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1. Introduction
The accretive operator exists in nonlinear models.In 1967,ac-

cretive operator was introduced first both by Browder [32]
and Kato [33] independently. These nonlinear models which
are evolution equations found in Heat, Wave and Schrodinger
equations when modeled in the form of initial value problem,

s′(t)+As(t) = 0, s(0) = s0, (1.1)

requires solution. The solution of the problem:

Find s ∈ X such that As = 0 (1.2)

are precisely the equilibrium points of the system (1.1) for
an accretive operator A which is in the Banach space X . If
s is not dependent on t, then ds

dt = 0 and then (1.1) reduces

to (1.2) whose solution describes the equilibrium state or the
stable state of the system described by (1.1). Considerable
researches have been devoted to methods of solving (1.2)
when A is accretive. A kind of accretive operator known as
H-accretive operator was introduced by Fang and Huang [30]
in 2004. He used resolvent operator technique (ROT) using
H-accretive operator in order to solve variational inclusions
in Banach spaces.

Next in 2007, Peng, Zhu and Zheng [31] introduced (H−
η)-accretive operator defined in the Banach space. They
proved the existence of solution and also its uniqueness .Also,
a new iterative algorithm is proposed for a system of varia-
tional inclusions and the convergence of this with said operator
in real smooth Banach space which is q-uniformly is proved.

Further, in 2008, H(·, ·)−accretive operator was proposed
by Zou and Huang [29] in Banach space. Using resolvent
technique they proved the existence of the solution for the
variational inclusions.They also showed the convergence of
the iterative sequence which was generated by the algorithm
for H(·, ·)-accretive operator. Next in 2010, Wang and Ding
[28] introduced (H(·, ·),η)-accretive operators which is a new
class of accretive operators.They studied a new class of set-
valued variational inclusions containing (H(·, ·),η)-accretive
operators and constructed a new iterative algorithm for solving
this class of set-valued variational inclusions. In 2015, the



A strong convergence theorem for H(·, ·)−φ −η-accretive mapping using proximal point algorithms — 193/205

notion of H(·, ·)− φ −η-accretive operator was defined by
Ahmad et al [26] in real uniformly smooth Banach space.
Various iterative methods for the construction of zeros of
accretive operators were studied by many authors (see, [1],
[2], [3], [8], [9], [10],[11]). Among them, Rockafellar [11]
is one who introduced one of the most powerful algorithm
known as Rockafellar proximal point algorithm where, for
any initial point x0 ∈ X , a sequence {xn} is being generated
by

xn+1 = Jsn(xn + en),∀ n > 0.

where Js = (I + sA)−1 for every s > 0, is called the resolvent
operator of A and {en} is defined r to be an error sequence de-
fined in a Hilbert space X .However, prior to him, Bruck [3] in
1974, proposed the iterative algorithm xn+1 = Jrn(u),∀n > 0
in a Hilbert space X , for any of the fixed point u ∈ X .

Later in 2006, Xu [16] and 2009, Song and Yang [14]
respectively proved the strong convergence of a regularization
method for Rockafellar proximal point algorithm as given
below in a Hilbert space X , initially for any point z0 ∈ X .

zn+1 = Jrn(αnu+(1−αn)zn + en), f orall n≥ 0, (1.3)

where {αn} ⊂ (0,1), {en} ⊂ E and {rn} ⊂ (0,∞).
On the other hand, in the same year 2009, Song[12] introduced
a new iterative algorithm

yn+1 = βnyn +(1−βn)Jrn(αnu+(1−αn)yn),∀ n≥ 0,

which finds zero of an accretive operator M defined in a re-
flexive Banach space X which is equipped by a uniformly
Gâteaux differentiable norm.And for any initial point x0 ∈ X
each weakly compact convex subset of X satisfy the fixed
point property for nonexpansive mappings. This result was
extended in 2012 by Zhang and Song [17] in a uniformly con-
vex Banach space X with a uniformly Gâteaux differentiable
norm (or with a weakly sequentially continuous normalized
duality mapping).
Further, in year 2013, Jung [5] extended the outcomes of
Song [12], Zhang et al [17] to the viscosity algorithms along
with imposing distinct conditions upon the parameter. In 2016,
Jung [7], introduced the following algorithm in order to obtain
a point which is common to both the set of zeros of accretive
operator A and to the set of fixed points of non expansive
mappings in a uniformly convex Banach space X having a
uniformly Gâteaux differentiable norm:

xn+1 = Jrn(αn f xn +(1−αn)Sxn),∀ n≥ 0, (1.4)

where x0 ∈ C, where C is a closed convex subset of X,and
contractive mapping is f : C→C , and {αn} ⊂ (0,1);{rn} ⊂
(0,∞). Although,on same year, Jung [20] extended his own
earlier work and studied the iterative algorithm (1.6) having
a weak contractive mapping and proved that the sequence
which is originated by said algorithm has strong convergence

to a common point of A−10∩Fix(S) in a uniformly convex
Banach space X which is also a solution of some variational
inequality. This result improved and extended the correspond-
ing results of ( [5], [7], [12], [13] and [17]).

Later in 2006, Xu [16] and 2009, Song and Yang [14]
respectively proved the strong convergence of a regularization
method for Rockafellar proximal point algorithm as given
below in a Hilbert space X , initially for any point z0 ∈ X .

zn+1 = Jrn(αnu+(1−αn)zn + en), f orall n≥ 0, (1.5)

where {αn} ⊂ (0,1), {en} ⊂ E and {rn} ⊂ (0,∞).

On the other hand, in the same year 2009, Song[12] intro-
duced a new iterative algorithm

yn+1 = βnyn +(1−βn)Jrn(αnu+(1−αn)yn),∀ n≥ 0,

which finds zero of an accretive operator M defined in a re-
flexive Banach space X which is equipped by a uniformly
Gâteaux differentiable norm.And for any initial point x0 ∈ X
each weakly compact convex subset of X satisfy the fixed
point property for nonexpansive mappings. This result was
extended in 2012 by Zhang and Song [17] in a uniformly con-
vex Banach space X with a uniformly Gâteaux differentiable
norm (or with a weakly sequentially continuous normalized
duality mapping).
Further, in year 2013, Jung [5] extended the outcomes of
Song [12], Zhang et al [17] to the viscosity algorithms along
with imposing distinct conditions upon the parameter. In 2016,
Jung [7], introduced the following algorithm in order to obtain
a point which is common to both the set of zeros of accretive
operator A and to the set of fixed points of non expansive
mappings in a uniformly convex Banach space X having a
uniformly Gâteaux differentiable norm:

xn+1 = Jrn(αn f xn +(1−αn)Sxn),∀ n≥ 0, (1.6)

where x0 ∈ C, where C is a closed convex subset of X,and
contractive mapping is f : C→C , and {αn} ⊂ (0,1);{rn} ⊂
(0,∞). Although,on same year, Jung [20] extended his own
earlier work and studied the iterative algorithm (1.6) having a
weak contractive mapping and proved that the sequence which
is originated by said algorithm has strong convergence to a
common point of A−10∩Fix(S) in a uniformly convex Banach
space X which is also a solution of some variational inequality.
This result improved and extended the corresponding results
of ( [5], [7], [12], [13] and [17]).
Now the object of this paper is to study the iteration algorithm
(1.6) using H(·, ·)−φ −η−accretive operator [26].With the
help of R.O.T, we prove that the sequence generated by said
iterative algorithm converges strongly to a common point
in Fix(φoM(·,z))(− 1)∩Fix(S),for some fixed z ∈ X in a
uniformly convex Banach space X. The importance of this
operator lies with the fact that it also carries the single valued
and Lipschitz continuity properties. In addition, we show that,
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said common point is a solution of the variational inequality.
Our main result generalizes, the results of Jung [5], [7], Song
[12] , Song et al [13], Zhang and Song [17], and Jung [20].

