

https://doi.org/10.26637/MJM0702/0008

About m-domination number of graphs

D. K. Thakkar¹ and Neha P. Jamvecha^{2*}

Abstract

In this paper, we have defined the concept of m-dominating set in graphs. In order to define this concept we have used the notion of m-adjacent vertices. We have also defined the concepts of minimal m-dominating set, minimum m-dominating set and m-domination number which is the minimum cardinality of an m-dominating set. We prove that the complement of a minimal m-dominating set is an m-dominating set. Also we prove a necessary and sufficient condition under which the m-domination number increases or decreases when a vertex is removed from the graph. Further we have also studied the concept of m-removing a vertex from the graph and we prove that the m-removal of a vertex from the graph always increases or does not change the m-domination number. Some examples have also been given.

Keywords

m-dominating set, minimal m-dominating set, minimum m-dominating set, private m-neighbourhood of a vertex, m-removal of a vertex.

AMS Subject Classification

05C69

^{1,2} Department of Mathematics, Saurashtra University, Rajkot-360005, Gujarat, India.
*Corresponding author: ¹ dkthakkar1@yahoo.co.in; ²jamvechaneha30@gmail.com
Article History: Received 12 October 2018; Accepted 17 March 2019

©2019 MJM.

Contents

1	Introduction
2	Preliminaries and Notations 177
3	Main Results 178
	References 181

1. Introduction

In the area of mixed domination several new concepts have been appeared. The concept of a vertex which m-dominates an edge and the concept of an edge which m-dominates a vertex have been defined and studied by some authors like R. Laskar, K. Peters, E. Sampathkumar, S. S. Kamath and others [3–5]. The above concepts can be used to define m-adjacent vertices and m-adjacent edges. In fact, we have defined m-adjacent vertices and m-adjacent edges in [1]. We observe that these concepts give rise to new concept called m-dominating set using m-adjacent vertices.

We also introduce the concepts of minimal m-dominating set, minimum m-dominating set and m-domination number which is the minimum cardinality of an m-dominating set.

We have also a concept called m-removal of a vertex in graphs which has been introduced in [2]. We proved the effect of m-removing a vertex on m-domination number.

2. Preliminaries and Notations

If *G* is a graph then E(G) denotes the edge set and V(G) denotes the vertex set of the graph. If *v* is a vertex of *G* then $G \setminus v$ denotes the subgraph of *G* obtained by removing the vertex *v* and all the edges incident to *v*. N(v) denotes the set of vertices which are adjacent to *v*. $N[v] = N(v) \cup v$. If *x* is any vertex then d(x) denotes the degree of *x* and is the number of edges incident at *x*.

Definition 2.1. [1] Let u and v be two vertices of G. Then u and v are said to be m-adjacent vertices in G if there is an edge of G which m-dominates both u and v in G.

Definition 2.2. [2] Let G be a graph and $v \in V(G)$. We obtain a subgraph of G by removing vertex v and certain edges which is called the subgraph obtained by m-removing the vertex v from the graph G.

Definition 2.3. [2] Let G be a graph and $v \in V(G)$. The subgraph obtained by m-removing vertex v from G has the vertex set $V(G) \setminus \{v\}$ and by removing all the edges of G which m-dominate vertex v. This subgraph is denoted as $G \setminus {}^m \{v\}$.

3. Main Results

Definition 3.1. Let G be a graph and $S \subset V(G)$. Then S is said to be an m-dominating set if for every vertex v in $V(G) \setminus S$, there is a vertex u in S such that u and v are m-adjacent.

Note that every dominating set is an m-dominating set but m-dominating set need not be a dominating set.

Example 3.2. Consider the path graph P_5 with vertices $\{v_1, v_2, v_3, v_4, v_5\}$

Figure 1. P₅

Let $S = \{v_3\}$ then S is an m-dominating set but not dominating set.

