About m-domination number of graphs

D. K. Thakkar ${ }^{1}$ and Neha P. Jamvecha ${ }^{2 *}$

Abstract

In this paper, we have defined the concept of m -dominating set in graphs. In order to define this concept we have used the notion of m-adjacent vertices. We have also defined the concepts of minimal m-dominating set, minimum m -dominating set and m -domination number which is the minimum cardinality of an m -dominating set. We prove that the complement of a minimal m -dominating set is an m -dominating set. Also we prove a necessary and sufficient condition under which the m-domination number increases or decreases when a vertex is removed from the graph. Further we have also studied the concept of m-removing a vertex from the graph and we prove that the m-removal of a vertex from the graph always increases or does not change the m -domination number. Some examples have also been given.

Keywords

m -dominating set, minimal m-dominating set, minimum m-dominating set, private m-neighbourhood of a vertex, m-removal of a vertex.
AMS Subject Classification
05C69
1,2 Department of Mathematics, Saurashtra University, Rajkot-360005, Gujarat, India.
*Corresponding author: ${ }^{1}$ dkthakkar1@yahoo.co.in; ${ }^{2}$ jamvechaneha30@gmail.com
Article History: Received 12 October 2018; Accepted 17 March 2019

Contents

1 Introduction 177
2 Preliminaries and Notations 177
3 Main Results 178
References 181

1. Introduction

In the area of mixed domination several new concepts have been appeared. The concept of a vertex which m-dominates an edge and the concept of an edge which m-dominates a vertex have been defined and studied by some authors like R. Laskar, K. Peters, E. Sampathkumar, S. S. Kamath and others [3-5]. The above concepts can be used to define m-adjacent vertices and m -adjacent edges. In fact, we have defined m -adjacent vertices and m-adjacent edges in [1]. We observe that these concepts give rise to new concept called m-dominating set using m -adjacent vertices.

We also introduce the concepts of minimal m-dominating set, minimum m -dominating set and m -domination number which is the minimum cardinality of an m -dominating set.

We have also a concept called m-removal of a vertex in graphs which has been introduced in [2]. We proved the effect of m -removing a vertex on m -domination number.

2. Preliminaries and Notations

If G is a graph then $E(G)$ denotes the edge set and $V(G)$ denotes the vertex set of the graph. If v is a vertex of G then $G \backslash v$ denotes the subgraph of G obtained by removing the vertex v and all the edges incident to $v . N(v)$ denotes the set of vertices which are adjacent to $v . N[v]=N(v) \cup v$. If x is any vertex then $d(x)$ denotes the degree of x and is the number of edges incident at x.

Definition 2.1. [1] Let u and v be two vertices of G. Then u and v are said to be m-adjacent vertices in G if there is an edge of G which m-dominates both u and v in G.

Definition 2.2. [2] Let G be a graph and $v \in V(G)$. We obtain a subgraph of G by removing vertex v and certain edges which is called the subgraph obtained by m-removing the vertex v from the graph G.

Definition 2.3. [2] Let G be a graph and $v \in V(G)$. The subgraph obtained by m-removing vertex v from G has the vertex $\operatorname{set} V(G) \backslash\{v\}$ and by removing all the edges of G which m-dominate vertex v. This subgraph is denoted as $G \backslash^{m}\{v\}$.

3. Main Results

Definition 3.1. Let G be a graph and $S \subset V(G)$. Then S is said to be an m-dominating set iffor every vertex v in $V(G) \backslash S$, there is a vertex u in S such that u and v are m-adjacent.

Note that every dominating set is an m-dominating set but m -dominating set need not be a dominating set.

Example 3.2. Consider the path graph P_{5} with vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$

Figure 1. P_{5}

Let $S=\left\{v_{3}\right\}$ then S is an m-dominating set but not dominating set.

Definition 3.3. Let G be a graph and $S \subset V(G)$ be an mdominating set. Then S is said to be a minimal m-dominating set if $S \backslash\{v\}$ is not an m-dominating set for every v in S.