2. Preliminaries
The norm of a Banach space X is Known to be Gateaux dif-
ferentiable only if

lim
u→0

||a+ub||− ||a||
u

exists for each a,b belonging to unit sphere Us = {a ∈ X :
||a||= 1}. Such an X is known as a Smooth Banach space.
X is called as uniformly convex if for every ε ∈ [0,2], there is
an existence of δε > 0 such that

||u||= ||v||= 1 implies
||u+ v||

2
< 1−δε whenever ||u−v|| ≥ ε

Let we have r > 1 and N > 0 as fixed ,two real numbers.
Then Banach space X is said to be uniformly convex iff there
exists an strictly increasing continuous convex function g1 :
[0,∞)→ [0,∞) with g1(0) = 0 such that

||µx+(1−µ)y||2 ≤µ||x||2 +(1−µ)||y||2

−µ(1−µ)g1(||x− y||) (2.1)

for every x,y ∈ BN (0) = {z ∈ X : ||z|| ≤N }. For further
detail, see Xu [15].

Definition 2.1. ( [4], [26]) Let X be a real Banach space
and Xd be its topological dual. For q > 1, a mapping Jq :
X → 2Xd

is said to be a generalized duality mapping, which
is defined by

Jq(y) = { f ∈ Xd : 〈y, f 〉= ||y||q, ||y||q−1 = || f ||}, ∀ y∈ X .

(2.2)

In particular, J2 is the usual normalized duality mapping on
X. It is well known (see e.g. [4]) that

Jq(x) = ||x||q−2J2(x),∀ x(6= 0) ∈ X . (2.3)

Recall that for a real Hilbert spaceX , J2 is the iden-
tity mapping. A gauge function is a continuous strictly in-
creasing function ϕ on R+ := [0,∞) such that ϕ(0) = 0 and
limr→∞ϕ(r) = ∞. Let the mapping Jq : X → 2X∗ then, from
the equation (2.2) and equation (2.3) we can write

Jq(x) = ||x||q−2{ f ∈ X∗ : 〈x, f 〉= ||x||q, ||x||q−1

= || f ||= ϕ(||x||)},∀x ∈ X

as the duality mapping with gauge function ϕ . Particularly,the
duality mapping with gauge function ϕ(s) = s denoted by
Jq is known to be the normalized duality mapping.Also,
J (−y) =−J (y),∀y ∈ X . Again we know that X is smooth

iff the normalized duality mapping J is single-valued.
It is known that a Banach space X has a weakly continuous
duality mapping if there exists a gauge function such that the
duality mapping Jq is single-valued and continuous from
the weak topology to the weak∗ topology,i.e. for {xn} ∈ X
with xn ⇀ x,Jq(xn)

∗
⇀ Jq(x). For example, every lp space

(1 < p < ∞) has a weakly continuous duality mapping with
gauge function ϕ(t) = t p−1 ( [18], [19]). Set

Φ(t) =
∫ t

0
ϕ(τ)dτ, ∀ t ≥ 0.

Then for 0 < ρ < 1,ϕ(ρy)≤ ϕ(y),

Φ(ρt)=
∫

ρt

0
ϕ(τ)dτ = ρ

∫ t

0
ϕ(ρy)dy≤ ρ

∫ t

0
ϕ(y)dy= ρΦ(t).

Moreover,

Jq(y) = ∂Φ(||y||), ∀ y ∈ X ,

where ∂ denotes the subdifferential in the sense of convex
analysis, i.e.,

∂Φ(||x||)= {x∗ ∈X∗ : Φ(||y||)≥Φ(||x||)+〈x∗,y−x〉}, ∀ y∈X .

We now recall some definitions as below:

Definition 2.2. ([27], [28]) Suppose we consider Y as a real
Banach space and let A,B,φ : Y →Y and H,η : Y×Y → X be
single-valued functions. A multi-valued mapping M : Y ×Y →
2Y is known as
(i) accretive if 〈x− y, jq(u1 − u2)〉 ≥ 0, ∀ u1,u2 ∈ X , x ∈
M(u),y ∈M(v) and q > 1;
(ii) η accretive if,〈x−y,Jq(η(u1,u2))〉 ≥ 0, ∀ u1,u2,∈ X , x ∈
M(u),y ∈M(v) and q > 1;
(iii) m-accretive if M is accretive and (I + ρM(.,z))(X) =
X ∀ ρ > 0 and for some fixed z ∈ X, where I denotes the iden-
tity mapping on X.
(iv) generalized m-accretive if M is η accretive and (I +
ρM(.,z))(X) = X ∀ ρ > 0 and for some fixed z ∈ X where
I denotes the identity mapping on X.

Definition 2.3. [26] Let X be a real Banach space and let
A,B : X → X and H,η : X × X → X be the single-valued
mappings, z ∈ X , is a fixed point of X then,
(i) A is said to be η-accretive if,

〈Ax1−Ax2,Jq(η(x1,x2))〉 ≥ 0,∀ x1,x2 ∈ X ,q > 1;

(ii) A is said to be strictly η-accretive, if A is η-accretive and
the equality holds if and only if x1 = x2;
(iii) H(A, ·) is said to be α-strongly η-accretive with respect
to A if, there exists a constant α > 0 such that

〈H(Ax1,u)−H(Ax2,u),Jq(η(x1,x2))〉 ≥ α||x1− x2||q,
∀ x1,x2,u ∈ X ,q > 1;
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(iv) H(·,B) is said to be β -relaxed η-accretive with respect to
B if, there exists a constant β > 0 such that

〈H(u,Bx1)−H(u,Bx2),Jq(η(x1,x2))〉
≥ (−β )||x1− x2||q,

∀ x1,x2,u ∈ X ,q > 1;

(v) H(·, ·) is said to be r1-Lipschitz continuous with respect to
A if, there exists a constant r1 > 0 such that

||H(Ax1,u)−H(Ax2,u)|| ≤ r1||x1−x2||,∀ x−1,x2,u∈ X ;

(vi) η is said to be τ-Lipschitz if,

||η(x1,x2)|| ≤ τ||x1− x2||,∀ x1,x2 ∈ X .

Definition 2.4. [26] Let X be a real Banach space. Let
P,Q,φ : X → X and H,η : X ×X → X be the single-valued
mappings. A multi-valued mapping U : X×X → 2X is called
an H(·, ·)−φ −η−accretive operator with respect to map-
ping P and Q if, for some fixed z ∈ X , φoU(.,z) is η-accretive
in the equation (i) of Definition 2.3 and

(H(P,Q)+ρφ ◦U(.,z))(X) = X for all ρ > 0.

Definition 2.5. [26] Let X be a real Banach space, let A,B,φ :
X → X and H,η : X×X → X be the single-valued mappings.
Let M : X×X→ 2X be an H(·, ·)−φ−η−accretive operator
with respect to mappings A and B. The resolvent operator
RH(·,·)−φ−η

M(·,z),ρ for some fixed z ∈ X is defined by

RH(·,·)−φ−η

M(·,z),ρ (x) = (H(A,B)+ρφ ◦M(·,z))−1(x).

First, prove the following proposition for the purpose of
proving our main result.

Proposition 2.6. Let q> 1. Let X be a real Banach space and
let A,B,φ : X→ X and H,η : X×X→ X be the single-valued
mappings. Let H(A,B) be α-strongly η-accretive with respect
to A, β -relaxed, η-accretive with respect to B, α > β and η

is τ-Lipschitz. Let M : X ×X → 2X be an H(., .)− φ −η-
accretive operator with respect to mappings A and B. Then
we have the following:
(i) The resolvent operator RH(·,·)−φ−η

M(·,z) : X→X is τq−1

α−β
-Lipschitz,

i.e.,

||RH(.,.)−φ−η

M(.,z),ρ (u)−RH(.,.)−φ−η

M(.,z),ρ (v)|| ≤ τq−1

α−β
||u− v||,

∀ u,v ∈ X and every f ixed z ∈ X .

(ii) If H(A,B) is α−β

τq−1 -Lipschitz, then RH(.,.)−φ−η

M(.,z),ρ H(A,B) is
nonexpansive.
(iii) u⇔ 0 ∈ φ ◦M(.,z))(u).

Proof. (i) Let u,v be any points in X . It follows from the
definition of resolvent operator that

RH(.,.)−φ−η

M(.,z),ρ (u) = (H(A,B)+ρφ ◦M(.,z))−1(u),

RH(.,.)−φ−η

M(.,z),ρ (v) = (H(A,B)+ρφ ◦M(.,z))−1(v).