Definition 3.3. Let G be a graph and $S \subset V(G)$ be an mdominating set. Then S is said to be a minimal m-dominating set if $S \setminus \{v\}$ is not an m-dominating set for every v in S.

Definition 3.4. An *m*-dominating set with minimum cardinality is called a minimum m-dominating set. The cardinality of minimum m-dominating set is the m-domination number of the graph G and it is denoted as $\gamma_{mv}(G)$.

Definition 3.5. Let *G* be a graph and $v \in V(G)$. Then *v* is said to be an *m*-isolated vertex of *G* if for every other vertex *u* of *G*, *u* is not *m*-adjacent to *v*.

Obviously, a vertex v is isolated if and only if it is m-isolated.

Theorem 3.6. Let G be a graph and $S \subset V(G)$ be an mdominating set of G. Then S is a minimal m- dominating set of G if and only if for every $u \in S$ atleast one of the following two conditions holds.

- (*i*) *u* is not *m*-adjacent to any other vertex of S.
- (ii) There exist a vertex $v \in V(G) \setminus S$ such that v is m-adjacent to only one vertex of S namely u.

Proof. Suppose *S* is a minimal m-dominating set. Let $u \in S$. Now $S \setminus \{u\}$ is not an m-dominating set. Therefore, there is a vertex *v* outside $S \setminus \{u\}$ such that *v* is not m-adjacent to any vertex of $S \setminus \{u\}$.

Case (i): v = u

Then *u* is not m-adjacent to any other vertex of *S*.

Case (ii): $v \neq u$

Then $v \notin S$.

Subcase (i): *v* is not m-adjacent to any vertex of $S \setminus \{u\}$.

Subcase (ii): *v* is m-adjacent to some vertex of *S*.

Therefore, v is m-adjacent to only one vertex of S namely u.

Conversely, suppose any of condition (*i*) and (*ii*) is satisfied for any $u \in S$.

Let $u \in S$.

Case (i): Suppose condition (*i*) is satisfied.

Therefore, *u* is not m-adjacent to any vertex of $S \setminus \{u\}$ and also $u \notin S \setminus \{u\}$.

Case (ii): Suppose condition (*ii*) is satisfied.

Let $v \in V(G) \setminus S$ such that v is m-adjacent to only one vertex of S namely u. Then v is not m-adjacent to any vertex of $S \setminus \{u\}$. Thus it follows that $S \setminus \{u\}$ is not an m-dominating set of G for any $u \in S$.

Therefore, S is a minimal m-dominating set.

Theorem 3.7. Let G be a graph without m-isolated vertices and S be a minimal m-dominating set of G. Then $V(G) \setminus S$ is an m-dominating set of G.

Proof. Let $v \in S$. Since S is a minimal m-dominating set, (*i*) or (*ii*) of theorem (3.6) is satisfied.

Suppose (*i*) is satisfied. Then *v* is not m-adjacent with any other vertex of *S*. Since *v* is not an m-isolated vertex of *G*, *v* is m-adjacent to some vertex *u* of *G*. Then $u \in V(G) \setminus S$.

Suppose (*ii*) is satisfied and suppose *v* is m-adjacent to some vertex of *S*. Now, there is a vertex *u* in $V(G) \setminus S$ such that *u* is m-adjacent to *v* and *u* is not m-adjacent to any other vertex of *S*.

Thus in both the cases *v* is m-adjacent to some vertex of $V(G) \setminus S$. Therefore, $V(G) \setminus S$ is an m-dominating set of *G*.

Corollary 3.8. *Let G be a graph without m-isolated vertices. Then* $\gamma_{mv}(G) \leq n/2$ *.*

Proof. Let *S* be a minimum m-dominating set of *G*. Then $\gamma_{mv}(G) = |S|$. Now by the theorem(3.7), $V(G) \setminus S$ is also an m-dominating set. Therefore, $\gamma_{mv}(G) \leq |V(G) \setminus S|$. Therefore, $\gamma_{mv}(G) = min\{|S|, |V(G) \setminus S|\}$. If $|S| \leq n/2$ then $\gamma_{mv}(G) \leq n/2$. If $|V(G) \setminus S| > n/2$ then |S| < n/2 and therefore $\gamma_{mv}(G) \leq n/2$.