Definition 3.4. An m-dominating set with minimum cardinality is called a minimum m-dominating set. The cardinality of minimum m-dominating set is the m-domination number of the graph G and it is denoted as $\gamma_{m v}(G)$.

Definition 3.5. Let G be a graph and $v \in V(G)$. Then v is said to be an m-isolated vertex of G if for every other vertex u of G, u is not m-adjacent to v.

Obviously, a vertex v is isolated if and only if it is misolated.

Theorem 3.6. Let G be a graph and $S \subset V(G)$ be an mdominating set of G. Then S is a minimal m-dominating set of G if and only if for every $u \in S$ atleast one of the following two conditions holds.
(i) u is not m-adjacent to any other vertex of S.
(ii) There exist a vertex $v \in V(G) \backslash S$ such that v is m-adjacent to only one vertex of S namely u.

Proof. Suppose S is a minimal m-dominating set. Let $u \in S$. Now $S \backslash\{u\}$ is not an m-dominating set. Therefore, there is a vertex v outside $S \backslash\{u\}$ such that v is not m -adjacent to any vertex of $S \backslash\{u\}$.
Case (i): $v=u$
Then u is not m -adjacent to any other vertex of S.
Case (ii): $v \neq u$
Then $v \notin S$.
Subcase (i): v is not m-adjacent to any vertex of $S \backslash\{u\}$.
Subcase (ii): v is m-adjacent to some vertex of S.
Therefore, v is m-adjacent to only one vertex of S namely u.

Conversely, suppose any of condition (i) and (ii) is satisfied for any $u \in S$.
Let $u \in S$.
Case (i): Suppose condition (i) is satisfied.
Therefore, u is not m-adjacent to any vertex of $S \backslash\{u\}$ and also $u \notin S \backslash\{u\}$.
Case (ii): Suppose condition (ii) is satisfied.
Let $v \in V(G) \backslash S$ such that v is m-adjacent to only one vertex of S namely u. Then v is not m-adjacent to any vertex of $S \backslash\{u\}$. Thus it follows that $S \backslash\{u\}$ is not an m-dominating set of G for any $u \in S$.
Therefore, S is a minimal m-dominating set.

Theorem 3.7. Let G be a graph without m-isolated vertices and S be a minimal m-dominating set of G. Then $V(G) \backslash S$ is an m-dominating set of G.

Proof. Let $v \in S$. Since S is a minimal m-dominating set, (i) or (ii) of theorem (3.6) is satisfied.
Suppose (i) is satisfied. Then v is not m -adjacent with any other vertex of S. Since v is not an m-isolated vertex of G, v is m-adjacent to some vertex u of G. Then $u \in V(G) \backslash S$.
Suppose (ii) is satisfied and suppose v is m-adjacent to some vertex of S. Now, there is a vertex u in $V(G) \backslash S$ such that u is m -adjacent to v and u is not m -adjacent to any other vertex of S.
Thus in both the cases v is m -adjacent to some vertex of $V(G) \backslash S$. Therefore, $V(G) \backslash S$ is an m-dominating set of G.

Corollary 3.8. Let G be a graph without m-isolated vertices. Then $\gamma_{m v}(G) \leq n / 2$.

Proof. Let S be a minimum m-dominating set of G. Then $\gamma_{m v}(G)=|S|$. Now by the theorem(3.7), $V(G) \backslash S$ is also an m -dominating set. Therefore, $\gamma_{m v}(G) \leq|V(G) \backslash S|$. Therefore, $\gamma_{m v}(G)=\min \{|S|,|V(G) \backslash S|\}$. If $|S| \leq n / 2$ then $\gamma_{m v}(G) \leq$ $n / 2$. If $|V(G) \backslash S|>n / 2$ then $|S|<n / 2$ and therefore $\gamma_{m v}(G) \leq$ $n / 2$.