This implies that

u−H(A(RH(.,.)−φ−η

M(.,z),ρ (u),B(RH(.,.)−φ−η

M(.,z),ρ (u))

∈ ρφ ◦M(RH(.,.)−φ−η

M(.,z),ρ (u),z),

and

v−H(A(RH(.,.)−φ−η

M(.,z),ρ (v),B(RH(.,.)−φ−η

M(.,z),ρ (v))

∈ ρφ ◦M(RH(.,.)−φ−η

M(.,z)ρ (v),z).

Set Pu = RH(.,.)−φ−η

M(.,z),ρ (u), and Pv = RH(.,.)−φ−η

M(.,z),ρ (v). It follows
from Definition 2.1 (i) that φ ◦M(.,z) is η-accretive. Hence

〈u−H(A(Pu),B(P(u))

− (v−H(A(Pv),B(P(v))),Jq(η(Pu,Pv))〉
≥ 0,

which implies that

〈u− v,Jq(η(Pu,Pv))〉 ≥ 〈(H(A(Pu),B(P(u))

−H(A(Pv),B(P(v)),Jq(η(Pu,Pv))〉.

It follows that

||u− v||||η(Pu,Pv)||(q−1)

≥ 〈u− v,Jq(η(Pu,Pv))〉
≥ 〈H(A(Pu),B(P(u))−H(A(Pv),B(P(v)))

,Jq(η(Pu,Pv))〉
= 〈H(A(Pu),B(P(u))−H(A(Pv),B(P(u)))

,Jq(η(Pu,Pv))〉
+ 〈H(A(Pv),B(P(u))−H(A(Pv),B(P(v)))

,Jq(η(Pu,Pv))〉
≥ α||Pu−Pv||q−β ||Pu−Pv||q

= (α−β )||Pu−Pv||q.

Thus using η is τ-Lipschitz, we have

(α−β )||Pu−Pv||q ≤ ||u− v||(τ||Pu−Pv||)(q−1)

Thus,

||(Pu−Pv)|| ≤ τq−1

α−β
||u− v||.

Therefore,

||RH(.,.)−φ−η

M(.,z),ρ (u)−RH(.,.)−φ−η

M(.,z),ρ (v)|| ≤ τq−1

α−β
||u− v||.

(ii) It is obvious that,

||RH(.,.)−φ−η

M(.,z),ρ (H(A,B)x)−RH(.,.)−φ−η

M(.,z),ρ (H(A,B)y)||

≤ τq−1

α−β
||H(A,B)x−H(A,B)y||.

≤ ||x− y||
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(iii)

u = RH(·,·)−φ−η

M(·,z),ρ H(A,B)(u)

⇔ u = (H(A,B)+ρφ ◦M(·,z))−1H(A,B)(u)

⇔ H(A,B)(u) ∈ (H(A,B)+ρφ ◦M(.,z))(u)

⇔ 0 ∈ φ ◦M(.,z)(u).

This complete the proof. We shall use the following lem-
mas in order to prove our main result.

Lemma 2.7. ( [18], [19], [20]) Let X be a real Banach space
and let ϕ be a continuous strictly increasing function on R+

such that ϕ(0) = 0 and lim
r→∞

ϕ(r) = ∞. Define

Φ(t) =
∫ t

0
ϕ(τ)dτ,∀t ∈ R+

Then the inequality holds:

Φ(||u+ v||)≤Φ(||u||)+ 〈v, jϕ(u+ v)〉. ∀ u,v ∈ X ,

where jϕ(u+ v) ∈Jϕ(u+ v). In particular, if X is smooth,
then one has

||u+ v||2 ≤ ||u||2 +2〈v,J (u+ v)〉, ∀ u,v ∈ X .

Lemma 2.8. ( [18], [19], [20]) (Principle of Demiclosed-
ness). Let R be a Banach space which is reflexive and have
a weakly continuous duality mapping Jϕ with ϕ as a gauge
function let C be a convex subset of R and let R be nonempty
and closed , and let Q : C→C be a non expansive mapping.
In such case,the mapping I−Q is said to be demiclosed on
C, where the the identity mapping is denoted by I; that is,
xn ⇀ x in R also (I−Q)xn→ y implies that x ∈C and also
(I−Q)x = y.

Lemma 2.9. ( [20], [21], [22]) Let {wn} be a sequence of
nonnegative real numbers satisfying

wn+1 ≤ (1−δn)sn +δnδn +µn, ∀ n≥ 0,

where {δn},{λn} and {µn} satisfy the following conditions:
(i) {δn} ⊂ [0,1] and ∑

∞
n=0 δn = ∞;

(ii)limsupn→∞λn ≤ 0 or ∑
∞
n=0 δn|λn|< ∞;

(iii)µn ≥ 0(n≥ 0),∑∞
n=0 δn < ∞.

Then lim
n→∞

wn = 0.

Definition 2.10. A mapping g : Y → Y is called as contrac-
tive on X if there exists m ∈ (0,1) such that ||g(x)−g(y)|| ≤
m||x− y||,∀x,y ∈ X.

We know that a mapping h : C→C is called as weakly
contractive [24] if

||h(u)−h(v)|| ≤ ||u− v||−ψ(||u− v||), ∀ u,v ∈C.

where ψ : [0,+∞)→ [0,+∞) is a continuous and strictly in-
creasing function so that ψ is positive on (0,∞) and ψ(0) =
0.Specially, if ψ(t) = (1−m)t for t ∈ [0,+∞), where m ∈
(0,1), then the weakly contractive mapping h is a contraction
with constant m.
Rhodes [23] (see also [24]) obtained the following result for
the weakly contractive mapping.

Lemma 2.11. ( [20] [23]) Let (M,d) be a complete metric
space and h be a weakly contractive mapping on M. Then h
has a unique fixed point p in M.

Lemma 2.12. ( [25], [20]) Let {wn} and {µn} be two se-
quences of nonnegative real numbers and let {δn} be a se-
quence of positive numbers satisfying the conditions:
(i)∑

∞
n=0 δn = ∞;

(ii)limn→∞
µn
δn

= 0.
Let the recursive inequality

wn+1 ≤ wn−δnψ(wn)+δn,n≥ 0;

be given, where ψ(t) is a continuous and strict increasing
function on [0,∞) with ψ(0) = 0. Then limn→∞wn = 0.

Lemma 2.13. Let X be a real Banach space and let A,B,φ :
X → X and H,η : X×X → X be the single-valued mappings.
Let M : X×X → 2X be an H(., .)−φ −η-accretive operator
with respect to mappings A and B if for some fixed z ∈ X,
where ρ > 0, t > 0.Then we have

RH(.,.)−φ−η

M(.,z),ρ x = RH(.,.)−φ−η

M(.,z),t

( t
ρ

x+
(
1− t

ρ

)
RH(.,.)−φ−η

M(.,z),ρ x
)
,

Proof. To prove the lemma, Let t > 0 and ρ > 0 and let
x ∈Dρ = R(I+ρM(·,z)). Then there is (x0,u0) ∈G(M(·,z))
(i.e., u0 ∈M(·,z)x0) such that x = x0 +ρu0. It follows that

RH(·,·)−φ−η

M(·,z)ρ x = x0

and

t
ρ

x+(1− t
ρ
)RH(·,·)−φ−η

M(·,z)ρ x=
t
ρ
(x0+ρu0)+(1− t

ρ
)x0 = x0+tu0.

Hence

t
ρ

x+(1− t
ρ
)RH(·,·)−φ−η

M(·,z)ρ x ∈ R(I + tM(·,z)) = Dt

and

RH(·,·)−φ−η

M(·,z)t (
t
ρ

x+(1− t
ρ
)RH(·,·)−φ−η

M(·,z)t x)

= RH(·,·)−φ−η

M(·,z)t (x0 + tu0)

= x0

= RH(·,·)−φ−η

M(·,z)ρ x.
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Let X be a real Banach space with the norm ||.||, and
let X∗ be its dual. When {xn} is a sequence in X, then
xn → x,xn ⇀ x and xn

∗
⇀ x will denote strong convergence,

weak convergence and weak∗ convergence respectively of the
sequence {xn} to x.
If M is an H(., .)− φ − η−accretive operator which satis-
fies the range condition, then we can define, for each ρ >

0 and for each fixed z ∈ X , a mapping RH(·,·)−φ−η

M(.,z),ρ : R(I +

ρM(.,z))→ D(M(.,z)) defined by RH(.,.)−φ−η

M(.,z),ρ = (H(A,B)+

ρφ ◦M(.,z))−1, which is called the resolvent of M.
By the proposition (2.6), we know that RH(.,.)−φ−η

M(.,z),ρ H(A,B) is
nonexpansive and
Fix(φ ◦M(.,z))−10=Fix(RH(.,.)−φ−η

M(.,z),ρ )= {x∈D(RH(.,.)−φ−η

M(.,z),ρ ) :

RH(.,.)−φ−η

M(.,z),ρ x= x} for all ρ > 0 and for each fixed z∈X . More-
over, for ρ > 0, t > 0 and x ∈ X , by lemma2.13

RH(.,.)−φ−η

M(.,z),ρ x = (RH(.,.)−φ−η

M(.,z),t )
( t

ρ
x+
(
1− t

ρ

)
RH(.,.)−φ−η

M(.,z),ρ x
)
,

(2.4)

for each fixed z ∈ X ,
which is known as the Resolvent Identity (see [18], [19]).