Definition 3.9. Let G be a graph and $x \in V(G)$. The m-vertex open neighbourhood of x (or simply m-open neighbourhood of x) is the set $N_{mv}(x) = \{u \in V(G) \text{ such that } u \text{ is m-adjacent to } x\}$.

Also the m-vertex closed neighbourhood of x is the set $N_{mv}[x] = N_{mv}(x) \cup \{x\}.$

Now we state and prove a necessary and sufficient condition under which the m-domination number of a graph increases when a vertex is removed from the graph.

Theorem 3.10. Let *G* be a graph and $v \in V(G)$. Then $\gamma_{mv}(G \setminus v) > \gamma_{mv}(G)$ if and only if following conditions are satisfied

(i) v is not an m-isolated vertex of G.

- (ii) If S is a minimum m-dominating set of G and $v \notin S$ then there is a vertex x in $V(G) \setminus S$ such that $x \neq v$ and d(x,S) > 3 in the subgraph $G \setminus v$.
- (iii) There is no subset S of $V(G) \setminus N_{mv}[v]$ such that $|S| \le \gamma_{mv}(G)$ and it is an m-dominating set of $G \setminus v$.

Proof. Suppose $\gamma_{mv}(G \setminus v) > \gamma_{mv}(G)$.

- (*i*) Suppose *v* is an m-isolated vertex of *G*. Let *S* be any minimum m-dominating set of *G*. Then $v \in S$. Let $S_1 = S \setminus \{v\}$. Let *x* be any vertex of $G \setminus v$ such that $x \notin S_1$. Then, $x \notin S$. Since *S* is an m-dominating set of *G*, $d(x,S) \leq 3$ in *G*. Now *v* is an m-isolated vertex, $d(x,S_1)$ in $G = d(x,S_1)$ in $G \setminus v$. Therefore, $d(x,S_1)$ in $G \setminus v \leq 3$. Thus, *x* is m-adjacent to some member of S_1 in $G \setminus v$. Therefore $\gamma_{mv}(G \setminus v) \leq |S_1| < |S| = \gamma_{mv}(G)$, which is a contradiction. Therefore, *v* cannot be an m-isolated vertex of *G*.
- (*ii*) Suppose, there is a minimum m-dominating set *S* of *G* such that $v \notin S$. Suppose for every vertex *x* which is not in *S* and $x \neq v$, $d(x,S) \leq 3$ in $G \setminus v$. Then *S* is an m-dominating set in $G \setminus v$. This implies that $\gamma_{mv}(G \setminus v) \leq |S| = \gamma_{mv}(G)$ which is a contradiction. Therefore (*ii*) is satisfied.
- (*iii*) Suppose, there is a subset *S* of $V(G) \setminus N_{mv}[v]$ such that $|S| \leq \gamma_{mv}(G)$ and *S* is an m-dominating set of $G \setminus v$. Then $\gamma_{mv}(G \setminus v) \leq |S| \leq \gamma_{mv}(G)$ which is again a contradiction. Therefore, (*iii*) holds.

Conversely, suppose condition (*i*), (*ii*) and (*iii*) are satisfied. First suppose that $\gamma_{mv}(G \setminus v) = \gamma_{mv}(G)$. Let *S* be a minimum m-dominating set of $G \setminus v$. Let *x* be any vertex of *G* such that $x \notin S$ and $x \neq v$. Then d(x,S) in $G \leq d(x,S)$ in $G \setminus v$ which is ≤ 3 . Now suppose *v* is m-adjacent to some vertex of *S*. Then *S* is a minimum m-dominating set of *G* and $v \notin S$. If $x \in V(G) \setminus S$ such that $x \neq v$ then $d(x,S) \leq 3$ in $G \setminus v$. This contradicts condition (*ii*). Therefore, *v* cannot be an m-adjacent to any vertex of *S*. Then *S* is a subset of $V(G) \setminus N_{mv}[v]$. Also, $|S| \leq \gamma_{mv}(G)$. Also, *S* is an m-dominating set of $G \setminus v$. This contradicts condition (*iii*). Thus, $\gamma_{mv}(G \setminus v) = \gamma_{mv}(G)$ is not possible.