Definition 3.9. Let G be a graph and $x \in V(G)$. The m-vertex open neighbourhood of x (or simply m-open neighbourhood of x) is the set $N_{m v}(x)=\{u \in V(G)$ such that u is m-adjacent to $x\}$.
Also the m-vertex closed neighbourhood of x is the set $N_{m v}[x]=$ $N_{m v}(x) \cup\{x\}$.

Now we state and prove a necessary and sufficient condition under which the m -domination number of a graph increases when a vertex is removed from the graph.

Theorem 3.10. Let G be a graph and $v \in V(G)$. Then $\gamma_{m v}(G \backslash v)>\gamma_{m v}(G)$ if and only if following conditions are satisfied
(i) v is not an m-isolated vertex of G.
(ii) If S is a minimum m-dominating set of G and $v \notin S$ then there is a vertex x in $V(G) \backslash S$ such that $x \neq v$ and $d(x, S)>3$ in the subgraph $G \backslash v$.
(iii) There is no subset S of $V(G) \backslash N_{m v}[v]$ such that $|S| \leq$ $\gamma_{m v}(G)$ and it is an m-dominating set of $G \backslash v$.

Proof. Suppose $\gamma_{m v}(G \backslash v)>\gamma_{m v}(G)$.
(i) Suppose v is an m-isolated vertex of G. Let S be any minimum m-dominating set of G. Then $v \in S$. Let $S_{1}=S \backslash\{v\}$. Let x be any vertex of $G \backslash v$ such that $x \notin$ S_{1}. Then, $x \notin S$. Since S is an m-dominating set of $G, d(x, S) \leq 3$ in G. Now v is an m-isolated vertex, $d\left(x, S_{1}\right)$ in $G=d\left(x, S_{1}\right)$ in $G \backslash v$. Therefore, $d\left(x, S_{1}\right)$ in $G \backslash v \leq 3$. Thus, x is m -adjacent to some member of S_{1} in $G \backslash v$. This proves that S_{1} is an m-dominating set in $G \backslash v$. Therefore $\gamma_{m v}(G \backslash v) \leq\left|S_{1}\right|<|S|=\gamma_{m v}(G)$, which is a contradiction. Therefore, v cannot be an m-isolated vertex of G.
(ii) Suppose, there is a minimum m-dominating set S of G such that $v \notin S$. Suppose for every vertex x which is not in S and $x \neq v, d(x, S) \leq 3$ in $G \backslash v$. Then S is an mdominating set in $G \backslash v$. This implies that $\gamma_{m v}(G \backslash v) \leq$ $|S|=\gamma_{m v}(G)$ which is a contradiction. Therefore (ii) is satisfied.
(iii) Suppose, there is a subset S of $V(G) \backslash N_{m v}[v]$ such that $|S| \leq \gamma_{m v}(G)$ and S is an m-dominating set of $G \backslash v$. Then $\gamma_{m v}(G \backslash v) \leq|S| \leq \gamma_{m v}(G)$ which is again a contradiction. Therefore, (iii) holds.