3. The Iterative algorithm
Here, let us have the iterative algorithm of Jung [20] for H−
(·, ·)−φ −η-accretive operator. For this purpose let us recall
the following:
Let X be a real Banach space, let C 6= /0 be closed convex
subset of X, let M ⊂ X ×X be an H(·, ·)− φ −η-accretive
operator in X, and for each fixed z ∈ X such that Fix(φ ◦
M(.,z))−10 6= /0 and D(M) ⊂ C⊂∩ρ>0 R(I +ρM(·,z)), and

let RH(·,·)−φ−η

M(·,z),ρ be the resolvent of M for each ρ > 0. Let
S : C → C be a nonexpansive mapping with F(S)∩ F(φ ◦
M(.,z))−1 6= φ , and let f : C→C be a contractive mapping
with a constant k ∈ (0,1). Then, following is the algorithm
that generates a net {xt}tε(0,1) in an implicit way:

xt = RH(·,·)−φ−η

M(·,z),ρ (t f xt +(1− t)Sxt). (3.1)

In the theorem 3.2, we prove the strong convergence of {xt}
as t→ 0 to a point d in Fix(φ ◦M(.,z))−10∩Fix(S) which is
a solution of the following variational inequality:

〈(I− f )d,Jq(d− p)〉≤ 0, ∀ p∈Fix(φ ◦M(.,z))−1∩Fix(S)

(3.2)

We also consider the algorithm that generates a sequence in
an explicit way as given:

xn+1 = RH(·,·)−φ−η

M(·,z),ρn
(αn f xn+(1−αn)Sxn), ∀ n≥ 0, (3.3)

where {αn},{βn} ⊂ (0,1),{ρn} ⊂ (0,∞) and x0 ∈C is an ini-
tial guess,arbitrarily. We establish the strong convergence

of this sequence to a point d in Fix(φ ◦M(.,z))−10∩Fix(S),
where d is also a solution of the variational inequality (3.2).

Strongly convergent algorithm
Here, for h∈ (0,1), let we have a mapping Qt : C→C defined
as

Qtu = RH(.,.)−φ−η

M(.,z),ρ (h f u+(1−h)Su), ∀ u ∈C.

Clearly,here we have that Qh is contractive having a constant
1− (1− k)h. Thus, we have

||Qhu−Qhv|| ≤ h|| f u− f v||+ ||(1−h)Su− (I−h)Sv||
≤ h||u− v||+(1−h)||u− v||
= (1− (1− k)h)||u− v||.

Therefore Qh has a fixed point which is unique, denoted by
xh, that solves the fixed point problem (3.1)uniquely.
Next, we prove the following proposition in the light of [20]
and [7].

Proposition 3.1. Let X be a real Banach space which is uni-
formly convex.Let a convex nonempty closed subset of X be
denoted by C .And suppose M ⊂ X ×X be an H − (·, ·)−
φ −η-accretive operator in X and for each fixed z ∈ X such
that Fix(φ ◦M(.,z))−10 6= /0 and D(M) ⊂ C ⊂ ∩ρ>0R(I +

ρM(.,z)), and let (RH(.,.)−φ−η

M(.,z),ρ ) be the resolvent operator
of M for each ρ > 0. Let S : C → C denotes a nonexpan-
sive mapping having Fix(S)∩Fix(φ ◦M(.,z))−10 6= φ and
let f : C→ C be a contractive mapping having a constant
k ∈ (0,1). Let the net {xt} be defined via (3.1), and let {yt}
also denotes a net that is defined as yt = t f xt +(1− t)Sxt for
t ∈ (0,1). Then we have the following:

1. {xt} and {yt} are bounded for t ∈ (0,1);

2. xt defines a continuous path from (0,1) in C and so
does yt ;

3. lim
t→0
||yt −Sxt ||= 0;

4. lim
t→0
||yt −RH(.,.)−φ−η

M(.,z),ρ (yt)||= 0;

5. lim
t→0
||xt − yt ||= 0;

6. lim
t→0
||yt −Syt ||= 0.

Proof. 1. Let p ∈ Fix(S)∩Fix(φ ◦M(.,z))−10. Taking
p = Sp = RH(.,.)−φ−η

M(.,z),ρ p. By (3.1) and Proposition 2.6,
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we have

||xt − p||

= ||RH(.,.)−φ−η

M(.,z),ρ (H(A,B))(t f xt +(1− t)Sxt)

−RH(.,.)−φ−η

M(.,z),ρ H(A,B)(p)||

= ||Syt −Sp||
≤ ||yt − p||
= ||t( f xt − f p)+ t( f p− p)+(1− t)(Sxt −Sp)||
≤ tk||xt − p||+ t|| f p− p||+(1− t)||xt − p||.

Thus,

||xt− p|| ≤ || f p− p||
1− k

and ||yt− p|| ≤ || f p− p||
1− k

.

Hence {xt} and {yt} are bounded and consequently
{ f xt}, {Sxt},{RH(.,.)−φ−η

M(.,z),ρ xt},{Syt} and {RH(.,.)−φ−η

M(.,z),ρ yt}
are bounded.

2. Let t, t0 ∈ (0,1). Then,

||xt − xt0 ||

= ||RH(.,.)−φ−η

M(.,z),ρ (H(A,B))(t f xt +(1− t)Sxt)

−RH(.,.)−φ−η

M(.,z),ρ H(A,B)(t0 f xt0 +(1− t0)Sxt0)||

≤ ||(t− t0) f xt + t0( f xt .. f xt0)− (t− t0)Sxt

+(1− t0)Sxt − (1− t0)R
H(.,.)−φ−η

M(.,z),ρ xt0 ||

≤ |t− t0||| f xt ||+ t0k||xt − xt0 ||+ |t− t0|||Sxt ||
+(1− t0)||xt − xt0 ||.

It therefore follows that

||xt − xt0 || ≤
|| f xt ||+ ||Sxt ||

t0(1− k)
|t− t0|.

This means that xt is locally Lipschitzian and thus it is
continuous. Also we have

||yt − yt0 | ≤
|| f xt ||+ ||Sxt ||

t0(1− k)
|t− t0|,

and therefore, yt becomes continuous path.

3. By the boundedness of { f xt} and {RH(·,·)−φ−η

M(·,z),ρ xt} in
condition (1) of this proposition, we have

||yt −Sxt ||= ||t f xt +(1− t)Sxt −Sxt ||
≤ t|| f xt −Sxt || → 0 when t→ 0.

4. Suppose p ∈ Fix(S)∩Fix(φ ◦M(.,z))−10. Putting x =
yt and t = 1

2 in Resolvent Identity (2.4), we have

RH(.,.)−φ−η

M(.,z),ρ yt = RH(.,.)−φ−η

M(.,z), ρ

2

(1
2

yt +
1
2

RH(.,.)−φ−η

M(.,z),ρ yt
)
.

Then we have

||RH(.,.)−φ−η

M(.,z),ρ yt − p||

= ||RH(.,.)−φ−η

M(.,z), ρ

2

(1
2

yt +
1
2

RH(.,.)−φ−η

M(.,z),ρ yt
)
− p||

≤ ||1
2
(yt − p)+

1
2
(RH(.,.)−φ−η

M(.,z),ρ yt − p)||.

