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A frictionless contact problem for
elastic-visco-plastic materials with adhesion and
thermal effects
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Abstract
We consider a mathematical problem for frictionless contact between a thermo-elastic-viscoplastic body with
adhesion and an obstacle. We employ the thermo-elastic-viscoplastic with damage constitutive law for the
material. The evolution of the damage is described by an inclusion of parabolic type. The evolution of the
adhesion field is governed by the differential equation β̇ = Had

(
β ,ξβ ,Rν (uν ),Rτ (uτ )

)
. We establish a variational

formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is
based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed
point arguments.
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1. Introduction
The constitutive laws with internal variables has been

used in various publications in order to model the effect of
internal variables in the behavior of real bodies like metals,
rocks polymers and so on, for which the rate of deformation
depends on the internal variables. Some of the internal state
variables considered by many authors are the spatial display
of dislocation, the work-hardening of materials, the absolute
temperature and the damage field. See for examples [4, 19,
22, 27, 28] for the case of hardening, temperature and other
internal state variables and the references [14, 15] for the case
of damage field. The importance of this paper is to make
the coupling of the elastic-visco-plastic problem contact with
adhesion. The adhesive contact between deformable bodies,

when a glue is added to prevent relative motion of the surfaces,
has received recently increased attention in the mathematical
literature. Analysis of models for adhesive contact can be
found in [23, 25, 26] and recently in the monographs [21].
In these papers, the bonding field, denoted by β , it describes
the point wise fractional density of adhesion of active bonds
on the contact surface, and some times referred to as the
intensity of adhesion. Following [11, 12], the bonding field
satisfies the restriction 0 ≤ β ≤ 1, when β = 1 at a point of
the contact surface, the adhesion is complete and all the bonds
are active, when β = 0 all the bonds are inactive, severed, and
there is no adhesion, when 0 < β < 1 the adhesion is partial
and only a fraction β of the bonds is active. The novelty of
this work lies in the analysis of a system that contains strong
couplings in the multivalued boundary conditions: both the
normal compliance contact condition and tangential contact
condition depend on the adhesion (see (2.11) and (2.12)), and
the adhesion be written by the differential equation of the
general form

β̇ = Had
(
β ,ξβ ,Rν(uν),Rτ(uτ)

)
.

Here, Had is the adhesion evolution rate function. Then, the
adhesion rate function was assumed to depend, in addition to
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β , Rν(uν), Rτ(uτ) and ξβ , where

ξβ (x, t) =
∫ t

0
β (x,s)ds on Γ3× (0,T ).

We use it in Had , since usually when the glue is stretched
beyond the limit L it does not contribute more to the bond
strength. An example of such a function, used in [6], the
following form of the evolution of the bonding field was
employed:

Had(β ,ξβ ,R1,R2) =−β+γnR2
1,

where γn is the normal rate coefficient and γnL is the maxi-
mal tensile normal traction that the adhesive can provide and
β+ = max(0,β ). We note that in this case, only debonding is
allowed. A different rate equation for the the evolution of the
bonding field is

Had(β ,ξβ ,R1,R2) =−
(

β
(
γnR2

1 + γt |R2|2
)
− εa

)
+
,

see, e.g., [7, 16, 17]. Here, γt is the tangential rate coefficient,
which may also be interpreted as the tangential stiffness coef-
ficient of the interface when the adhesion is complete (β = 1).
Another example, in which Had depends on all variables is

Had(β ,ξβ ,R1,R2)=−γnβ+R2
1−γtβ+ |R2|2+γr

β+(1−β )+
1+ξ 2

β

,

where γr is the rebonding rate coefficient. However, the bond-
ing cannot exceed β = 1 and, moreover, the rebonding be-
comes weaker as the process goes on, which is represented by
the factor 1+ξ 2

β
in the denominator.

