S such that Py, [x,S] = {v}.

Proof. Suppose Yy (G\v) < ¥y (G). By theorem(3.14), there
is a minimum m-dominating set S such that v € §1 and
Pun [v,S1] = {v}. Let x be a vertex in V (G)\S;, which is
adjacent to v. Let S = (S\{v}) U{x}. Then x € S and by
the corollary(3.15), S is a minimum m-dominating set of G
not containing v. Note that v is not m-adjacent to any vertex
of S| because v € P, [v,S1]. Therefore, v is adjacent to only
one vertex of S namely x. Thus v € P, [x,S]. Again x is
m-adjacent to v and since x & Py, [v,S1], x is m-adjacent to
some vertex y of §; where y # v. Therefore, x is m-adjacent
to some vertex of S and therefore x ¢ Py, [x,S]. Let z be a
vertex of V (G)\S such that z is m-adjacent to x. Since z ¢ S,
z is m-adjacent to some vertex w of Sy because S; is an m-
dominating set of G. Thus, z is m-adjacent to two distinct
vertices of S namely x and w. Therefore, z ¢ Py, [x,S]. Hence,
P [x,8] = {v}.

Conversely, suppose there is a minimum m-dominating set S
such that v ¢ S and for some vertex x in S, Py, [x,S] = {v}. Let
S1 = S\{x}. Now, x & Py, [x,S]. Therefore, x is m-adjacent
to some vertex y of S in G. Note that v is not m-adjacent
to any vertex of § except x. Let P be a path in G from x
to y whose length is < 3. If v is an internal vertex in this
path then it would imply that d (v,y) < 3 in G and this means
that v is m-adjacent to y in G and y # x. This is a contradic-
tion. Thus v cannot appear as an internal vertex in the path
above from x to y. Therefore, this is a path in G\v from x to
y having length < 3. Thus x is m-adjacent to y in G\v and
y € S1. Let z be any vertex of G\v such that z ¢ S} and z # x.
Then z ¢ S. Now, z is m-adjacent to some vertex w of S in
G. If w = x then there is another vertex w’ in S such that z
is m-adjacent to w’ in G. By the same reasoning as given
above we say that z is m-adjacent to w' in G\v also. Also
w' € S1. Thus, we have proved that S1 is an m-dominating set
of G\v. Therefore, ¥, (G\v) <|S1] < |S| = v (G). Hence,
Y (G\V) < Yoy (G). O

Example 3.17. Consider the path graph Pg with vertices
{v1,v2,v3,v4,Vs,v6,v7,v8}
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Here, Yy (G) =2 and Yy (G\{vs}) = 1. Let S = {v4,vs}.
Then Py, [vs,S] = {vs}

Corollary 3.18. Let G be a graph and v € V (G) be such that
d (v,S) = 3 for every minimum m-dominating set S of G. Then
Yinw (G\V) = Yy (G).

Proof. If Yy (G\V) > Yy (G) then d (v,S) < 2 for every min-
imum m-dominating set S of G which is a contradiction. If
Yy (G\V) < Yy (G) then there is a minimum m-dominating
set S of G such that d (v,S) = 0 which is again a contradiction.
Therefore, Yy (G\V) = Yy (G). O

Proposition 3.19. Let G be a graph and F be a set of edges
of G. Then Y, (G\F) > Yy (G).

Proof. Let S be a minimum m-dominating set of G\F. Let
x € V(G)\S. Now, x is m-adjacent to some vertex y of S in
G\F. Therefore, there is an edge e in the graph G\ F which
m-dominates both x and y. Therefore, ¢ m-dominates x and
y in G also. Therefore, x and y are m-adjacent in G also.
Thus, x is m-adjacent to some vertex y of S in G. Therefore,

Yy (G\F) > |S| = Ymv (G) O

Proposition 3.20. Let G be a graph and v € V (G). Then,
Yo (G\"{V}) = Yomw (G\V).

Proof. Note that G\"{v} is obtained by removing those edges
of G which m-dominate v but which are not incident to v.
These are the edges of G\v. Let F be the set of these edges.