By using the inequality (2.1) (q = 2,λ = 1
2 ) we get that

||RH(.,.)−φ−η

M(.,z),ρ yt − p||2

= ||RH(.,.)−φ−η

M(.,z), ρ

2

(1
2

yt +
1
2

RH(.,.)−φ−η

M(.,z),ρ yt
)
− p||2

≤ ||1
2
(yt − p)+

1
2
(RH(.,.)−φ−η

M(.,z),ρ yt − p)||2

≤ 1
2
||yt − p||2 + 1

2
||RH(.,.)−φ−η

M(.,z),ρ yt − p||2

− 1
4

g(||yt −RH(.,.)−φ−η

M(.,z),ρ yt ||)

≤ 1
2
||yt − p||2 + 1

2
||yt − p||2− 1

4
g(||yt

−RH(.,.)−φ−η

M(.,z),ρ yt ||) (3.4)

= ||yt − p||2− 1
4

g(||yt −RH(.,.)−φ−η

M(.,z),ρ yt ||).

Thus, from equation(3.1), and the convexity of the real
function ψ(t) = t2(t ∈ (−∞,∞)) and from (3.4) we get,

||xt − p||2 = ||RH(.,.)−φ−η

M(.,z),ρ yt − p||2

≤ ||yt − p||2− 1
4

g(||yt −RH(.,.)−φ−η

M(.,z),ρ yt ||)

= ||t( f xt − p)+(1− t)(Sxt − p)||2

− 1
4

g(||yt −RH(.,.)−φ−η

M(.,z),ρ yt ||)

≤ t||( f xt − p)||2 +(1− t)||xt − p)||2

− 1
4

g(||yt −RH(.,.)−φ−η

M(.,z),ρ yt ||).

Hence

1
4

g(||yt−RH(.,.)−φ−η

M(.,z),ρ yt ||)≤ t(||( f xt− p)||2−||xt− p||2).

By the property of boundedness of { f xt} and {xt}, let-
ting t→ 0 we get

lim
t→0

g(||yt −RH(.,.)−φ−η

M(.,z),ρ yt ||) = 0.
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Thus, from the property of the function g in the inequal-
ity (2.1) it follows that

lim
t→0

(||yt −RH(.,.)−φ−η

M(.,z),ρ yt ||) = 0.

5. Using the condition (4) we obtain

||xt − yt ||

≤ ||xt −RH(.,.)−φ−η

M(.,z),ρ yt ||+ ||RH(.,.)−φ−η

M(.,z),ρ yt − yt ||

= ||RH(.,.)−φ−η

M(.,z),ρ yt − yt || → 0(t→ 0).

6. By the condition (3) and (5), we have,

||yt −Syt || ≤ ||yt −Sxt ||+ ||Sxt −Syt ||
≤ ||yt −Sxt ||+ ||xt − yt || → 0(t→ 0).

We have therefore established the strong convergence of
{xt} as t→ 0. It ensures that the solutions of the variational
inequality (3.2) exists.
Next, we prove the following theorem:

Theorem 3.2. Let X be a uniformly convex and real Banach
space with a continuous weakly duality mapping Jq having
gauge function ϕ , suppose C is a nonempty set such that
C is convex subset of X which is closed, let M ⊂ X ×X be a
H(., .)−φ−η−accretive operator in X, and for each fixed z∈
X such that (φ ◦M(.,z))−1 6= /0 and D(M)⊂C ⊂ ∩ρ>0R(I +

ρM(.,z)), and let RH(.,.)−φ−η

M(.,z),ρ is the resolvent operator of
M for each ρ > 0. Suppose S : C → C is a nonexpansive
mapping having Fix(S)∩Fix(φ ◦M(.,z))−10 6= /0 and let f :
C→C be a contractive mapping with a constant k ∈ (0,1).
Let {xt} be a net defined by equation(3.1), and let {yt} be a
net defined as yt = t f xt +(1− t)Sxt for t ∈ (0,1). Then the
nets {xt} and {yt} converges strongly to point d of Fix(φ ◦
M(.,z))−10∩ Fix(S) as t → 0, which provides solution to
variational inequality(3.2).

Proof. From the definition of the weak continuity of duality
mapping Jq it implies that X is smooth. By using condi-
tion (1) in Proposition(3.1), we get that {xt} and {yt} are
bounded sequence. Let tn → 0. Put xn := xtn and yn :=
ytn . The space X being reflexive, we can assume that yn ⇀
d for some d ∈ C. Since Jq is weakly continuous, ||yn −
RH(.,.)−φ−η

M(.,z),ρ yn|| → 0 and ||yn − Syn|| → 0 by condition (4)
and (6) in Proposition(3.1), respectively. Thus by the lemma
2.8 we have, d = Sd = RH(.,.)−φ−η

M(.,z),ρ d, and consequently d ∈
Fix(φ ◦M(.,z))−10∩Fix(S).
Next, we show that {xt} and {yt} converge strongly to a point
in Fix(φ ◦M(.,z))−10∩Fix(S) when, it is bounded for t→ 0.

Suppose {tn} is a sequence defined in (0, 1) so that tn→ 0 and
xtn ⇀ d as n→ ∞. Also, using condition (5) of the Proposi-
tion (3.1), ytn ⇀ d as n→ ∞. Then, as argued above, we have,
d ∈ Fix(φ ◦M(.,z))−10∩Fix(S).
We show that xtn → d. Using the lemma 2.7, we have,

Φ(||xtn −d||)≤Φ(||ytn −d||)
= Φ(||tn( f xtn − f d)+(1− tn)(Sxtn −d)

+ tn( f d−d)||)
≤Φ(tnk||(xtn −d||+(1− tn)||xtn −d||)
+ tn〈 f d−d, Jq(ytn −d)〉
= Φ(1− tn + tnk))||xtn −d||+ tn〈 f d−d

,Jq(ytn −d)〉
= Φ(1− (1− k)tn)||xtn −d||+ tn〈 f d−d

,Jq(ytn −d)〉
≤ (1− (1− k)tn)Φ||xtn −d||+ tn〈 f d−d

,Jq(ytn −d)〉.

This implies that

Φ(||xtn −d||)≤ 1
1− k

〈 f d−d,Jq(ytn −d)〉.

As, ytn ⇀ q implies Jq(ytn −d)→ 0, we may infer from the
last inequality that,

Φ(||xtn −d||)→ 0.

Consequently, xtn → d and ytn → d by the condition (5) of
Proposition(3.1).
Next we show that the entire net {xt} and {yt} converges
strongly to d. For such purpose, let us consider the two se-
quences {tn} and {sn} belonging to (0,1) such that

xtn → d,ytn → d and xsn → d̄,ysn → d̄.

Thus, we need to prove that d = d̄. Infact, for p ∈ Fix(φ ◦
M(.,z))−10∩Fix(S), we can see that

〈yt −Sxt ,Jq(xt −q)〉
= 〈yt − xt ,Jq(xt −d)〉+ 〈xt − p+ p−Sxt

,Jq(xt − p)〉
≥ 〈yt − xt , Jq(xt − p)〉+Φ(||xt − p||)
−〈Sxt − p,Jq(xt − p)〉
≥ 〈yt − xt , Jq(xt − p)〉+Φ(||xt − p||)
−||xt − p|| ||Jq(xt − p)||
≥ 〈yt − xt , Jq(xt − p)〉+Φ(||xt − p||)
−Φ(||xt − p||),
= 〈yt − xt , Jq(xt − p)〉.

On the other side, since,

yt −Sxt =−
t

1− t
(yt − f xt).
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we get for t ∈ (0,1) and for p ∈ F(S)∩Fix(φ ◦M(.,z))−10,

〈yt − f xt , Jq(xt − p)〉 ≤ 1− t
t
〈xt − yt , Jq(xt − p)〉.

≤ (1− 1
t
)||xt − yt || ||Jq(xt − p)||

(3.5)

≤ ||xt − yt || ||Jq(xt − p)||.

In particular, we obtain

〈ytn − f xtn ,Jq(xtn − p)〉 ≤ ||xtn − ytn || ||Jq(xtn − p)||.

and

〈ysn − f xsn , Jq(xsn − p)〉 ≤ ||xsn − ysn || ||Jq(xsn − p)||.