The aim of this paper is to study the dynamic evolution of
damage in thermo-electroelastic materials. For this, we use an
thermo-elastic-viscop-lastic materials. For this, we consider a
rate-type constitutive equation with two internal variables of
the form

σ(t) = A
(
ε(u̇(t))

)
+E

(
ε(u(t))

)
+∫ t

0
G
(
σ(s)−A

(
ε(u̇(s))

)
,ε
(
u(s)

)
,θ(s),ς(s)

)
ds,

(1.1)

in which u, σ represent, respectively, the displacement field
and the stress field where the dot above denotes the derivative
with respect to the time variable, θ represents the absolute
temperature, ς is the damage field, A and E are nonlin-
ear operators describing the purely viscous and the elastic
properties of the material, respectively, and G is a nonlin-
ear constitutive function which describes the visco-plastic
behavior of the material. It follows from (1.1) that at each
time moment, the stress tensor σ(t) is split into two parts:
σ(t) = σV (t)+σR(t), where σV (t) =A (ε(u̇(t))) represents
the purely viscous part of the stress, whereas σR(t) satisfies a
rate-type elastic-viscoplastic relation with absolute tempera-
ture and damage

σ
R(t) = E

(
ε(u(t))

)
+∫ t

0
G
(
σ

R(s),ε
(
u(s)

)
,θ(s),ς(s)

)
ds.

(1.2)

When G = 0 in (1.1) reduces to the Kelvin-Voigt viscoelastic
constitutive law given by

σ(t) = A
(
ε(u̇(t))

)
+E

(
ε(u(t))

)
. (1.3)

The damage is an extremely important topic in engineering,
since it affects directly the useful life of the designed structure
or component. There exists a very large engineering literature
on it. Models taking into account the influence of the internal
damage of the material on the contact process have been inves-
tigated mathematically. The models of mechanical damage,
which were derived from thermodynamical considerations and
the principle of virtual work, can be found in [20]. The new
idea of [13, 14] was the introduction of the damage function
α = α(x, t), which is the ratio between the elastic moduli of
the damage and damage-free materials. In an isotropic and
homogeneous elastic material, let EY be the Young modulus
of the original material and Ee f f be the current modulus, then
the damage function is defined by

α = α(x, t) =
Ee f f

EY
.

Clearly, it follows from this definition that the damage func-
tion α is restricted to have values between zero and one. When
α = 1, there is no damage in the material, when α = 0, the
material is completely damaged, when 0 < α < 1 there is
partial damage and the system has a reduced load carrying ca-
pacity. Contact problems with damage have been investigated
in [17, 29]. The differential inclusion used for the evolution
of the damage field is

α̇−κ∆α+∂ψK(α)3φ
(
σ−A ε(u̇),ε(u),θ ,α

)
in Ω× (0,T ),

(1.4)

where K denotes the set of admissible damage functions de-
fined by

K = {ξ ∈ H1(Ω); 0≤ ξ ≤ 1, a.e. in Ω}, (1.5)

κ is a positive coefficient, ∂ψK represents the subdifferential
of the indicator function of the set K and φ is a given consti-
tutive function which describes the sources of the damage in
the system.
Examples and mechanical interpretation of elastic-visco-plastic
can be found in [9, 18]. Dynamic and quasi-static contact
problems are the topic of numerous papers, e.g. [1–3, 8, 10,
24]. More recently in [17], we study an electro-elastic-visco-
plastic frictionless contact problem with damage and adhesion.
The mathematical problem modelled the quasi-static evolution
of damage in thermo-visco-plastic materials has been studied
in [20]. In this paper we study a dynamic frictionless contact
problem with damage and temperature between an elastic-
visco-plastic body and a conductive foundation. The contact
is modelled with normal compliance where the adhesion of
the contact surfaces is taken into account and is modelled
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with a surface variable, the bonding field. We derive a varia-
tional formulation of the problem and prove the existence of a
unique weak solution.

The paper is organized as follows. In section 2 we de-
scribe the mathematical models for the dynamic evolution of
damage and adhesion in elastic-viscop-lastic materials. The
contact is modelled with normal compliance and adhesion.
We introduce some notation, list the assumptions on the prob-
lem’s data, and derive the variational formulation of the model.
We prove in section 3 the existence and uniqueness of the so-
lution, where it is carried out in several steps and is based
on a classical existence and uniqueness result on parabolic
inequalities, evolutionary variational equalities, differential
equations and fixed point arguments.