Conversely, suppose condition (i), (ii) and (iii) are satisfied. First suppose that $\gamma_{m v}(G \backslash v)=\gamma_{m v}(G)$. Let S be a minimum m-dominating set of $G \backslash v$. Let x be any vertex of G such that $x \notin S$ and $x \neq v$. Then $d(x, S)$ in $G \leq d(x, S)$ in $G \backslash v$ which is ≤ 3. Now suppose v is m -adjacent to some vertex of S. Then S is a minimum m-dominating set of G and $v \notin S$. If $x \in V(G) \backslash S$ such that $x \neq v$ then $d(x, S) \leq 3$ in $G \backslash v$. This contradicts condition (ii). Therefore, v cannot be an m-adjacent to any vertex of S. Then S is a subset of $V(G) \backslash N_{m v}[v]$. Also, $|S| \leq \gamma_{m v}(G)$. Also, S is an m-dominating set of $G \backslash v$. This contradicts condition (iii). Thus, $\gamma_{m v}(G \backslash v)=\gamma_{m v}(G)$ is not possible.
Suppose, $\gamma_{m v}(G \backslash v)<\gamma_{m v}(G)$.
Let S be a minimum m-dominating set of $G \backslash v$. Since $|S|<$ $\gamma_{m v}(G), S$ cannot be an m-dominating set of G. Therefore, v cannot be m-adjacent to any vertex of G. Therefore, S is a subset of $V(G) \backslash N_{m v}[v]$. Also $|S| \leq \gamma_{m v}(G)$. Also S is an m-dominating set of $G \backslash v$. This again contradicts (iii). Therefore, $\gamma_{m v}(G \backslash v)<\gamma_{m v}(G)$ is also not possible. Thus, $\gamma_{m v}(G \backslash v)>\gamma_{m v}(G)$.

Corollary 3.11. Let G be a graph and $v \in V(G)$ be such that $\gamma_{m v}(G \backslash v)>\gamma_{m v}(G)$ then $d(v, S) \leq 2$ for every minimum m-dominating set S of G.

Proof. Let S be any minimum m-dominating set of G. Suppose $v \notin S$. By (ii) of theorem(3.10), there is a vertex x in $V(G) \backslash S$ such that $d(x, S)>3$ in $G \backslash v$. However, $d(x, S) \leq 3$ in G. Therefore, there is a vertex y in S such that $d(x, y) \leq 3$. Any path from x to y in G must contain v as an internal vertex (otherwise v does not appear in the path and therefore there is a path of length less than or equal to 3 between x and y in $G \backslash v)$. Obviously, there is a path from v to y of length ≤ 2. Therefore, $d(v, S) \leq 2$.

Definition 3.12. Let G be a graph, $v \in V(G)$ and $S \subset V(G)$ such that $v \in S$. Then private m-neighbourhood of v with respect to S is defined as $P_{m n}[v, S]=\{u \in V(G)$ such that $\left.N_{m v}[u] \cap S=\{v\}\right\}$.

Remark 3.13. Note that if $v \in S$ and v is not m-adjacent to any other vertex of S then $v \in P_{m n}[v, S]$. If $u \in V(G) \backslash S$ then $u \in P_{m n}[v, S]$ if and only if u is m-adjacent to only one vertex of S namely v.

Now we state and prove a necessary and sufficient condition under which the m-domination number of a graph decreases when a vertex is removed from the graph.

Theorem 3.14. Let G be a graph and $v \in V(G)$. Then $\gamma_{m v}(G \backslash v)<\gamma_{m v}(G)$ if and only if there is a minimum m dominating set S of G such that $v \in S$ and $P_{m n}[v, S]=\{v\}$.

