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Abstract
We computationally study 2 most recently defined fractional derivatives (FDs) with classical properties, both
based on 1st principles, also known as delta methods, involving limit approaches. Using the advantages of both
the definitions we present a new limit definition of the FD that has always less computational error or, equivalently,
more computational accuracy and at the same time satisfies all the classical properties that are observed by the
foregoing 2 definitions. Such definitions are desirable so that these provide a smooth transition to/from the most
extensively used and the best understood classical derivative (CD). Our study throws more light on the pros and
cons of these definitions and possibly encourage further innovative approach to improve the definitions for still
better/complete compatibility/generalization, and possibly to understand and to write the physical significance of
the FD readily.
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1. Introduction
Isaac Newton (1642-1727), an English physicist and math-

ematician and Gottfried Wilhelm (von) Leibniz (1646-1716), a
German polymath and a philosopher may be considered as the
2 pioneers of modern calculus. Classical (i.e. integer-order)
derivatives (CDs) of a function defined in modern calculus
have been known and used since later half of the 17th century.

The (non-integer) fractional order derivative or, simply
fractional derivative (FD), of a function has been a fascinating
research area for over 3 centuries. Guillaume de l’Hôpital
(1661-1704), a French mathematician asked, in a letter to
Leibniz in 1695, the question

What does it mean by Dn f (t) when n =
1
2

?

where Dn =
dn

dtn . This question has made several mathe-
maticians over 3 centuries to spend countless hours to ponder
over and provide an answer that will be convincing and has a
physical meaning compatible with that of the CD.

The findings are not unique. Different types of FDs were
introduced. None of these FDs is completely compatible with
the corresponding CD in terms of satisfying all the classical
properties of the CD.

Besides, the physical meaning of an FD is yet to be made
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harmonious with that of the CD exactly in the way we un-
derstand the precise significance of the CD arising out of a
real-world problem.

Consider that a coconut is dropped from an altitude (height)
a of 96 meters. Also consider, taking into account the air re-
sistance, that a is a function of time t sec such that

a = 96−6t2 meter
The instantaneous velocity at time t is
a
′
(t) = D1a(t) =−12t meter per sec

Since the distance (here height) a is decreasing with time
t increasing, the derivative CD is negative. When the coconut
touches the ground, the height a becomes 0. That is, t2 =
16 sec2. Hence time t = 4 sec. It takes just 4 sec for the
coconut to touch the ground (i.e. height a = 0).

After 2 sec the height a will reduce to 72 meter. After 3
sec height a will further reduce to 42 meter. The velocity when
it touches the ground is 48 meter per sec or, equivalently, 204
kph. Hence the physical significance of the CD is understood
readily.

We are now faced with 3 questions:

(i) In the same way as in the foregoing example, can we
readily know the exact physical significance of

D
1
2 a(t) =?

(ii) It is possible to somehow manipulate the frictional forces
to determine (not readily though) the value of the frac-
tional order α for fractional differential equations (FDEs)
corresponding to a physical problem. At the same
time given the (same) physical problem, one can read-
ily set up the mathematical model viz, the classical
(i.e. integer-order) differential equations (CDEs) by
virtue of the laws of physics globally known/meant for
CDEs. Do the solution of the FDEs and that of the
corresponding CDEs become numerically identical
for the problem?

(iii) How do the computational error (CE) and the com-
putational complexity (CC) of the CDEs and those
of the corresponding FDEs compare?

Based on individual perception, the mathematicians over
centuries introduced different types of fractional derivatives
(FDs). However, the study of FDs appeared in the early 19th

century A.D., when Lacroix (1819) [1] defined an FD based
on the traditional/classical definition of the nth derivative of
the power function.

Since then the fractional differential operators, more gen-
erally the fractional calculus, became an interesting area of
research to mathematicians. Several different forms of non-
integer order derivatives were introduced.

Some of these are the Grunwald–Letnikov, Riemann–
Liouville, Hadamard, Caputo, and Riesz operators [2–5].

More recent definitions of FD are due to Kilbas and Saigo
(2004), Klimek (2005), and Cresson (2007) [6–8]. Agrawal
(2010) [9] attempted to generalize/unify all the foregoing
notions of FDs.

The merits of the generalization were later explored/studied
in Malinowska, Odzijewicz, and Torres (2015 [10], Tomovski
et al. (2010) [11], and others. The authors concentrated on
general fractional differential operators. These operators re-
duce to the standard fractional operators when appropriate
(special) kernels are selected. One may consider other non-
standard kernels as particular cases.

Still more recent definitions of a fractional derivative are
due to Khalil, Horani, Yousef, and Sababheh (2014) [12] and
Katugampola (2014) [13]. These authors have been signifi-
cantly successful in generalizing more the definitions. Such
FD definitions not only allow smooth transition from frac-
tional order to integer order and vice versa but also permit
satisfaction of most rules i.e. classical properties obeyed by
CDs — a desirable requirement.