Now, taking n→ ∞ in above inequalities and using the condi-
tion (5) of Proposition(3.1), we have,

〈d− f d, Jq(d− p)〉 ≤ 0, and 〈d̄− f d̄,Jq(d̄− p)〉 ≤ 0.

In particular, we have

〈d− f d, Jq(d− d̄)〉 ≤ 0, and 〈d̄− f d̄,Jq(d̄−d)〉 ≤ 0.

Summing the above inequalities give

||d− d̄|| ||Jq(d− d̄)||= 〈d− d̄, Jq(d− d̄)〉
≤ 〈 f d− f d̄,Jq(d− d̄)〉
≤ k||d− d̄|| ||Jq(d− d̄)||.

This implies that (1− k)||d− d̄|| ||Jq(d− d̄)|| ≤ 0. Hence
d = d̄ and {xt} and {yt} converges strongly to d.
Now, we prove that d is the solution of the variational in-
equality(3.2)which is unique. Since, xt ,yt → q, then using the
condition (5) of Proposition (3.1) and f xt → f d as t→ 0 and
taking t→ 0 in(3.5), we have,

〈(I− f )d,Jq(d− p)〉≤ 0,∀ p∈Fix(φ ◦M(.,z))−10∩Fix(S).

Thus it shows that point d gives the solution of the variational
inequality 3.2. If d̃ ∈ Fix(φ ◦M(.,z))−10∩Fix(S) is the other
solution of the same variational inequality problem(3.2), thus

〈(I− f )d̃,Jq(d̃−d)〉 ≤ 0. (3.6)

Interchanging d̄ and d, we obtain

〈(I− f )d,Jq(d− d̃)〉 ≤ 0. (3.7)

Summing the above two inequalities we get,

(1− k)||d̃−d||Jq(d̃−d)|| ≤ 0.

This means, d = d̃. Hence d is the unique solution of the
variational inequality problem(3.2). This completes the proof.
Next, with help of Theorem 3.2, we establish the strong con-
vergence of the sequence generated by the explicit algorithm
(3.3) to the point d ∈ Fix(φ ◦M(.,z))−10∩Fix(S). It also
gives a solution of the variational inequality(3.2). For this
purpose, we use ROT.

Theorem 3.3. Let X be a real uniformly convex Banach
space.And let Jq be a weakly continuous duality mapping
with gauge function ϕ . Let C 6= /0 be a closed convex subset of
X. Let M ⊂ X×X be an H− (·, ·)−φ −η-accretive mapping
in X and for each fixed z∈X such that Fix(φ ◦M(.,z))−10 6= /0
and D(M)⊂C⊂∩ρ>0R(I+ρM(.,z)), and let RH(·,·)−φ−η

M(.,z),ρn
be

the resolvent of M for each ρn > 0. Let ρ > 0 be any given
positive number, and let S : C→C be a nonexpansive mapping
with Fix(S)∩Fix(φ ◦M(.,z))−10 6= /0. Let {αn},{βn} ∈ (0,1)
and {ρn} ⊂ (0,∞) satisfy the conditions:
(A1)limn→∞αn = 0;
(A2)∑

∞
n=0 αn = ∞;

(A3)|αn+1−αn| ≤ o(αn+1)+σn,∑
∞
n=0 σn < ∞ (the perturbed

control condition);
(A4)limn→∞ρn = ρ and ρn≥ ε > 0 f or n≥ 0 and ∑

∞
n=0 |ρn+1−

ρn|< ∞.
Suppose f : C→C be any contractive mapping having a con-
stant k ∈ (0,1) and x0 = x ∈C be an arbitrary chosen point.
Suppose {xn} is a sequence obtained by

xn+1 = RH(.,.)−φ−η

M(.,z),ρ (αn f xn+(1−αn)Sxn), ∀ n≥ 0. (3.8)

and let {yn} be a sequence defined by yn = αn f xn + (1−
αn)R

H(.,.)−φ−η

M(.,z),ρn
xn. Then {xn} and {yn} converge strongly

to d ∈ Fix(φ ◦M(.,z))−10∩Fix(S), where d is the solution
which is unique, of the variational inequality problem(3.2).

Proof. It is to be noted that using the Theorem 3.2, there
exists a unique solution d of the variational inequality

〈(I− f )d,Jq(d− p)〉≤ 0, ∀ p∈Fix(φ ◦M(.,z))−10∩Fix(S),

where d = limt→0xt = limt→0yt with xt and yt being defined
by
xt = RH(.,.)−φ−η

M(·,z),ρ (t f xt +(1− t)Sxt) and yt = t f xt +(1− t)Sxt

for 0 < t < 1, respectively. We shall prove the theorem using
the following steps.
Step I. To prove {xn} is bounded.
Let p∈Fix(φ ◦M(.,z))−10∩Fix(S). From Fix(φ ◦M(.,z))−10=
Fix(RH(·,·)−φ−η

M(·,z),ρ ) for each ρ > 0, we know p= Sp =RH(.,.)−φ−η

M(.,z),ρn
p.

Thus, we have

||xn+1− p||

= ||RH(.,.)−φ−η

M(.,z),ρn
H(A,B)(yn)−RH(.,.)−φ−η

M(.,z),ρn
H(A,B)(p)||

≤ ||yn− p||
= ||αn( f xn− p)+(1−αn)(Sxn−Sp)||
≤ αn|| fxn − p||+(1−αn)||xn− p||
≤ αn(|| f xn− f p||+ || f p− p||)+(1−αn)||xn− p||
≤ αnk||xn− p||+αn|| f p− p||+(1−αn)||xn− p||

≤max
{
||xn− p||, 1

1− k
|| f (p)− p||

}
.
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By using induction, we get

||xn− p|| ≤max
{
||x0− p||, 1

1− k
|| f p− p||

}
and

||yn− p|| ≤max
{
||x0− p||, 1

1− k
|| f p− p||

}
, ∀ n≥ 0.

Hence, we have {xn} is bounded, and so the sequence

{yn},{RH(.,.)−φ−η

M(.,z),ρn
xn},{Sxn}, {RH(.,.)−φ−η

M(.,z),ρn
yn},{Syn}

and also { f (xn)}.
Also, this follows from condition (A1) that

||yn−Sxn||= αn|| f (xn)−Sxn|| → 0(n→ ∞). (3.9)

Step II. limn→∞ ||xn+1− xn||= 0.
Using the resolvent identity(2.4) we have,

||RH(.,.)−φ−η

M(.,z),ρn
yn−RH(.,.)−φ−η

M(.,z),ρn−1
yn−1||

= ||RH(.,.)−φ−η

M(.,z),ρn−1
H(A,B)

(ρn−1

ρn
yn (3.10)

+
(
1− ρn−1

ρn

)
RH(.,.)−φ−η

M(.,z),ρn
yn) (3.11)

−RH(.,.)−φ−η

M(.,z),ρn−1
H(A,B)(yn−1)||

≤ ||ρn−1

ρn
yn +

(
1− ρn−1

ρn
RH(.,.)−φ−η

M(.,z),ρ−n−1yn
)
− yn−1||

(3.12)

≤ ||(yn− yn−1)+
ρn−1

ρn
(yn− yn−1))+(yn− yn−1

+[(1− ρn−1

ρn
)RH(.,.)−φ−η

M(.,z),ρn
yn− yn−1(1−

ρn−1

ρn
))]

≤ ||yn− yn−1||+ |1−
ρn−1

ρn
|(||yn− yn−1|| (3.13)

+ ||RH(.,.)−φ−η

M(.,z),ρn
yn− yn−1||)

≤ ||yn− yn−1||+ |
ρn−ρn−1

ε
|N1,

where N1 = supn≥0{||RH(.,.)−φ−η

M(.,z),ρn
yn−yn−1||+||yn−yn−1}.

By (3.10), we have

||xn+1− xn|| (3.14)

= ||RH(.,.)−φ−η

M(.,z),ρn
H(A,B)(yn)

−RH(.,.)−φ−η

M(.,z),ρn−1
H(A,B)(yn−1)||

≤ ||yn− yn−1||+ |
ρn−ρn−1

ε
|N1

= ||(1−αn)(Sxn−Sxn−1)+αn( f xn− f xn−1)

+(αn−αn−1)( f xn−1−Sxn−1)||+ |
ρn−ρn−1

ε
|N1

(3.15)

≤ (1−αn)||xn− xn−1||+ kαn||xn− xn−1|| (3.16)

+ |αn−αn−1|N2 + |1−
ρn−1

ρn
|N1

≤ (1− (1− k)αn)||xn− xn−1||

+ |αn−αn−1|N2 + |
ρn−ρn−1

ε
|N1,

where N2 = sup{|| f (xn)−Sxn|| : n≥ 0}. Thus, using the con-
dition (A3) we have

||xn+1− xn|| ≤ (1− (1− k)αn)||xn− xn−1||

+N2(◦(αn)+σn−1)+N1|
ρn−ρn−1

ε
|.