Suppose, $\gamma_{m\nu}(G \setminus \nu) < \gamma_{m\nu}(G)$.

Let *S* be a minimum m-dominating set of $G \setminus v$. Since $|S| < \gamma_{mv}(G)$, *S* cannot be an m-dominating set of *G*. Therefore, *v* cannot be m-adjacent to any vertex of *G*. Therefore, *S* is a subset of $V(G) \setminus N_{mv}[v]$. Also $|S| \le \gamma_{mv}(G)$. Also *S* is an m-dominating set of $G \setminus v$. This again contradicts (*iii*). Therefore, $\gamma_{mv}(G \setminus v) < \gamma_{mv}(G)$ is also not possible. Thus, $\gamma_{mv}(G \setminus v) > \gamma_{mv}(G)$.

Corollary 3.11. Let G be a graph and $v \in V(G)$ be such that $\gamma_{mv}(G \setminus v) > \gamma_{mv}(G)$ then $d(v,S) \le 2$ for every minimum *m*-dominating set S of G.

Proof. Let *S* be any minimum m-dominating set of *G*. Suppose $v \notin S$. By (*ii*) of theorem(3.10), there is a vertex *x* in $V(G) \setminus S$ such that d(x,S) > 3 in $G \setminus v$. However, $d(x,S) \le 3$ in *G*. Therefore, there is a vertex *y* in *S* such that $d(x,y) \le 3$. Any path from *x* to *y* in *G* must contain *v* as an internal vertex (otherwise *v* does not appear in the path and therefore there is a path of length less than or equal to 3 between *x* and *y* in $G \setminus v$. Obviously, there is a path from *v* to *y* of length ≤ 2 . Therefore, $d(v,S) \le 2$.

Definition 3.12. Let G be a graph, $v \in V(G)$ and $S \subset V(G)$ such that $v \in S$. Then private m-neighbourhood of v with respect to S is defined as $P_{mn}[v,S] = \{u \in V(G) \text{ such that } N_{mv}[u] \cap S = \{v\}\}.$

Remark 3.13. Note that if $v \in S$ and v is not m-adjacent to any other vertex of S then $v \in P_{mn}[v, S]$. If $u \in V(G) \setminus S$ then $u \in P_{mn}[v, S]$ if and only if u is m-adjacent to only one vertex of S namely v.

Now we state and prove a necessary and sufficient condition under which the m-domination number of a graph decreases when a vertex is removed from the graph.

Theorem 3.14. Let G be a graph and $v \in V(G)$. Then $\gamma_{mv}(G \setminus v) < \gamma_{mv}(G)$ if and only if there is a minimum mdominating set S of G such that $v \in S$ and $P_{mn}[v,S] = \{v\}$.

Proof. Suppose $\gamma_{mv}(G \setminus v) < \gamma_{mv}(G)$. Let S_1 be a minimum mdominating set of $G \setminus v$. Then S_1 cannot be an m-dominating set of G. Therefore, $d(v, S_1) > 3$. Let $S = S_1 \cup \{v\}$. Let $x \in V(G) \setminus S$ then $x \notin S_1$. Since S_1 is an m-dominating set of $G \setminus v$, x is m-adjacent to some vertex z of S_1 in $G \setminus v$. Then x is m-adjacent to z in G also. Thus S is an m-dominating set of Gand $v \in S$. Note that as mentioned above v is not m-adjacent to any other vertex of S in G. Therefore, $v \in P_{mn}[v,S]$. Let $x \in V(G) \setminus S$ such that x is m-adjacent to v in G. Now, x is m-adjacent to y in $S(\text{in } G \setminus v)$ such that $y \neq v$. Then x is also m-adjacent to y in G. Thus x is m-adjacent to two distinct vertices of S. Therefore, $x \notin P_{mn}[v,S]$ if $x \in V(G) \setminus S$. Thus $P_{mn}[v,S] = \{v\}$.