2. Statement of the Problem
Let Ω⊂ Rn (n = 2,3) be a bounded domain with a Lips-

chitz boundary Γ, partitioned into three disjoint measurable
parts Γ1, Γ2 and Γ3 such that meas(Γ1) > 0. We denote by
Sn the space of symmetric tensors on Rn. We define the inner
product and the Euclidean norm on Rn and Sn, respectively,
by

u · v = uivi ∀u,v ∈ Rn, σ · τ = σi jτi j ∀σ ,τ ∈ Sn,

|u|= (u ·u)1/2 ∀u ∈ Rn, |σ |= (σ ·σ)1/2 ∀σ ∈ Sn.

Here and below, the indices i and j run from 1 to n and the
summation convention over repeated indices is used. We shall
use the notation

H = L2(Ω)n = {u = {ui} : ui ∈ L2(Ω)},
H = {σ = {σi j} : σi j = σ ji ∈ L2(Ω)},
H1 = {u ∈ H : ε(u) ∈H },
H1 = {σ ∈H : Div(σ) ∈ H},
V = H1(Ω).

Here ε : H1→H and Div : H1→H are the deformation and
divergence operators, respectively, defined by

ε(u)= (εi j(u)), εi j(u)=
1
2
(ui, j+u j,i), Div(σ)= (σi j, j).

The sets H, H , H1, H1 and V are real Hilbert spaces endowed
with the canonical inner products:

(u,v)H =
∫

Ω

uividx, (σ ,τ)H =
∫

Ω

σi jτi jdx,

(u,v)H1 = (u,v)H +(ε(u),ε(v)H ,

(σ ,τ)H1 = (σ ,τ)H +(Div(σ),Div(τ))H ,

( f ,g)V = ( f ,g)L2(Ω)+( fxi ,gxi)L2(Ω) .

The associated norms are denoted by ‖.‖H , ‖.‖H , ‖.‖H1 ,
‖.‖H1 and ‖.‖V . Since the boundary Γ is Lipschitz continu-
ous, the unit outward normal vector field ν on the boundary is
defined a.e. For every vector field v ∈H1 we denote by vν and

vτ the normal and tangential components of v on the boundary
given by

vν = v ·ν , vτ = v− vν ν .

Let HΓ = (H1/2(Γ))n and γ : H1→ HΓ be the trace map. We
denote by V the closed subspace of H1 defined by

V = {v ∈ H1 : γv = 0 on Γ1}.

We also denote by H ′
Γ

the dual of HΓ. Moreover, since
meas(Γ1)> 0, Korn’s inequality holds and thus, there exists
a positive constant C0 depending only on Ω, Γ1 such that

‖ε(v)‖H ≥C0‖v‖H1 ∀v ∈ V .

On the space V we consider the inner product given by

(u,v)V = (ε(u),ε(v))H ,

and let ‖.‖V be the associated norm, defined by

‖v‖V = ‖ε(v)‖H . (2.1)

It follows from Korn’s inequality that ‖.‖H1 and ‖.‖V are
equivalent norms on V . Therefore (V ,‖.‖V ) is a real Hilbert
space. Moreover, by the Sobolev trace theorem there exists
a positive constant C0 which depends only on Ω, Γ1 and Γ3
such that

‖v‖L2(Γ3)
n ≤C0‖v‖V ∀v ∈ V . (2.2)

Furthermore, if σ ∈H1 there exists an element σν ∈H ′
Γ

such
that the following Green formula holds

(σ ,ε(v))H +(Div(σ),v)H =
∫

Γ
σν · γvdΓ

∀v ∈ H1.
(2.3)

Similarly, for a regular tensor field σ : Ω→ Sn we define its
normal and tangential components on the boundary by

σν = σν ·ν , στ = σν−σν ν .

Moreover, we denote by V ′ and V ′ the dual of the spaces V
and V , respectively. Identifying H, respectively L2(Ω), with
its own dual, we have the inclusions

V ⊂ H ⊂ V ′, V ⊂ L2(Ω)⊂V ′.