The definitions of FD due to Caputo, Riemann-Liouville,
Grünwald-Letnikov, Hadamard, Erdélyi-Kober, Marchaud,
and Riesz are just some, which have been studied by several
authors [14–16]. Most of the FDs are defined through frac-
tional integrals. These FDs depict non-local behaviors. Such
a behavior results in applications such as memory effects and
future dependence [14].

The existing FDs have following drawbacks:

(i) Most of the FDs, barring Caputo and Caputo-like deriva-
tives, do not satisfy Dα h(t) = 0 where h(t) is a constant
and α is not a positive integer.

(ii) All FDs do not satisfy the traditional Product Rule in
differentiation for 2 or more differentiable functions.
Let f (t), g(t), h(t) be 3 differentiable functions. The
Product Rule may be written as
d
dt ( f .g.h) = d f

dt .g.h+ f . dg
dt .h+ f .g. dh

dt

The generalization to n differentiable functions is straight-
forward.

(iii) All FDs do not satisfy the traditional Quotient Rule
in differentiation. Let the functions f , g, h be as de-
fined above and f

′
(t) = d f

dt , g
′
(t) = dg

dt , h
′
(t) = dh

dt , and
f (t) = (g(t))/(h(t)). Then the Quotient Rule may be
written as

f
′
(t) = g

′
(t)h(t)−g(t)h

′
(t)

[h(t)]2

The Quotient Rule is not an independent rule. It can be
readily derived from the Product Rule by considering

1
h(t) = [h(t)]−1.

(iv) All FDs do not satisfy the Chain Rule. The Chain Rule
is used to differentiate a composite function. The rule
may be written as
d
dt [ f (g(t))] = f

′
(g(t)).g

′
(t).

Let f (t) = ln(cos(t)). Then f
′
(t) = 1

cos(t) .− sin(t) =
− tan(t)

(v) All FDs do not, in general, satisfy Dα
a Dβ

a f (t)=Dα+β
a f (t).
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(vi) FDs do not have a corresponding Rolle’s Theorem stated
below. A real-valued differentiable function f(t) that
has 2 equal values at 2 distinct points has at least 1
stationary point (i.e. a point where the 1st derivative
is 0). The functions, for instance, the function f (t) =
sin(t), t ∈ [0,π] and the function g(t)=

√
(25− t2), t ∈

[−5,5] have 1 stationary point at t = π/2 and t = 0,
respectively.

(vii) FDs do not have a corresponding Mean Value Theo-
rem stated as follows. If the function f(t) is contin-
uous on the closed interval [a,b] and differentiable
on the open interval (a,b), a < b, then there exists a
point c ∈ (a,b) so that f

′
(c) = ( f (b)− f (a))

(b−a) . The func-

tion, for example, f (t) = t3 + 3t2− t + 1 has a c viz.
c = 1.577350270005475 in [a,b] = [0,2]. There is yet
another c = 0.422649729995468 in [a,b] = [0,2]. The
numerical value of c is computed by solving the equa-
tion 3t2−6t +2 = 0 using the Matlab command

� t = f solve(@(t)(3∗t ·∧ 2−6∗t +2), [0,2])

resulting in the solutions t = 0.422649729995468,
1.577350270005475.

(viii) The Caputo FD assumes that the function f (t) is differ-
entiable.
Khalil et al. [12] extends the usual limit definition of
the derivative of a function to circumvent some of these
difficulties. They define the FD of the function f (t) of
order α as

Dα f (t) = lim
h→0

f (t +ht1−α)− f (t)
h

,( f dkha) (1.1)

where t > 0,α ∈ (0,1), f : [0,∞)→ R. If f (t) is α -
differentiable in some open interval (0,α) and
limt→0+ Dα f (t) exists, then Dα(0) = limt→0 f α(t). We
call Definition (1.1) as KHYS definition or fdkha.

The foregoing definition satisfies the Product Rule (i.e. obvi-
ates Drawback (ii)), the Quotient Rule (i.e, removes Drawback
(iii)), and produces the results non-contradictory to the Rolle’s
Theorem (i.e. overcomes the Drawback (vi)) and the Mean
Value Theorem (i.e. gets rid of the Drawback (vii)) of the
classical calculus.

Katugampola [13] also provides yet another distinct limit
definition for the FD of f (t) to further generalize the results
derived by Khalil et al. His definition is as follows.

Dα f (t) = lim
h→0

f (teht−α

)− f (t)
h

,( f dkat) (1.2)

where α ∈ [0,1). He terms this definition the most natural
generalization of the calculus properties based on a limit
approach. We term Definition (1.2) as fdkat.

The author perhaps implies by using the term “the most
natural generalization” that there is a smooth transition from

fractional order to integer order and vice versa. The term
may not imply anything connected with the precise phys-
ical significance of the fraction α when the term t + h of
the classical derivative (limit definition) CD viz Dα f (t) =
limh→0

f (t+h)− f (t)
h is replaced by teht−α

,although terms such
as one representing a friction force in mechanics may be in-
terpreted as one corresponding to an α .

For α = 1, the definition is equivalent to the classical
definition of Df(t) i.e. f

′
(t). There are α-differentiable func-

tions which are not differentiable.
Let α ∈ (0,0.5] be a real fraction. Then a function f (t)

could be α-differentiable at a point but may not be differen-
tiable at that point. Consider, for instance, the function f (t) =
5
√

t is not differentiable at t = 0. But it is α -differentiable at
t = 0.