Proof. Suppose $\gamma_{m v}(G \backslash v)<\gamma_{m v}(G)$. Let S_{1} be a minimum mdominating set of $G \backslash v$. Then S_{1} cannot be an m-dominating set of G. Therefore, $d\left(v, S_{1}\right)>3$. Let $S=S_{1} \cup\{v\}$. Let $x \in V(G) \backslash S$ then $x \notin S_{1}$. Since S_{1} is an m-dominating set of $G \backslash v, x$ is m-adjacent to some vertex z of S_{1} in $G \backslash v$. Then x is m -adjacent to z in G also. Thus S is an m-dominating set of G and $v \in S$. Note that as mentioned above v is not m-adjacent to any other vertex of S in G. Therefore, $v \in P_{m n}[v, S]$. Let $x \in V(G) \backslash S$ such that x is m-adjacent to v in G. Now, x is m-adjacent to y in $S($ in $G \backslash v$) such that $y \neq v$. Then x is also m -adjacent to y in G. Thus x is m-adjacent to two distinct vertices of S. Therefore, $x \notin P_{m n}[v, S]$ if $x \in V(G) \backslash S$. Thus $P_{m n}[v, S]=\{v\}$.
Conversely, suppose there is a minimum m-dominating set S of G such that $v \in S$ and $P_{m n}[v, S]=\{v\}$. Let $S_{1}=S \backslash\{v\}$. Let x be a vertex of $G \backslash v$ such that $x \notin S_{1}$. Then $x \notin S$. Since S is an m-dominating set of G, x is m-adjacent to some vertex y of S. Suppose $y=v$. Now $x \notin P_{m n}[v, S]$. Therefore, x is madjacent to some vertex z of S in G such that $z \neq v$. Therefore, $d(x, z) \leq 3$ in G. Let P be a path in G joining x to z. If v is a vertex in this path then it will imply that $d(v, z) \leq 3$ and this implies that v is m-adjacent to z and $z \in S$. This contradicts the fact that $v \in P_{m n}[v, S]$. Thus, v does not appear in this path. Thus P is a path in $G \backslash v$ joining x to z. Therefore, x is $\mathrm{m}-$ adjacent to z in $G \backslash v$ and $z \in S_{1}$. Thus S_{1} is an m-dominating set in $G \backslash v$. Thus, $\gamma_{m v}(G \backslash v) \leq\left|S_{1}\right|<|S|=\gamma_{m v}(G)$.

Corollary 3.15. Let G be a graph and $v \in V(G)$ be such that v is not m-isolated vertex of G. If $\gamma_{m v}(G \backslash v)<\gamma_{m v}(G)$ then there is a minimum m-dominating set S such that $v \notin S$.

Proof. There is a minimum m-dominating set S_{1} of G such that $v \in S_{1}$ and $P_{m n}\left[v, S_{1}\right]=\{v\}$. Since v is not an m-isolated vertex in G, there is a vertex x which is m-adjacent to v in G. Since v is not m-adjacent to any vertex of $S_{1}, x \in V(G) \backslash S_{1}$. Let $S=\left(S_{1} \backslash\{v\}\right) \cup\{x\}$. Then $|S|=\left|S_{1}\right|=\gamma_{m v}(G)$. Also $v \notin S$. Let $z \in V(G) \backslash S$. If $z=v$ then z is m -adjacent to x and $x \in S$. Suppose $z \neq v$. Then $z \notin S_{1}$. Since S_{1} is an m -dominating set of G, z is m-adjacent to some vertex t of S_{1}. If $t=v$ then z is m-adjacent to some vertex t^{\prime} of S_{1} such that $t^{\prime} \neq v$ because $z \notin P_{m n}\left[v, S_{1}\right]$. Thus, z is m-adjacent to some vertex t^{\prime} of S. Thus S is an m-dominating set of G. Thus, S is a minimum m-dominating set of G such that $v \notin S$.

Theorem 3.16. Let G be a graph and $v \in V(G)$ such that v is not an m-isolated vertex in G. Then $\gamma_{m v}(G \backslash v)<\gamma_{m v}(G)$ if and only if there is a minimum m-dominating set S not containing v and a vertex x in S such that $P_{m n}[x, S]=\{v\}$.