Conversely, suppose there is a minimum m-dominating set *S* of *G* such that $v \in S$ and $P_{mn}[v,S] = \{v\}$. Let $S_1 = S \setminus \{v\}$. Let *x* be a vertex of $G \setminus v$ such that $x \notin S_1$. Then $x \notin S$. Since *S* is an m-dominating set of *G*, *x* is m-adjacent to some vertex *y* of *S*. Suppose y = v. Now $x \notin P_{mn}[v,S]$. Therefore, *x* is m-adjacent to some vertex *z* of *S* in *G* such that $z \neq v$. Therefore, $d(x,z) \leq 3$ in *G*. Let *P* be a path in *G* joining *x* to *z*. If *v* is a vertex in this path then it will imply that $d(v,z) \leq 3$ and this implies that $v \in P_{mn}[v,S]$. Thus, *v* does not appear in this path. Thus *P* is a path in $G \setminus v$ joining *x* to *z*. Therefore, *x* is m-adjacent to *z* in $G \setminus v$ and $z \in S_1$. Thus S_1 is an m-dominating set in $G \setminus v$. Thus, $\gamma_{mv}(G \setminus v) \leq |S_1| < |S| = \gamma_{mv}(G)$.

Corollary 3.15. Let G be a graph and $v \in V(G)$ be such that v is not m-isolated vertex of G. If $\gamma_{mv}(G \setminus v) < \gamma_{mv}(G)$ then there is a minimum m-dominating set S such that $v \notin S$.

Proof. There is a minimum m-dominating set S_1 of G such that $v \in S_1$ and $P_{mn}[v, S_1] = \{v\}$. Since v is not an m-isolated vertex in G, there is a vertex x which is m-adjacent to v in G. Since v is not m-adjacent to any vertex of $S_1, x \in V(G) \setminus S_1$. Let $S = (S_1 \setminus \{v\}) \cup \{x\}$. Then $|S| = |S_1| = \gamma_{mv}(G)$. Also $v \notin S$. Let $z \in V(G) \setminus S$. If z = v then z is m-adjacent to x and $x \in S$. Suppose $z \neq v$. Then $z \notin S_1$. Since S_1 is an m-dominating set of G, z is m-adjacent to some vertex t of S_1 . If t = v then z is m-adjacent to some vertex t' of S_1 . If $t \neq v$ because $z \notin P_{mn}[v, S_1]$. Thus, z is m-adjacent to some vertex t' of S. Thus S is an m-dominating set of G. Thus, S is a minimum m-dominating set of G such that $v \notin S$.

Theorem 3.16. Let G be a graph and $v \in V(G)$ such that v is not an m-isolated vertex in G. Then $\gamma_{mv}(G \setminus v) < \gamma_{mv}(G)$ if and only if there is a minimum m-dominating set S not containing v and a vertex x in S such that $P_{mn}[x,S] = \{v\}$.