The CD of the function f (t) is defined according to the
1st principle as

D f (t) = lim
h→0

f (t +h)− f (t)
h

(CD) (1.3)

In the FD definitions of f (t), Khalil et al. and Katugam-
pola have replaced ‘t +h’in the CD of f (t) in the numerator
as follows.

t +h← t +ht1−α(in f dkha) (1.4)

t +h← teht−α

(in f dkat) (1.5)

It can be seen that in both the definitions the parame-
ter h (arbitrarily small negative/positive) is not stand alone.
It occurs along with the variable t > 0 — an undesirable
restriction (toward better generalization) for both the defini-
tions (1.1) and (1.2) unlike CDs. Consequently the numerical
value of h must be relative to that of the value of t(> 0).

The value of |h| should thus be small relative to the or-
der of the value of t If t is of the order of 10−6, then taking
|h|= 10−8 will be considered too large when we work with
Matlab standard precision (word-length) of 15 decimal dig-
its — the most widely used precision of scientific and engi-
neering computation globally. The optimal value of |h| will
be t×10−8in 15 digit precision context.

If, on the other hand, t > 0 is of the order of 100 or,
equivalently, 1, then taking |h| = 10−8 will be considered
computationally optimally small (but not too small) for the
foregoing 15 digit precision. In fact, it (i.e.|h| = 10−8) is
the optimal h, that needs to be used in CD, fdkha, and fdkat.
Taking |h|= 10−9 or less (subject, of course, to precision of
15 digits), the CE will start increasing or, equivalently, the
accuracy will start decreasing.

We call h as the optimal base h i.e. |h| = 10−8 (fixed)
when (i) the precision is 15 digits and (ii) the value of t > 0
is of the order of 1.

Therefore, considering the value of |h| independent of
that of FD/CD of f (t) is untenable in practical numerical
computation. Hence, both KHYS and Katu FD definitions
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are reasonable from a generalization point of view. But from
a real-world problem point of view, we do not know readily
what α should be in the forgoing definitions and also what the
ideal replacements in (1.4) and (1.5) viz. in KHYS and Katu
definitions should be.

As a matter of fact, the exact physical significance of the
value of the non-integer fractional order α (unlike the exact
physical significance of the value of the integer-order) is yet a
problem to be fully sorted out.

The question arises: What was it that prompted Khalil et
al. and Katugampola to introduce such replacements? Was
it all due to the indomitable requirement for generalizing the
FD definitions so that these obviate all the known drawbacks
of various FD definitions given by several mathematicians
over the past centuries? Or, have these something to do (in
terms of compatibility) with the requirements by the physi-
cal/natural environment (as is the case with the CD definition)?
It appears that “indomitable requirement for generaliz-
ing the FD definitions” is the sole motivation rather than
the physical (real-world) considerations.

In section 2, we demonstrate that the definition fdkha
viz. Definition (1.1) due to Khalil et al. and the definition
fdkat viz. Definition (1.2) due to Katugampola, when used
in numerical computation, produce distinct FDs for a func-
tion. The Matlab programs along with numerical examples
illustrate this fact. This is preceded by the mathematical sim-
plification of both the equations (1.1) and (1.2) to illustrate
the equivalence of both the definitions for a function.

It may be seen that many texts use ∆t (for change in the
independent variable t). This viz. the use of 2 symbols ∆, t
makes the algebra appear more unwieldy, so here we use h for
∆t instead. We still may call it a “delta method”.

The limit approach in KHYS definition and that in Katu
definition are not identical since we do not neglect the 2nd and
higher order terms; for if we neglect them, then both the defi-
nitions become identical. Consequently, the Katu definition
of FD, which refers KHYS definition becomes redundant.

However the purpose of Katu definition based on limit
approach is distinctly different from that of KHYS definition.
Hence both the definitions deserve to be studied (at least com-
putationally) using the very 1st principles they have adopted
in their definitions (and not from neglecting 2nd and higher
order terms of h — a quantity tending to 0 in the limit from
both the positive as well as from the negative sides). This
study, we will show, depicts that the accuracy and generality
of the 2 definitions using Matlab with standard 15 decimal
digit precision do differ and the computational pros and cons
of both the definitions become more pronounced and visible.

Section 3 comprises new limit definition fdnew — an
improvement over fdkha and fdkat while section 4 includes
conclusions.

2. KHYS and Katu Defintions with best h:
Equivalent but Distinct with Pros and

Cons
Equivalence The Taylor series of a real- or a complex-valued
function f (t) that is infinitely differentiable at a real or a
complex number t0 may be written as, substituting t− t0 = h
(the value of t is such that h is sufficiently small and its 2nd
and higher order terms can be neglected)

f (t)= f (t0)+h f
′
(t0)+

h2

2!
f
′′
(t0)+ · · ·+

hn

n!
f n(t0)+ · · · (2.1)

Expanding the 1st function in the numerator of the KHYS
definition (Definition (1.1)) using the Taylor series (2.1) and
neglecting 2nd and higher order terms involving h 6= 0, we
have

Dα f (t) = t1−α f
′
(t) (2.2)

Similarly, expanding the 1st function in the numerator of
the Katu definition (Definition (1.2)) using the Taylor series
(2.1) and neglecting 2nd and higher order terms involving
h 6= 0, we have

Dα f (t) = t1−α f
′
(t) (2.3)

Thus both the distinct limit definitions viz. Definitions
(1.1) and (1.2) produce the same (identical) FD of a function
when terms O(h2) are neglected.