Proof. Suppose $\gamma_{m v}(G \backslash v)<\gamma_{m v}(G)$. By theorem(3.14), there is a minimum m-dominating set S_{1} such that $v \in S_{1}$ and $P_{m n}\left[v, S_{1}\right]=\{v\}$. Let x be a vertex in $V(G) \backslash S_{1}$, which is adjacent to v. Let $S=\left(S_{1} \backslash\{v\}\right) \cup\{x\}$. Then $x \in S$ and by the corollary (3.15), S is a minimum m-dominating set of G not containing v. Note that v is not m -adjacent to any vertex of S_{1} because $v \in P_{m n}\left[v, S_{1}\right]$. Therefore, v is adjacent to only one vertex of S namely x. Thus $v \in P_{m n}[x, S]$. Again x is m -adjacent to v and since $x \notin P_{m n}\left[v, S_{1}\right], x$ is m-adjacent to some vertex y of S_{1} where $y \neq v$. Therefore, x is m-adjacent to some vertex of S and therefore $x \notin P_{m n}[x, S]$. Let z be a vertex of $V(G) \backslash S$ such that z is m-adjacent to x. Since $z \notin S_{1}$, z is m-adjacent to some vertex w of S_{1} because S_{1} is an mdominating set of G. Thus, z is m-adjacent to two distinct vertices of S namely x and w. Therefore, $z \notin P_{m n}[x, S]$. Hence, $P_{m n}[x, S]=\{v\}$.
Conversely, suppose there is a minimum m-dominating set S such that $v \notin S$ and for some vertex x in $S, P_{m n}[x, S]=\{v\}$. Let $S_{1}=S \backslash\{x\}$. Now, $x \notin P_{m n}[x, S]$. Therefore, x is m-adjacent to some vertex y of S in G. Note that v is not m-adjacent to any vertex of S except x. Let P be a path in G from x to y whose length is ≤ 3. If v is an internal vertex in this path then it would imply that $d(v, y) \leq 3$ in G and this means that v is m-adjacent to y in G and $y \neq x$. This is a contradiction. Thus v cannot appear as an internal vertex in the path above from x to y. Therefore, this is a path in $G \backslash v$ from x to y having length ≤ 3. Thus x is m-adjacent to y in $G \backslash v$ and $y \in S_{1}$. Let z be any vertex of $G \backslash v$ such that $z \notin S_{1}$ and $z \neq x$. Then $z \notin S$. Now, z is m-adjacent to some vertex w of S in G. If $w=x$ then there is another vertex w^{\prime} in S such that z is m -adjacent to w^{\prime} in G. By the same reasoning as given above we say that z is m-adjacent to w^{\prime} in $G \backslash v$ also. Also $w^{\prime} \in S_{1}$. Thus, we have proved that S_{1} is an m-dominating set of $G \backslash v$. Therefore, $\gamma_{m v}(G \backslash v) \leq\left|S_{1}\right|<|S|=\gamma_{m v}(G)$. Hence, $\gamma_{m v}(G \backslash v)<\gamma_{m v}(G)$.

Example 3.17. Consider the path graph P_{8} with vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$

Figure 2. P_{8}

Here, $\gamma_{m v}(G)=2$ and $\gamma_{m v}\left(G \backslash\left\{v_{8}\right\}\right)=1$. Let $S=\left\{v_{4}, v_{5}\right\}$. Then $P_{m n}\left[v_{5}, S\right]=\left\{v_{8}\right\}$

Corollary 3.18. Let G be a graph and $v \in V(G)$ be such that $d(v, S)=3$ for every minimum m-dominating set S of G. Then $\gamma_{m v}(G \backslash v)=\gamma_{m v}(G)$.

Proof. If $\gamma_{m v}(G \backslash v)>\gamma_{m v}(G)$ then $d(v, S) \leq 2$ for every minimum m-dominating set S of G which is a contradiction. If $\gamma_{m v}(G \backslash v)<\gamma_{m v}(G)$ then there is a minimum m-dominating set S of G such that $d(v, S)=0$ which is again a contradiction. Therefore, $\gamma_{m v}(G \backslash v)=\gamma_{m v}(G)$.

Proposition 3.19. Let G be a graph and F be a set of edges of G. Then $\gamma_{m v}(G \backslash F) \geq \gamma_{m v}(G)$.

Proof. Let S be a minimum m-dominating set of $G \backslash F$. Let $x \in V(G) \backslash S$. Now, x is m-adjacent to some vertex y of S in $G \backslash F$. Therefore, there is an edge e in the graph $G \backslash F$ which m -dominates both x and y. Therefore, e m-dominates x and y in G also. Therefore, x and y are m -adjacent in G also. Thus, x is m-adjacent to some vertex y of S in G. Therefore, $\gamma_{m v}(G \backslash F) \geq|S|=\gamma_{m v}(G)$.