Then by the proposition(3.19), Y (G\"{v}) = Yy (G\V) \F) >

Y (G\V). O

Proposition 3.21. Let G be a graph and v € V (G) be a non-
isolated vertex of G. Then Y, (G\"{v}) > Y (G).

Proof. Let T be a minimum m-dominating set of G\"{v}.
Then T contains all m-isolated vertices of G\"{v}. Now
every neighbour of v is an m-isolated vertex of G\"{v}.
Therefore, every neighbour of v is an element of 7. Thus
T is an m-dominating set of G. Therefore, ¥, (G) < |T| =

Yow (G\"{V}). O

Theorem 3.22. Let G be a graph and v € V (G) be such that
d (v) > 2. Then Yy (G\"{v}) > Yy (G).

Proof. Suppose S is a minimum m-dominating set of G\"'{v}.
Let §; = (S\N (v))U{v}. Then |S;| < |S|. Let x be any vertex
of G such that x ¢ S;. If x € N (v) then x is adjacent to v and
of course v € S;. Suppose, x ¢ N(v). Then x ¢ S and also
x #v. Thus x is a vertex of G\"'{v} and x ¢ S. Therefore, x
is m-adjacent to some vertex y of S. Therefore, d (x,y) <3

a0
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in G\"{v}. Since elements of N (v) are isolated vertices in
G\"{v}, y ¢ N(v) and hence y € S;. Also d(x,y) <3 in
G. Thus, x is m-adjacent to y where y € S1. Thus, §; is an
m-dominating set in G. Therefore, ¥, (G) < [S1] < |S] =
Yo (G\"{1}). o

Definition 3.23. Let G be a graph, S CV (G) and v € S. Then
the external private m-neighbourhood of v with respect to S
is ExPypn [v,S] = {w € V(G)\S such that w is m-adjacent to
vin G but w is not m-adjacent to any other member of S}.

Theorem 3.24. Let G be a graph. v be a pendant vertex of G
and u be its neighbour. Then Y, (G\"{v}) = Yy (G) if and
only if there is a minimum m-dominating set S of G such that
uesS, ve¢Sand ExPy,,[u,S] C {v}.

Proof. 1t is already true that Y, (G\"{v}) > %m (G). Sup-
pose there is a minimum m-dominating set S of G such that
u € S, v ¢S and the condition is satisfied. Let x be a vertex of
G\"{v} such that x ¢ S. Now x is m-adjacent to some vertex
yof Sin G. If y = u then x is not m-adjacent to u in G\"{v}.
Since the condition is satisfied, x is m-adjacent in G\"'{v} to
some vertex z of S such that z # u. If x is not m-adjacent to u
then x is m-adjacent in G to some vertex w in S such that w # u.
Then x is m-adjacent to w in G\"{v} also (.- The path joining
x and w cannot contain u as x is not m-adjacent to u). Thus
from both the above cases it follows that S is an m-dominating
set in G\"{v}. Thus, ¥ (G\"{v}) <|S| = ¥ (G). Hence,
Y (G\"{v}) = Y (G).

Conversely, suppose ¥, (G\"{v}) = ¥ (G). Let S be a min-
imum m-dominating set of G\"{v}. Since u is an isolated
vertex in G\"{v}, u € S. Obviously, v ¢ S. Let z be a ver-
tex such that z ¢ S and z # v. Suppose, z is m-adjacent to
uin G. Since S is an m-dominating set of G\"{v}, z is m-
adjacent in G\"{v} to some vertex ' of S. Note that u’ # u
because u is an isolated vertex in G\"{v}. Now d (z,u’) <3
in G\"{v}. Therefore, d(z,u') <3 in G. Thus we have
proved that z € V (G)\S, z # v and if z is m-adjacent to « in
G then z is also m-adjacent to some other vertex #’ of S in
G\"{v}. Note that S is an m-dominating set in G also. Since
Yo (G\"{v}) = ¥y (G), S is a minimum m-dominating set
of G and the condition is satisfied. O
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