Proof. Suppose $\gamma_{mv}(G \setminus v) < \gamma_{mv}(G)$. By theorem(3.14), there is a minimum m-dominating set S_1 such that $v \in S_1$ and $P_{mn}[v, S_1] = \{v\}$. Let x be a vertex in $V(G) \setminus S_1$, which is adjacent to v. Let $S = (S_1 \setminus \{v\}) \cup \{x\}$. Then $x \in S$ and by the corollary (3.15), S is a minimum m-dominating set of G not containing v. Note that v is not m-adjacent to any vertex of S_1 because $v \in P_{mn}[v, S_1]$. Therefore, v is adjacent to only one vertex of S namely x. Thus $v \in P_{mn}[x,S]$. Again x is m-adjacent to v and since $x \notin P_{mn}[v, S_1]$, x is m-adjacent to some vertex y of S_1 where $y \neq v$. Therefore, x is m-adjacent to some vertex of S and therefore $x \notin P_{mn}[x,S]$. Let z be a vertex of $V(G) \setminus S$ such that z is m-adjacent to x. Since $z \notin S_1$, z is m-adjacent to some vertex w of S_1 because S_1 is an mdominating set of G. Thus, z is m-adjacent to two distinct vertices of *S* namely *x* and *w*. Therefore, $z \notin P_{mn}[x, S]$. Hence, $P_{mn}[x,S] = \{v\}.$

Conversely, suppose there is a minimum m-dominating set S such that $v \notin S$ and for some vertex x in S, $P_{mn}[x, S] = \{v\}$. Let $S_1 = S \setminus \{x\}$. Now, $x \notin P_{mn}[x, S]$. Therefore, x is m-adjacent to some vertex y of S in G. Note that v is not m-adjacent to any vertex of S except x. Let P be a path in G from xto y whose length is ≤ 3 . If v is an internal vertex in this path then it would imply that d(v, y) < 3 in G and this means that v is m-adjacent to y in G and $y \neq x$. This is a contradiction. Thus v cannot appear as an internal vertex in the path above from *x* to *y*. Therefore, this is a path in $G \setminus v$ from *x* to y having length < 3. Thus x is m-adjacent to y in $G \setminus v$ and $y \in S_1$. Let *z* be any vertex of $G \setminus v$ such that $z \notin S_1$ and $z \neq x$. Then $z \notin S$. Now, z is m-adjacent to some vertex w of S in G. If w = x then there is another vertex w' in S such that z is m-adjacent to w' in G. By the same reasoning as given above we say that z is m-adjacent to w' in $G \setminus v$ also. Also $w' \in S_1$. Thus, we have proved that S_1 is an m-dominating set of $G \setminus v$. Therefore, $\gamma_{mv}(G \setminus v) \leq |S_1| < |S| = \gamma_{mv}(G)$. Hence, $\gamma_{mv}(G \setminus v) < \gamma_{mv}(G).$

Example 3.17. *Consider the path graph* P_8 *with vertices* $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$

Figure 2. P₈

Here, $\gamma_{mv}(G) = 2$ and $\gamma_{mv}(G \setminus \{v_8\}) = 1$. Let $S = \{v_4, v_5\}$. *Then* $P_{mn}[v_5, S] = \{v_8\}$

Corollary 3.18. Let G be a graph and $v \in V(G)$ be such that d(v,S) = 3 for every minimum m-dominating set S of G. Then $\gamma_{mv}(G \setminus v) = \gamma_{mv}(G)$.

Proof. If $\gamma_{mv}(G \setminus v) > \gamma_{mv}(G)$ then $d(v, S) \le 2$ for every minimum m-dominating set *S* of *G* which is a contradiction. If $\gamma_{mv}(G \setminus v) < \gamma_{mv}(G)$ then there is a minimum m-dominating set *S* of *G* such that d(v, S) = 0 which is again a contradiction. Therefore, $\gamma_{mv}(G \setminus v) = \gamma_{mv}(G)$.

Proposition 3.19. *Let G be a graph and F be a set of edges of G. Then* $\gamma_{mv}(G \setminus F) \ge \gamma_{mv}(G)$ *.*

Proof. Let *S* be a minimum m-dominating set of $G \setminus F$. Let $x \in V(G) \setminus S$. Now, *x* is m-adjacent to some vertex *y* of *S* in $G \setminus F$. Therefore, there is an edge *e* in the graph $G \setminus F$ which m-dominates both *x* and *y*. Therefore, *e* m-dominates *x* and *y* in *G* also. Therefore, *x* and *y* are m-adjacent in *G* also. Thus, *x* is m-adjacent to some vertex *y* of *S* in *G*. Therefore, $\gamma_{mv}(G \setminus F) \ge |S| = \gamma_{mv}(G)$.