Distinctiveness However, we use directly, in numerical
computation, Definitions (1.1) and (1.2) and not the identical
Equations (2.2) and (2.3). Consequently we obtain distinct
numerical values of the FDs of a given function.

This implies that the neglected terms O(h2) in Definition
(1.1) and those in Definition (1.2) for a function f (t) do not
contribute identical numerical values, these values are rela-
tively small though. Consider the well-behaved functions (i)
sin(t) and (ii) 4t3−5.

The Matlab program fdkhakatsin (omitted to conserve
space) demonstrates the distinctiveness (Figure 1) of fdkha
and fdkat for the FD of sin(t),t>0 besides the improved accu-
racy of fdkha over fdkat. We have taken t = 5 and h = 10−6.

Similarly the Matlab program fdkhakatcubpoly (also
omitted to conserve space) for the cubic polynomial 4t3−5
for t = 2 and h = 10−6, we obtain the fdkha, fdkat and their
differences (deviations) to highlight the better accuracy in
fdkha over fdkat (Figure 2).

The differences viz. diffkha and diffkat are printed to
demonstrate how, for the increasing values of α (between 0
and 1), the values of FD go on changing and then merging
with the value of the CD. These differences show that fdkha
performs better than fdkat always in terms of both accuracy
(CE) and computational complexity (CC).

When we talk about the existence of a limit, we must
show that the left-hand limit = the right-hand limit in the
foregoing computations. Observe that in fdkha, α ∈ [0,1)
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Figure 1. Distinctiveness of fdkha and fdkat for the FD of
sin(5) along with the improved accuracy of fdkha over fdkat
taking non-/near-optimal h = 10−6.

Figure 2. Distinctiveness of fdkha and fdkat for the FD of
4t3−5 for t = 2 and h = 10−6along with the improved
accuracy of fdkha over fdkat taking non-/near-optimal
h = 10−6.

while that in fdkat α ∈ [0,1). This implies that fdkat includes
the value α = 0 while fdkha does not. However, both the
definitions exclude α = 1 (and include the restriction t>0).

We now take h = −0.000001 and the fractional order
α ∈ [0.0000001,0.9999999] excluding the 2 extreme points
0 and 1. We perform the numerical computation taking the
value of α at an interval of 0.1 while the starting value of
α is 0.0000001. Executing the foregoing 2 programs, we
convince ourselves that the left-hand limit = the right-hand
limit numerically and hence the limit exists.

Definitions fdkha, fdkat with best h
We will now experiment how these 2 definitions viz. fdkha
and fdkat compare in terms of obeying classical properties of
derivatives of the traditional/classical calculus.

Determination of optimal h Any numerical computation
has to be performed using a finite precision machine. The
machine that we use here is the Matlab machine — a virtual
computer (that understands and executes Matlab commands)
with the standard 15 decimal digit precision. To obtain the
best value of h subject to (i) 15 digit precision and (ii) given
t > 0, we carry out the simple computation executing the
Matlab programs on the Matlab machine.

Our numerical experiment demonstrates that the best
value (also working value here) of h is ±10−8i.e. |h|= 10−8

in the context of 15 digit precision for computing the deriva-

tive of f (t) — both FDs and CDs —with positive t having
the order of value 1. Precisely the optimal (best) value of
|h|= 10−8× t.

Any value sufficiently greater than or less than the
best value of h will result in the inferior FD/CD value of
f (t).

However, in the foregoing example, even if we take the
value of |h| 100 times larger than the optimal value of h
i.e. |h|=±10−6, the computation of our new FD viz. fdnew
will still be sufficiently accurate (from engineering application
point of view). Hence a value close to that of optimal |h| is
usually good enough.

We will discuss later in detail the computation of optimal
base h (i.e. the optimal value of h for t having the order of
value 1 for 15 digit precision). This value will be the working
h for all t’s having the foregoing order. Using this optimal
value of h viz. h = ±10−8we obtain the working h for any
f (t) whose argument t > 0 has the order of value different
from 1 (as long the precision remains fixed at 15 digits) just
by taking |h|= 10−8× t as stated earlier.

The foregoing numerical values, as observed earlier, demon-
strate that fdkha performed better than fdkat both in CE
and in CC for well-conditioned functions such as sin(t) and
5t3−5 as well as ill-conditioned function such as sin( 1

t ).
It may be observed that the CC (implying amount of

computation or, equivalently, time spent for computation) is
more in fdkat due to 2 exponentiations than that in fdkha
having only 1 exponentiation. However, the complexity
issue is not a dominant issue in most real-world problems in
the current 2019 (exa-flops computation) context.