Proposition 3.20. Let G be a graph and $v \in V(G)$. Then, $\gamma_{m v}\left(G \backslash^{m}\{v\}\right) \geq \gamma_{m v}(G \backslash v)$.

Proof. Note that $G \backslash^{m}\{v\}$ is obtained by removing those edges of G which m-dominate v but which are not incident to v. These are the edges of $G \backslash v$. Let F be the set of these edges. Then by the proposition(3.19), $\gamma_{m v}\left(G \backslash^{m}\{v\}\right)=\gamma_{m v}((G \backslash v) \backslash F) \geq$ $\gamma_{m v}(G \backslash v)$.

Proposition 3.21. Let G be a graph and $v \in V(G)$ be a nonisolated vertex of G. Then $\gamma_{m v}\left(G \backslash^{m}\{v\}\right) \geq \gamma_{m v}(G)$.

Proof. Let T be a minimum m-dominating set of $G \backslash^{m}\{v\}$. Then T contains all m-isolated vertices of $G \backslash^{m}\{v\}$. Now every neighbour of v is an m-isolated vertex of $G \backslash^{m}\{v\}$. Therefore, every neighbour of v is an element of T. Thus T is an m-dominating set of G. Therefore, $\gamma_{m v}(G) \leq|T|=$ $\gamma_{m v}\left(G \backslash^{m}\{v\}\right)$.

Theorem 3.22. Let G be a graph and $v \in V(G)$ be such that $d(v) \geq 2$. Then $\gamma_{m v}\left(G \backslash^{m}\{v\}\right)>\gamma_{m v}(G)$.

Proof. Suppose S is a minimum m-dominating set of $G \backslash^{m}\{v\}$. Let $S_{1}=(S \backslash N(v)) \cup\{v\}$. Then $\left|S_{1}\right|<|S|$. Let x be any vertex of G such that $x \notin S_{1}$. If $x \in N(v)$ then x is adjacent to v and of course $v \in S_{1}$. Suppose, $x \notin N(v)$. Then $x \notin S$ and also $x \neq v$. Thus x is a vertex of $G \backslash^{m}\{v\}$ and $x \notin S$. Therefore, x is m -adjacent to some vertex y of S. Therefore, $d(x, y) \leq 3$
in $G \backslash^{m}\{v\}$. Since elements of $N(v)$ are isolated vertices in $G \backslash^{m}\{v\}, y \notin N(v)$ and hence $y \in S_{1}$. Also $d(x, y) \leq 3$ in G. Thus, x is m-adjacent to y where $y \in S_{1}$. Thus, S_{1} is an m -dominating set in G. Therefore, $\gamma_{m v}(G) \leq\left|S_{1}\right|<|S|=$ $\gamma_{m v}\left(G \backslash^{m}\{v\}\right)$.

Definition 3.23. Let G be a graph, $S \subset V(G)$ and $v \in S$. Then the external private m-neighbourhood of v with respect to S is $E_{x} P_{m, n}[v, S]=\{w \in V(G) \backslash S$ such that w is m-adjacent to v in G but w is not m-adjacent to any other member of $S\}$.