Proposition 3.20. Let G be a graph and $v \in V(G)$. Then, $\gamma_{mv}(G \setminus {}^{m}{v}) \ge \gamma_{mv}(G \setminus v)$.

Proof. Note that $G \setminus {}^{m} \{v\}$ is obtained by removing those edges of *G* which m-dominate *v* but which are not incident to *v*. These are the edges of $G \setminus v$. Let *F* be the set of these edges. Then by the proposition(3.19), $\gamma_{mv} (G \setminus {}^{m} \{v\}) = \gamma_{mv} ((G \setminus v) \setminus F) \ge \gamma_{mv} (G \setminus v)$.

Proposition 3.21. Let G be a graph and $v \in V(G)$ be a nonisolated vertex of G. Then $\gamma_{mv}(G \setminus {}^{m}\{v\}) \ge \gamma_{mv}(G)$.

Proof. Let *T* be a minimum m-dominating set of $G \setminus {}^{m} \{v\}$. Then *T* contains all m-isolated vertices of $G \setminus {}^{m} \{v\}$. Now every neighbour of *v* is an m-isolated vertex of $G \setminus {}^{m} \{v\}$. Therefore, every neighbour of *v* is an element of *T*. Thus *T* is an m-dominating set of *G*. Therefore, $\gamma_{mv}(G) \leq |T| = \gamma_{mv}(G \setminus {}^{m} \{v\})$.

Theorem 3.22. Let G be a graph and $v \in V(G)$ be such that $d(v) \ge 2$. Then $\gamma_{mv}(G \setminus {}^{m}{v}) > \gamma_{mv}(G)$.

Proof. Suppose *S* is a minimum m-dominating set of $G \setminus {}^{m} \{v\}$. Let $S_1 = (S \setminus N(v)) \cup \{v\}$. Then $|S_1| < |S|$. Let *x* be any vertex of *G* such that $x \notin S_1$. If $x \in N(v)$ then *x* is adjacent to *v* and of course $v \in S_1$. Suppose, $x \notin N(v)$. Then $x \notin S$ and also $x \neq v$. Thus *x* is a vertex of $G \setminus {}^{m} \{v\}$ and $x \notin S$. Therefore, *x* is m-adjacent to some vertex *y* of *S*. Therefore, $d(x,y) \leq 3$ in $G \setminus {}^{m} \{v\}$. Since elements of N(v) are isolated vertices in $G \setminus {}^{m} \{v\}$, $y \notin N(v)$ and hence $y \in S_1$. Also $d(x,y) \leq 3$ in G. Thus, x is m-adjacent to y where $y \in S_1$. Thus, S_1 is an m-dominating set in G. Therefore, $\gamma_{mv}(G) \leq |S_1| < |S| = \gamma_{mv}(G \setminus {}^{m} \{v\})$.

Definition 3.23. Let G be a graph, $S \subset V(G)$ and $v \in S$. Then the external private m-neighbourhood of v with respect to S is $E_x P_{m,n}[v,S] = \{w \in V(G) \setminus S \text{ such that } w \text{ is m-adjacent to}$ v in G but w is not m-adjacent to any other member of S}.

Theorem 3.24. Let G be a graph. v be a pendant vertex of G and u be its neighbour. Then $\gamma_{mv}(G \setminus \{v\}) = \gamma_{mv}(G)$ if and only if there is a minimum m-dominating set S of G such that $u \in S, v \notin S$ and $E_x P_{m,n}[u, S] \subseteq \{v\}$.