There are other ways such as the bisection way and the
linear interpolation way to compute an optimal h for a given
function with the specified interval(s). In essence, while math-
ematically |h| → 0 in the limit i.e. when h becomes increas-
ingly small from both positive as well as negative sides, the
value of the limit will be increasingly accurate (when the limit
exists).

The mathematical optimal value of |h|= 0 in the limit (i.e.
h 6= 0). In other words, the smaller the value of |h| is, the better
should be the value of the numerical limit (when it exists)
under the assumption of infinite precision of computation.
We leave these ways to the reader to explore for different
functions with varying precision.

Although an engineer in a real-world situation cannot/does
not implement any numerical data with an accuracy (rela-
tive) greater than 0.5×10−4 or, equivalently, 4 significant
decimal digits (due to the limitation of any measuring de-
vice —electronic or otherwise), in an intensive computational
environment with specially ill-conditioned functions (with re-
spect to numerical differentiation) the foregoing 2 definitions
do matter for engineers since the number of significant digits
accuracy could/would drop depending on the nature of the
f (t).

It is necessary to explicitly know the numerical quality
(CE) of solutions by everybody including the engineers and

186



New limit definition of fractional derivatives: Toward improved accuracy and generalization — 187/191

scientists. This will enable one to have confidence in the
solutions meant for physical-world implementation.

3. New Limit Definition fdnew:
Improvement over fdkha & fdkat

Derivation of fdnew We have, for example, our function
f (t)= sin(t)= sin(5) for t = 5 and al p=α = 0.9999999≈ 1.
We also have classical derivative CD fd, FDs fdkha, fdkat (for
h =+10−6, say), fdkham, fdkatm (for h =−10−6) as follows
(m stands for minus).

fd=0.283662185463226, fdkha=0.283662710542920, fd-
kat=0.283662738964630, fdkham=0.283661751643294, fd-
katm=0.283661723443629

Solving the equation Ak = b.where the following left-hand
side 2×2 matrix is A, the left-hand side 2×1 vector is k and
the following right-hand side 2×1vector is b.[

f dkha f dkat
f dkham f dkatm

] [
k1
k2

]
=
[

f d
f d

]
we obtain k=

[
k1
k2

]
=
[

17.9352911338374
−16.9352912880691

]
Our f dnew = k(1)∗ f dkha+ k(2)∗ f dkat = f d

= k(1)∗ f dkham+ k(2)∗ f dkatm (numerically),where k1 =
k(1),k2 = k(2). We can easily verify using the following
command
� r1 = k(1)∗ f dkha+ k(2)∗ f dkat− f d
� r2 = k(1)∗ f dkham+ k(2)∗ f dkatm− f d

that the residues are r1 = 3.88578058618805e−016 and
r2 =−4.9960036108132e−016. Both the residues are 0 up
to 15 digits.

We have used the Matlab linsolve command to get the
solution as follows.
� A = [ f dkha f dkat; f dkham f dkatm],b = [ f d; f d]
� k = linsolve(A,b)
� r1 = k(1)∗ f dkha+ k(2)∗ f dkat− f d
� r2 = k(1)∗ f dkham+ k(2)∗ f dkatm− f d
The Matlab program fdlcnr1( f , t, h) along with its output

(omitted here to conserve space) permits h to be chosen by
the user according to the given function primarily to perform
numerical experiment varying the value of h and gain a deeper
insight into the character (robustness) of fdnew. To execute
the program, we enter the commands in the Matlab command
window as
� clear all, format long; close all, syms t, double t,
f dlcnr1(4∗t∧3−5,2,10∧−6)

where f (t) = 4t3−5, t = 2, and h = 10−6. We have another
version of the foregoing Matlab program fdlcnr1( f , t, h). We
call this version fdlcnr2( f , t, h) for which the command in
the Matlab command window is
� clear all; close all; format long g; syms t; double t;
f dlcnr2(′4∗t∧3−5′,2,10∧−6)

or the foregoing line without 2 quotes. The method is evi-
dently valid for any other continuous function f (t).

Ill-conditioned problems with respect to differentiation
For an ill-posed problem such as D f (t) = Dsin( 1

t ) near t =

0, we execute the program fdlcnr1 entering the commands
in Matlab command window as follows (where t = 10−4 and
h = 10−8.
� clear all; format long; close all; syms t; double t;
f dnew1(sin(1/t),10∧−4)

where the Matlab program fdnew1( f (t), t) (omitted to con-
serve space) having 2 parameters viz. f (t) and t is used. The
output that we obtain is as follows (Figure 3)

cd = 9.521553682590148e+007;h= 1.000000000000000e−
012 (h is positive);

A = 1.0e+007∗
9.521697573294796 9.521697746495139
9.521392132666451 9.521392132666451
b = 1.0e+007∗
9.521553682590147
9.521553682590147
k = 1.0e+003∗
1.764540520660579
-1.763540503695607
t = 1.0e+007∗0.000000000010000;

CD = 1.0e+007∗9.521553682590147
Optimal base h with graph in Matlab (std. precision=15

digits) We consider a sine function with precision 15 digit and
with argument 5. Just by executing the function program
� h optimal base with graph (omitted to conserve space)
in the command window, we get the output (Figure 4) includ-
ing the graph (Figure 5) as follows.