Next, by taking sn+1 = ||xn+1− xn||,λn = (1− k)αn,λnδn =
N2 ◦ (αn) and

γn = N1

∣∣∣∣ρn−ρn−1

ε

∣∣∣∣+N2σn−1,

in the above equation, we have,

sn+1 ≤ (1−λn)sn +λnδn + γn.

Hence, by the conditions (A1), (A2), (A3), (A4) and the
lemma 2.9, we can have

lim
n→∞
||xn+1− xn||= 0.

Step III.
lim
n→∞
||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||= 0.

From the Resolvent Identity(2.4), we have

RH(.,.)−φ−η

M(.,z),ρn
yn = RH(.,.)−φ−η

M(.,z), ρn
2

(
1
2

yn +
1
2

RH(.,.)−φ−η

M(.,z),ρn
yn).

Then we have

||RH(.,.)−φ−η

M(.,z),ρn
yn− p||

= ||RH(.,.)−φ−η

M(.,z), ρn
2

(
1
2

yn +
1
2

RH(.,.)−φ−η

M(.,z),ρn
yn− p||

≤ ||1
2
(yn− p)+

1
2
(RH(.,.)−φ−η

M(.,z),ρn
yn− p)||.
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Further, by the inequality(2.1) (λ = 1
2 ), we have

||RH(.,.)−φ−η

M(.,z),ρn
yn− p||

2

= ||RH(.,.)−φ−η

M(.,z), rn
2

(
1
2

yn +
1
2
(RH(.,.)−φ−η

M(.,z),ρn yn)− p||
2

≤ ||(1
2

yn +
1
2

RH(.,.)−φ−η

M(.,z),ρn
(yn)− (

p
2
+

p
2
)||2

≤ 1
2
||yn− p||2 + 1

2
||RH(.,.)−φ−η

M(.,z),ρn
yn− p||

2

− 1
4

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
(yn)||). (3.17)

≤ 1
2
||yn− p||2 + 1

2
||yn− p||2

− 1
4

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
(yn)||).

= ||yn− p||2− 1
4

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
(yn)||).

Thus, using the convex property of the real function

ψ(t) = t2(t ∈ (−∞,∞))

and by the inequality 3.17, we have for
p ∈ Fix(φ ◦M(.,z))−10∩Fix(S),

||xn+1− p||2

= ||RH(.,.)−φ−η

M(.,z),ρn
(yn)− p||2

≤ ||yn− p||2− 1
4

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
(yn)||)

≤ ||αn f (xn)+(1−αn)Sxn− p||2

− 1
4

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||)

≤ αn|| f (xn)− p||2 +(1−αn)||Sxn− p||2

− 1
4

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||)

≤ αn|| f (xn)− p||2 +(1−αn)||xn− p||2

− 1
4

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||)

and hence

1
4

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||)−αn(|| f (xn)− p||2

−||xn− p||2)≤ ||xn− p||2−||xn+1− p||2

Here, arises two cases:
Case 1. When 1

4 g(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||)≤ αn(|| f xn− p||2−

||xn− p||2). Then by the boundedness of { f xn} and {xn} and
the condition (A1), we have,

lim
n→∞

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn) = 0.

Case 2. When 1
4 g(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn) > αn(|| f xn− p||2−

||xn− p||2) Then, we obtain

N

∑
n=0

[
1
4

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||)−αn(|| f (xn)− p||2

−||xn− p||2)
≤ ||x0− p||2−||xN− p||2 ≤ ||x0− p||2.

Therefore
∞

∑
n=0

[
1
4

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||)−αn(|| f (xn)− p||2

−||xn− p||2)< ∞.

So,

lim
n→∞

[
1
4

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||)−αn(|| f (xn)− p||2

−||xn− p||2) = 0.

Thus by the condition (A1), we have

lim
n→∞

g(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||) = 0.

Consequently, using the property of the function g from (2.1),
it follows that lim

n→∞
(||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||) = 0.

Step IV. Here,We prove that limn→∞||xn− yn||= 0.
From Step II and Step III, we have

||xn− yn|| ≤ ||xn− xn+1||+ ||xn+1− yn||

≤ ||xn− xn+1||+ ||RH(.,.)−φ−η

M(.,z),ρn
yn− yn||

→ 0, (n→ ∞).

By the equation(3.9), we have,

||yn−Syn|| ≤ ||yn−Sxn||+ ||Sxn−Syn||
≤ ||yn−Sxn||+ ||xn− yn|| → 0,(n→ ∞).

It follows that

||xn−Sxn|| ≤ ||xn− yn||+ ||yn−Syn||+ ||Syn−Sxn||
≤ 2||xn− yn||+ ||yn−Syn|| → 0,(n→ ∞).

Note

||xn−RH(.,.)−φ−η

M(.,z),ρn
xn||

≤ ||xn− yn||+ ||yn−RH(.,.)−φ−η

M(.,z),ρn
(yn)||

+ ||RH(.,.)−φ−η

M(.,z),ρn
H(A,B)(yn)

−RH(.,.)−φ−η

M(.,z),ρn
H(A,B)(xn)||

≤ 2||xn− yn||+ ||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||

→ 0, (n→ ∞).
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We now claim that limn→∞||yn−RH(.,.)−φ−η

M(.,z),ρ yn||= 0 for ρ =

limn→∞ρn.
Using (2.4),known as the resolvent identity and boundedness
of {RH(.,.)−φ−η

M(.,z),ρn
yn} we can show

||RH(.,.)−φ−η

M(.,z),ρn
H(A,B)(yn)−RH(.,.)−φ−η

M(.,z),ρ H(A,B)(yn)||

= ||RH(.,.)−φ−η

M(.,z),ρ H(A,B)
(

ρ

ρn
yn +

(
1− ρ

ρn

)
RH(.,.)−φ−η

M(.,z),ρn
yn

)
−RH(.,.)−φ−η

M(.,z),ρn
(H(A,B))yn||

≤ ||
(

ρ

ρn
yn +

(
1− ρ

ρn

)
RH(.,.)−φ−η

M(.,z),ρn
yn− yn|| (3.18)

≤ |1− ρ

ρn
|||yn−RH(.,.)−φ−η

M(.,z),ρn
yn|| → 0(n→ ∞).

Hence, by Step 3 and inequality(3.18), we have

||yn−RH(.,.)−φ−η

M(.,z),ρ yn||

≤ ||yn−RH(.,.)−φ−η

M(.,z),ρn
yn||

+ ||RH(.,.)−φ−η

M(.,z),ρn
yn−RH(.,.)−φ−η

M(.,z),ρn
yn||

→ 0 as n→ ∞.

Thus, we have

||xn−RH(.,.)−φ−η

M(.,z),ρn
xn||

≤ ||xn− yn||+ ||yn−RH(.,.)−φ−η

M(.,z),ρ yn||

+ ||RH(.,.)−φ−η

M(.,z),ρ H(A,B)(yn)

−RH(.,.)−φ−η

M(.,z),ρ H(A,B)(xn)||

≤ 2||xn− yn||+ ||yn−RH(.,.)−φ−η

M(.,z),ρ yn||

→ 0,(n→ ∞). as n→ ∞.

Step V. limsup
n→∞

〈(I− f )d, Jq(d− yn)〉 ≤ 0.

Suppose there be a subsequence {yn j} of {yn} such that

limsup
n→∞

〈(I− f )d, Jq(d− yn)〉

= limsup
j→∞

〈(I− f )d, Jq(d− yn j)〉

and yn j ⇀ z exists for some z ∈ X . Then, by using Step III,
Step IV and the lemma 2.8, we have z∈ Fix(φ ◦M(.,z))−10∩
Fix(S).
Hence, from variational inequality(3.2) we have,

limsup
n→∞

〈(I− f )d, Jq(d− yn)〉

= limsup
j→∞

〈(I− f )d,Jq(d− yn j)〉

= 〈(I− f )d, Jq(d− z)〉 ≤ 0.