Proof. It is already true that $\gamma_{m\nu}(G \setminus {}^{m}\{v\}) \ge \gamma_{m\nu}(G)$. Suppose there is a minimum m-dominating set *S* of *G* such that $u \in S, v \notin S$ and the condition is satisfied. Let *x* be a vertex of $G \setminus {}^{m}\{v\}$ such that $x \notin S$. Now *x* is m-adjacent to some vertex *y* of *S* in *G*. If y = u then *x* is not m-adjacent to *u* in $G \setminus {}^{m}\{v\}$. Since the condition is satisfied, *x* is m-adjacent in $G \setminus {}^{m}\{v\}$ to some vertex *z* of *S* such that $z \neq u$. If *x* is not m-adjacent to *u* then *x* is m-adjacent to *u* then *x* is m-adjacent to *w* in *G* of $\{v\}$ also (\cdot . The path joining *x* and *w* cannot contain *u* as *x* is not m-adjacent to *u*). Thus from both the above cases it follows that *S* is an m-dominating set in $G \setminus {}^{m}\{v\}$. Thus, $\gamma_{m\nu}(G \setminus {}^{m}\{v\}) \le |S| = \gamma_{m\nu}(G)$. Hence, $\gamma_{m\nu}(G \setminus {}^{m}\{v\}) = \gamma_{m\nu}(G)$.

Conversely, suppose $\gamma_{mv}(G \setminus {}^{m}\{v\}) = \gamma_{mv}(G)$. Let *S* be a minimum m-dominating set of $G \setminus {}^{m}\{v\}$. Since *u* is an isolated vertex in $G \setminus {}^{m}\{v\}$, $u \in S$. Obviously, $v \notin S$. Let *z* be a vertex such that $z \notin S$ and $z \neq v$. Suppose, *z* is m-adjacent to *u* in *G*. Since *S* is an m-dominating set of $G \setminus {}^{m}\{v\}$, *z* is m-adjacent in $G \setminus {}^{m}\{v\}$ to some vertex *u'* of *S*. Note that $u' \neq u$ because *u* is an isolated vertex in $G \setminus {}^{m}\{v\}$. Now $d(z,u') \leq 3$ in $G \setminus {}^{m}\{v\}$. Therefore, $d(z,u') \leq 3$ in *G*. Thus we have proved that $z \in V(G) \setminus S$, $z \neq v$ and if *z* is m-adjacent to *u* in $G \setminus {}^{m}\{v\}$. Note that *S* is an m-dominating set in *G* also. Since $\gamma_{mv}(G \setminus {}^{m}\{v\}) = \gamma_{mv}(G)$, *S* is a minimum m-dominating set of *G* and the condition is satisfied.

Acknowledgment

The work for the second author is financially supported by INSPIRE Fellowship of the "Department of Science and Technology" of Government of India.

References

- [1] D. K. Thakkar and Neha P. Jamvecha, A New Variant of Edge Stability in Graphs, *International Journal of Pure* and Engg. Mathematics, 5(3)(2017), 87–97.
- [2] D. K. Thakkar and Neha P. Jamvecha, On mindependence in Graphs, *International Journal of Scientific Reserach in Mathematical and Statistical Science*, 5(4)(2018), 374–379.

- [3] E. Sampathkumar and P. S. Neeralagi, The neighbourhood number of a graph, *Journal of Pure and Applied Mathematics*, (1985), 126–136.
- [4] E. Sampathkumar and S. S. Kamath, Mixed Domination in Graphs, *The Indian Journal of Statistics*, (1992), 12– 23.
- [5] R. Laskar and K. Peters, Vertex and edge domination parameters in graphs, *Congressus Numerantium*, 48(1985), 291–305.
- [6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Domination in Graphs Advanced Topics*, Marcel Dekker, Inc., New-York, 1998.
- [7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Funda-mentals of domination in graphs*, Marcel Dekker, Inc., New-York, 1998.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