We obtain the fractional derivative of sin(t), t = π/2 ex-
ecuting the program fdnew1 (omitted to conserve space) as
follows. Here |h|= |optimal base h|.
� clear all; format long; close all; syms t; double t;

fdnew1(sin(t),pi/2);
CD = 6.123233995736766e−017;

h = 1.570796326794897e−008 (h is positive);
A = 1.0e−008∗
-0.706789929214115 -0.706789929214115
0.706789929214115 0.706789929214115
b = 1.0e−016∗
0.612323399573677
0.612323399573677
k = 0

0
t= 1.570796311086933; CD= 0.000000000000000
The following Figure (Figure 6) depicts the accuracy of

fdnew against that of fdkha & fdkat.
The Matlab programs fdlcnr1(f, t,h) and fdlcnr2(f, t,h)

are identical except that in Line 1, fdlcnr1 is replaced by
fdlcnr2. With the foregoing line the print format will be
slightly changed due to “format long g” instead of “format
long”.

It can be seen that the numerical computation of the col-
umn vector k = [k1 k2]

′ provides us our desired new FD fd-
new by executing the Matlab command f dnew= k(1)∗ f dkha+
k(2)∗ f dkat;
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Figure 3. fdnew versus fdkha & fdkat; fdnew is more
accurate.

Figure 4. Computation of best h.

We have chosen h = 10−6 in the foregoing example. Our
precision of computation is 15 decimal digits. It is advisable to
vary the value of h such as h = 10−5,10−6,10−7,10−8,10−9

and so on and choose that value of h which corresponds to the
best (optimal) CD for the given problem.

Figure 5. The optimal base h is 10−8for the function
f (t) = sin(t) for t = 5. The optimal base h remains fixed as
long as (i) the precision is 15 digits and (ii) the value of t is of
order 1.

Figure 6. Accuracy of fdnew versus fdkha & fdkat; fdnew is
more accurate than both within 15 digit precision.

Assuming the existence of the FD, our new FD fdnew is
always better from numerical quality (CE) of solution than
both fdkha as well as fdkat without exception (i.e. for all FD
problems). According to the computational logic followed
through the linear combination at α = 0.9999999 ≈ 1, we
have chosen parameters k1,k2 such that fdnew satisfies CD
exactly subject to, however, the finite precision (viz. 15 digits)
used here.
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It is to be noted that the very philosophy of replacements
viz. t +h← t +ht1−α (KHYS definition) and t +h← teht−α

(Katu definition) raises the question regarding the parameter
α not so much from satisfying the classical properties but
from its physical significance.

What is it that prompted the authors to choose the specific
form ht1−α for h in KHYS definition besides the satisfaction
of several (not all) classical properties of CDs? Did they have
anything in mind for the form from any other consideration
such as the satisfaction of physical (real-world) properties?
We have the same questions for Katu definition too when the
author replaces t +h (observe: not just h) by teht−α

.
Both KHYS and Katu definitions seem to have only con-

sideration of satisfying the classical properties to the maxi-
mum extent so that the FDs become compatible with CD. Or in
other words, the FDs have smooth transition to CD implying
improved generalization and the foregoing 2 expressions (in 2
definitions) involving α perhaps have no immediately/readily
known physical significance (unlike that in CD).

The assumption t > 0 in both KHYS and Katu defini-
tions unlike that in CD is a vital impediment to general-
ization. If this is removed by an appropriate replacement of
t + h and at the same time the classical properties are satis-
fied/preserved, then such a definition is more desirable. The
physical significance aspect, however, still continues to re-
main unresolved.

4. Conclusions
Computing FDs for α ∈ (n,n+ 1) where n is a positive in-
teger To compute the FD of the function g(t) when α ∈
(n,n + 1), n being a positive integer, we consider the nth
CD of g(t) as the function f (t) and then compute the FD
(α−n) of f (t)i.e. Dα−n f (t).

Working h should be significantly (i.e. relatively and not
absolutely) optimal The best value of h for a given precision
and for a given t is desirable and is advisable to be computed
and used for the computation of all derivatives including FDs.

This optimal value is obtained by simply computing the
CD of f (t) by taking h= 10−5,10−6,10−7,10−8,10−9,10−10...
We see that, for h = 10−8, the value of the CD of f (t) is the
most accurate (least CE) one.

The value of the optimal h should be significant (not abso-
lute) i.e. its value should be relatively small compared to that
of the CD of f (t) but not too small. For too small an h, the
accuracy of the value of the CD will drop.

Better quality (less CE) of new FD definition with classi-
cal properties Combining the advantages of KHYS and Katu
definitions of FD, both based on limit approaches, we have
presented a new definition of FD called here fdnew. This
new definition provides a quality of solution better than that
produced by both the KHYS and the Katu definitions always.
At the same time fdnew satisfies the classical properties that
are obeyed by Katu definition. However, the vital issue viz.
the assumption (unlike CDs) that t > 0 in f (t) poses a major
hurdle in the process of generalization of FDs.