Step VI. lim
n→∞
||xn−d||= 0.

Applying lemma 2.7, we obtain

Φ(||xn+1−d||) (3.19)
≤Φ(||yn−d||)
= Φ(||αn( f xn−d)+(1−αn)(Sxn−d)||)
≤Φ(αn( f xn− f d)+(1−αn)(Sxn−d)|| (3.20)
+αn〈 f d−d, Jq(yn−d)〉 (3.21)
≤Φ(kαn||xn−d||+(1−αn)||xn−d||) (3.22)
+αn 〈 f d−d, Jq(yn−d)〉
≤ (1− (1− k)αn)Φ(||xn−d||) (3.23)
+αn〈 f d−d, Jq(yn−d)〉.

Putting value λn = (1−k)αn and δn =
1

1−k 〈(I− f )d, Jq(d−
yn)〉. From the conditions (A1), (A2) and Step 8, it is clear
that λn→ 0, ∑

∞
n=0 λn = ∞ and limsup

n→∞

δn ≤ 0. Hence, the in-

equality(3.19) reduces to

Φ(||xn+1−d||)≤ (1−λn)Φ(||xn−d||)+λnδn,

from the lemma 2.9 with γn = 0 and so, we conclude that
limn→∞Φ(||xn−d||) = 0. Consequently, limn→∞xn = d. Us-
ing the Step 4, we can have limn→∞yn = d.

Corollary 3.4. Let X , C, M, RH(.,.)−φ−η

M(.,z),ρn
, S, f and ρ > 0, for

each fixed z∈X are as given in Theorem 3.3. Let {αn} ∈ (0,1)
and {ρn} ⊂ (0,∞) which satisfies the conditions (A1) - (A4)
of Theorem 3.3. Let x0 = x ∈C be chosen arbitrarily, and let
{xn} be an iterative sequence generated by

xn+1 = RH(.,.)−φ−η

M(.,z),ρn
(αn f xn +(1−αn)Sxn +en),∀ n≥ 0,

where {en} ⊂ X satisfies ∑
∞
n=0 ||en|| < ∞ or limn→∞

en
αn

= 0,
and let {yn} be a sequence defined by yn = αn f xn + (1−
αn)Sxn + en. Then {xn} and {yn} converge strongly to d ∈
F(S)∩Fix(φ ◦M(.,z)−10, where d is the unique solution of
the variational inequality(3.2).

Proof. Suppose zn+1 = RH(.,.)−φ−η

M(.,z),ρn
(αn f zn+(1−αn)Szn) for

n≥ 0. So,now by using the Theorem 3.3, {zn} converges to d
strongly which belongs to Fix(φ ◦M(.,z))−10∩Fix(S).Here,
d is the common element of unique solution of the variational
inequality problem(3.2)also, and so we have,

||xn+1− zn+1||
≤ ||yn− zn+1||
≤ ||αn f xn +(1−αn)Sxn− (αn fzn

+(1−αn)Szn)+ en)||
≤ αn|| f xn− f zn||+(1−αn)||Sxn−Szn||+ ||en||
≤ (1− (1− k)αn)||xn− zn||+ ||en||.

By using Lemma 2.9, we have lim
n→∞
||xn− zn||= 0, and hence

the desired result follows.
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Therefore, using [6], we shall prove the following theorem
considering an iterative method with the weakly contractive
mapping:

Theorem 3.5. Assume that X , C, M, RH(·,·)−φ−η

M(·,z),ρn
, S, f and

for each fixed z ∈ X, ρ > 0 are as given in Theorem 3.3.
Let {αn} ∈ (0,1) and {ρn} ⊂ (0,∞) satisfies the conditions
(A1) - (A4) of the Theorem 3.3. Suppose g : C → C be a
mapping which is weakly contractive and having the function
ψ .Suppose x0 = x is an element of C arbitrarily,and assume
{xn} is an iterative sequence induced by

xn+1 = RH(.,.)−φ−η

M(.,z),ρn
(αngxn +(1−αn)Sxn), ∀ n≥ 0.

and {yn} be another sequence defined by yn = αngxn +
(1−αn)Sxn. Then {xn} and {yn} converges strongly to com-
mon element d ∈ F(S)∩Fix(φ ◦M(.,z))−10.

Proof. : Since the Banach Space X is smooth, so we have
a sunny nonexpansive retraction denoted as Q from C onto
Fix(φ ◦M(.,z))−10∩Fix(S). Thus Qg becomes weakly con-
tractive from C into itself.Thus, for every u,v ∈C,

||Qgu−Qgv|| ≤ ||gu−gv|| ≤ ||u− v||−ψ(||u− v||).

Then Lemma 2.11 ensures the existence of x∗ ∈C which
is unique and also an element of Fix(φ ◦M(.,z))−10∩Fix(S)
such that x∗ =Qgx∗.
Now,here an iterative sequence is defined as follows:

wn+1 = RH(.,.)−φ−η

M(.,z),ρn
(αngx∗+(1−αn)Swn) n≥ 0. (3.24)

Let {wn} be an iterated sequence being generated by the
equation (3.24). Thus from the Theorem 3.3 that has a con-
stant f = gx∗ ensures that {wn} has strong convergence to
Qgx∗ = x∗ as n→ ∞. Now,for n > 0,

||xn+1−wn+1||

= ||RH(.,.)−φ−η

M(.,z),ρn
H(A,B)(αngxn +(1−αn)Sxn)

−RH(.,.)−φ−η

M(.,z),ρn
H(A,B)(αngx∗+(1+αn)Swn)||

≤ αn(||gxn−gx∗||)+(1−αn)||xn−wn||
≤ αn[(||gxn−gwn||)+ ||gwn−gx∗||]
(1−αn)||xn−wn||
≤ αn[(||xn−wn||)−ψ(||xn−wn||)
+ ||wn− x∗||−ψ(||wn− x∗||)](1−αn)||xn−wn||
≤ (||xn−wn||)−αnψ(||xn−wn||)
+αn||wn− x∗||.

Thus, following inequality is obtained for sn = ||xn−wn|| :

sn+1 ≤ sn−αnψ(sn)+αn||wn− x∗||.

Since limn→∞||wn− x∗|| = 0, then using the condition (A2)
and lemma 2.12, it follows that limn→∞||xn−wn||= 0. Hence,

lim
n→∞
||xn− x∗|| ≤ lim

n→∞
(||xn−wn||+ ||wn− x∗||) = 0.

By using the Step IV from the proof of the Theorem 3.3,
we can also have limn→∞yn = d. This completes the proof.

4. Conclusion
We therefore conclude to say that H(·, ·)−φ−η−accretive

operator are more general to establish the convergence of
explicit iterative algorithm using the resolvent operator tech-
nique in uniformly convex Banach space. Also those could be
the solution of certain variation inequality problem.

Remark 4.1. 1. We improve the result of Jung[5] for real
uniformly convex Banach space using H(·, ·)−φ −η-
accretive operator by an iteration method of [7].

2. We improve the result of Jung[7] having real uniformly
convex Banach space with weakly continuous dual-
ity mapping in place of reflective Banach space that
has Gateaux differentiable norm using H(·, ·)−φ −η-
accretive operator.

3. We improve the result of Song [12] and utilize real
uniformly convex Banach space with weakly continu-
ous duality mapping in place of reflexive Banach space
that has H(·, ·)−φ −η-accretive operator for an itera-
tion method of [7] also using contractive mapping with
R.O.T.

4. We improve the result of Song[13] for real uniformly
convex Banach space using H(·, ·)− φ −η-accretive
operator by an iteration method of [7].

5. We improve the result of Zang and song [17] for real
uniformly convex Banach space using H(·, ·)−φ −η-
accretive operator by an iteration method of [7] involv-
ing R.O.T. and also using contractive mapping.

6. We extend the result of Jang [20], Theorem 3.2, Theo-
rem 3.3 and Theorem 3.5 improve Theorem 3.2, Theo-
rem 3.3 and Theorem 3.5 of Jang 2016 [20] by H(·, ·)−
φ −η-accretive operator .
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