Theorem 3.24. Let G be a graph. v be a pendant vertex of G and u be its neighbour. Then $\gamma_{m v}\left(G \backslash^{m}\{v\}\right)=\gamma_{m v}(G)$ if and only if there is a minimum m-dominating set S of G such that $u \in S, v \notin S$ and $E_{x} P_{m, n}[u, S] \subseteq\{v\}$.
Proof. It is already true that $\gamma_{m v}\left(G \backslash^{m}\{v\}\right) \geq \gamma_{m v}(G)$. Suppose there is a minimum m-dominating set S of G such that $u \in S, v \notin S$ and the condition is satisfied. Let x be a vertex of $G \backslash^{m}\{v\}$ such that $x \notin S$. Now x is m-adjacent to some vertex y of S in G. If $y=u$ then x is not m-adjacent to u in $G \backslash^{m}\{v\}$. Since the condition is satisfied, x is m-adjacent in $G \backslash^{m}\{v\}$ to some vertex z of S such that $z \neq u$. If x is not m -adjacent to u then x is m -adjacent in G to some vertex w in S such that $w \neq u$. Then x is m-adjacent to w in $G \backslash^{m}\{v\}$ also (\because The path joining x and w cannot contain u as x is not m -adjacent to u). Thus from both the above cases it follows that S is an m-dominating set in $G \backslash^{m}\{v\}$. Thus, $\gamma_{m v}\left(G \backslash^{m}\{v\}\right) \leq|S|=\gamma_{m v}(G)$. Hence, $\gamma_{m v}\left(G \backslash^{m}\{v\}\right)=\gamma_{m v}(G)$.
Conversely, suppose $\gamma_{m v}\left(G \backslash^{m}\{v\}\right)=\gamma_{m v}(G)$. Let S be a minimum m-dominating set of $G \backslash^{m}\{v\}$. Since u is an isolated vertex in $G \backslash^{m}\{v\}, u \in S$. Obviously, $v \notin S$. Let z be a vertex such that $z \notin S$ and $z \neq v$. Suppose, z is m-adjacent to u in G. Since S is an m-dominating set of $G \backslash^{m}\{v\}, z$ is madjacent in $G \backslash^{m}\{v\}$ to some vertex u^{\prime} of S. Note that $u^{\prime} \neq u$ because u is an isolated vertex in $G \backslash^{m}\{v\}$. Now $d\left(z, u^{\prime}\right) \leq 3$ in $G \backslash^{m}\{v\}$. Therefore, $d\left(z, u^{\prime}\right) \leq 3$ in G. Thus we have proved that $z \in V(G) \backslash S, z \neq v$ and if z is m-adjacent to u in G then z is also m-adjacent to some other vertex u^{\prime} of S in $G \backslash^{m}\{v\}$. Note that S is an m-dominating set in G also. Since $\gamma_{m v}\left(G \backslash^{m}\{v\}\right)=\gamma_{m v}(G), S$ is a minimum m-dominating set of G and the condition is satisfied.

Acknowledgment

The work for the second author is financially supported by INSPIRE Fellowship of the "Department of Science and Technology" of Government of India.

References

${ }^{[1]}$ D. K. Thakkar and Neha P. Jamvecha, A New Variant of Edge Stability in Graphs, International Journal of Pure and Engg. Mathematics, 5(3)(2017), 87-97.
${ }^{[2]}$ D. K. Thakkar and Neha P. Jamvecha, On mindependence in Graphs, International Journal of Scientific Reserach in Mathematical and Statistical Science, 5(4)(2018), 374-379.
${ }^{\text {[3] }}$ E. Sampathkumar and P. S. Neeralagi, The neighbourhood number of a graph, Journal of Pure and Applied Mathematics, (1985), 126-136.
${ }^{\text {[4] E. Sampathkumar and S. S. Kamath, Mixed Domination }}$ in Graphs, The Indian Journal of Statistics, (1992), 1223.
${ }^{\text {[5] }}$ R. Laskar and K. Peters, Vertex and edge domination parameters in graphs, Congressus Numerantium, 48(1985), 291-305.
${ }^{[6] ~ T . ~ W . ~ H a y n e s, ~ S . ~ T . ~ H e d e t n i e m i ~ a n d ~ P . ~ J . ~ S l a t e r, ~ D o m i-~}$ nation in Graphs Advanced Topics, Marcel Dekker, Inc., New-York, 1998.
${ }^{[7]}$ T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New-York, 1998.
$\star \star \star \star \star \star \star \star \star$
ISSN(P):2319-3786

Malaya Journal of Matematik
ISSN(O):2321-5666