An ill-posed problem Consider the function f (t)= sin( 1
t ),

where t = 10−5 (say). The function f (t) is continuous but is
violently fluctuating near the origin i.e. near t = 0 (on both
negative and positive sides). The computation of FD/CD of
f (t) could involve more pronounced CE than that when the
f (t) is not vigorously fluctuating.

Ranking Suppose we have at our disposal 2 or more al-
gorithms to solve our computational problem at hand. What
should we do i.e. which algorithm should we use? Evidently
we should use the best one for the problem/ Isn’t it? In this
context, since CC is most often not a big issue specifically
with the advent of exa-flops (i.e. 1018 floating-point opera-
tions/sec) computers, the only parameter which decides the
ranking is the accuracy (CE).

Everybody desires to use the best algorithm for solving
his/her computational problem subject, however, to the envi-
ronmental constraints. Nobody wants to use the second best
or the third best algorithm for computation, nor should one do
use. In this context the new definition of FD viz. fdnew, and
the definitions fdkha and fdkat are ranked as (i) fdnew, (ii) fd
kha, and (iii) fdkat form CE point of view,

From CC point of view, the ranking is (i) fdkha, (ii) fdkat,
and (iii) fdnew. We have pointed out that CC for FDs and CDs
for most real-world problems is not an important issue since
all the 3 definitions have CCs O(k) — linear in the size k of
the function f (t). We compute the time complexity which is
proportional to CC for each of the 3 definitions to get a feel
of the relative cost of computation. Since the current (2019)
computing speed is around exa-flops and the number of laptop,
desktop, and main-frame computers availability is so huge,
most physical FD computation problems have near-trivial CC.

Dealing with f (t) specified as a table The function f (t)
may be known/given in a symbolic form such as 2sin(t)−5,
t5− t3 +7t−1, and e6t − tan(t)+9. Or, it may be specified
as numerical table such as ti f (ti) · i = 0(1)n, where ti, f (ti)
,n are all numerically given.

Suppose we need to compute CD/FD of f (t) at t = γ ,
where γ is numerically given a value within the range of the
values of t. Take 4 consecutive values of t which encloseγ

. These 4 values constitute a cubic polynomial. This poly-
nomial will be treated as f (t). Observe that f (t) will/could
be changing depending on the value of γ given. Follow the
foregoing procedure to obtain CD/FD of f (t). A 2nd or a 4th
degree polynomial may not improve the result since the effect
of the points farther away may not have either much effect or
have too much of effect in terms of unacceptable distortion of
the result (here the FD/CD).

We do not usually anticipate a rapidly fluctuating function.
The cubic (and sometimes even a quadratic) function would
solve the CD/FD problem acceptably.

Matlab linsolve versus pinv commands Both the com-
mands linsolve and pinv may be used to solve a linear system
Ax = b. In our context, we have the matrix A 2×2 (square)
matrix and the system is consistent. The matrix A could be
categorized as non-singular, near-singular, very near-singular,
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or singular. Assume that the |determinant| of the matrix A
viz. abs(|A|) has the magnitude of the order of 1.

With respect to the 15 digit precision of computation, A
may be considered singular if its |determinant| viz. abs(|A|)
is 0 or less than or equal to 10−15. In such a case, only
the command pinv will work. It may be viewed very near-
singular if abs(|A|) ∈ (10−15,10−8) — an arbitrary interval
(one may modify the interval depending on the precision of
computation and other local factors such as the CE). In this
case, the command pinv is more desirable than the command
linsolve since linsolve may involve more error or sometimes
a failure.

The matrix A may be seen as near-singular, if abs(|A|) ∈
(10−15,10−8), and non-singular if abs(|A|) ≥ 10−5. In both
the cases, any of the 2 commands may be used. However,
choose that command which produces less CE.

However, the Matlab linsolve is an excellent command
from CE point of view. Even for a reasonably (not too) near-
singular matrix, linsolve produces acceptably good solution.
The true ill-conditioned problem is a very near-singular
linear system Ax = b. Neither the singular nor the non-
singular system is ill-conditioned with respect to the com-
putation of the solution vector x . As a matter of fact, both
the singular and the non-singular may be termed as well-
conditioned and it is certainly so when the system is consis-
tent.

Both the commands linsolve and pinv have pros and cons.
The command linsolve computes the solution vector x without
computing the true inverse/ pseudo-inverse (pinv) of the ma-
trix A while pinv obtains the solution via true/pseudo-inverse
of A. Observe that the true inverse and the pseudo-inverse of
A would be numerically the same if A is non-singular.

For a singular A, the true inverse of A does not exist
while pinv always exists and unique. Without the knowledge
of the true/pseudo-inverse, CE computation of the solution
vector x is more involved or not possible. However, in our
computation of CD/FD of the function f (t), the use of pinv
command almost always should solve all the problems in an
acceptable way.

Plotting closely located points : Difficulty The problem
is that our maximum difference is less than 1% of the vertical
axis scale, so you can’t exaggerate the differences without
distorting the underlying values.

The best we can do is to plot the values, then in another
plot, show either the differences or the ratios between the
values. The use of a secondary axis shows these things, but
not as clearly as separate charts. So we desist from trying to
plot the graph using closely spaced values depicting fdnew,
fdkha, and fdkat.

However, the tables produced by Matlab readily and clearly
depict the accuracy (CE) of fdnew, fdkha, and fdkat. These,
we believe, just by looking at the concerned numerical ta-
bles, the reader can verify quickly the truth of the foregoing
statements.

Improvement on generalization : How The improved

computational accuracy combined with the satisfaction of
all the 7 rules observed by CD and also fdkat may be termed
as an improvement on generalization. The FD fdkha (used
in deriving fdnew) which does not claim to follow “the most
natural generalization” like fdkat and is distinctly different
from fdkat has contributed toward not only improved (i.e.
reduced) CE but also a better observation of the foregoing 7
rules.

Observe that the real hurdle is the severe restriction viz.
f (t),t > 0 on the function f (t). If the foregoing generaliza-
tion is kept unchanged (valid) for any continuous/analytic
function f (t) for any negative, positive, and complex vari-
able t then we will truly achieve a significant milestone in
fractional calculus.

Obviating the restriction “t > 0” for FD of f (t) Math-
ematically, a fraction (fractional order/degree) such as (i)
1/3 in the equation x

1
3 − 2 = 0 would give rise to 3 distinct

roots of the equation and (ii) 0.9 in the equation x0.9−2 = 0
should give rise to 9 roots of the equation. On the other
hand, the equation x−2 = 0 produces only one root. If the
order/degree “1” is slightly reduced making it, say, 0.99, the
problem changes drastically. Hence one does need to impose
certain (practically meaningful) restriction(s) on the fractional
order to achieve really smooth transition from/to an integer
order. This is a research problem which needs to be intensely
probed to achieve meaningful and widely useful generaliza-
tion.

Acknowledgement
The authors thank the Science and Engineering Research

Board (SERB) of the Department of Science and Technology
(DST), Government of India for their support of the reported
work under the project DST SERB EMR/2016/003572 dated
February 06, 2017.

References
[1] S.F. Lacroix, traite du calcul differential et du calcul

integral, 2nd Edition ,courcier, Paris, 1819.
[2] S.G. Samko and B. Ross, Integration and differentiation

to a variable fractional order Integral Transforms and
Special Functions, 1(4)(2009), 277–300.

[3] I. Podlubny, Fractional Differential Equations, Academic
Press, San Diego, California, U.S.A., 1999.

[4] R. Hilfer, Applications of Fractional Calculus in Physics,
World Scientific Publishing, River Edge, N.J., 2000.

[5] A.A. Kilbas, H.M. Srivastava, and J.J.Trujillo, Theory
and Applications of Fractional Differential Equations,
Elsevier B.V., Amsterdam, 2006.

[6] A.A. Kilbas and M. Saigo, Generalized Mittag-Leffler
function and generalized fractional calculus operators,
Integral Transform Spec Func., 15(1), 2004, 31–49.

[7] M. Klimek, Lagrangian fractional mechanics—a non-
commutative approach, Czechoslovak Journal of Physics,
55(11)2005, 1447–1453.

190



New limit definition of fractional derivatives: Toward improved accuracy and generalization — 191/191

[8] J. Cresson, Fractional embedding of differential opera-
tors and Lagrangian systems, Journal of Mathematical
Physics, 48(3) 2007, 12–23.

[9] O. P. Agrawal, Generalized Variational Problems and
Euler-Lagrange Equations, Computers and Mathematics
with Applications, 59(5)(2010), 1852–1864.

[10] A.B. Malinowska, T. Odzijewicz, and D.F.M. Torres, Ad-
vanced Methods in the Fractional Calculus of Variations,
Springer Briefs in Applied Sciences and Technology,
2015, XII, 135 pages.

[11] Z. Tomovski, R. Hilfer, H. M. Srivastava, Fractional and
operational calculus with generalized fractional derivative
operators and Mittag- Leffler type functions, Integral
Transforms and special Functions, 21(11)(2010), 797–
814.

[12] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh. A new
definition of fractional derivative, J. Comput. Appl. Math.,
264(2014), 65–70.

[13] U.N. Katugampola, New approach to generalized frac-
tional derivatives, B. Math. Anal. App., 6(4)(2014), 1–15.

[14] R. Herrmann, Fractional Calculus: An Introduction for
Physicists, World Scientific Publishing Co., Singapore,
2011.

[15] Machado, J. A., And I say to myself: “What a fractional
world!”, Frac. Calc. Appl. Anal., 14(4)(2011), 635–654.

[16] Oldham, K. B. and Spanier, J., The Fractional Calculus,
Academic Press, New York, 1974.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

191

http://www.malayajournal.org

	Introduction
	 KHYS and Katu Defintions with best h: Equivalent but Distinct with Pros and Cons 
	New Limit Definition fdnew: Improvement over fdkha & fdkat
	Conclusions
	References