We use the notation 〈·, ·〉V ′×V , 〈·, ·〉V ′×V to represent the dual-
ity pairing between V ′,V and V ′, V , respectively. Let T > 0.
For every real space X , we use the notation C(0,T ;X), and
C1(0,T ;X) for the space of continuous an continuously dif-
ferentiable functions from [0,T ] to X respectively, C(0,T ;X)
is a real Banach space with the norm

| f |C(0,T ;X) = max
t∈[0,T ]

| f (t)|X .

While C1(0,T ;X) is a real Banach space with the norm

| f |C1(0,T ;X) = max
t∈[0,T ]

| f (t)|X + max
t∈[0,T ]

| ḟ (t)|X .
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Finally, for k ∈N and p ∈ [1,∞], we use the standard notation
for the Lebesgue space Lp(0,T ;X) and for the Sobolev spaces
W k,p(0,T ;X). Moreover, for a real number r, we use r+ to
represent its positive part that is r+ = max(0,r), and if X1
and X2 are real Hilbert spaces, than X1×X2 denotes the prod-
uct Hilbert space endowed with the canonical inner product
(·, ·)X1×X2 .

The physical setting is the following. A body occupies
the domain Ω, and is clamped on Γ1 and so the displace-
ment field vanishes there. Surface tractions of density f0 act
on Γ2× (0,T ) and a volume force of density f is applied in
Ω×(0,T ). We assume that the body is in adhesive frictionless
contact with an obstacle, the so-called foundation, over the
potential contact surface Γ3. We admit a possible external heat
source applied in Ω× (0,T ), given by the function q. More-
over, the process is dynamic, and thus the inertial terms are
included in the equation of motion. We use an elastic-viscop-
lastic constitutive law with damage to model the material’s
behaviour and an ordinary differential equation to describe
the evolution of the adhesion field.
The mechanical formulation of the frictionless problem with
normal compliance is as follow.

Problem P
Find the displacement field u : Ω× [0,T ]→ Rn, the stress
field σ : Ω× [0,T ]→ Sn, the temperature θ : Ω× [0,T ]→ R,
the damage field ς : Ω× [0,T ]→ R and the adhesion field
β : Γ3× [0,T ]→ R such that

σ(t) = A
(
ε(u̇(t))

)
+E

(
ε(u(t))

)
+∫ t

0
G
(
σ(s)−A

(
ε(u̇(s))

)
,ε
(
u(s)

)
,θ(s),ς(s)

)
ds

in Ω× (0,T ),

(2.4)

ρ ü = Div(σ)+ f in Ω× (0,T ), (2.5)

ρθ̇ − k0∆θ = ψ
(
σ −A

(
ε(u̇)

)
,ε(u),θ ,ς

)
+q

in Ω× (0,T ),
(2.6)

ρς̇ − k1∆ς +∂Kϕ
(
ς) 3 φ

(
σ −A

(
ε(u̇)

)
,ε(u),θ ,ς

)
in Ω× (0,T ),

(2.7)

u = 0 on Γ1× (0,T ), (2.8)

σν = f0 on Γ2× (0,T ), (2.9)

β̇ = Had(β ,ξβ ,Rν(uν),Rτ(uτ on Γ3× (0,T ), (2.10)

σν =−pν(uν)+ γν β
2Rν(uν) on Γ3× (0,T ), (2.11)

στ =−pτ(β )Rτ(uτ) on Γ3× (0,T ), (2.12)

k0
∂θ

∂ν
+αθ = 0 on Γ× (0,T ), (2.13)

∂ς

∂ν
= 0 on Γ× (0,T ), (2.14)

u(0) = u0, u̇(0) = w0, θ(0) = θ0, ς(0) = ς0 in Ω,
(2.15)

β (0) = β0 on Γ3. (2.16)

Here, equation (2.4) is the thermo-elastic-visco-plastic consti-
tutive law where A and E are nonlinear operators describing
the purely viscous and the elastic properties of the material,
respectively, and G is a nonlinear constitutive function which
describes the visco-plastic behavior of the material. (2.5) rep-
resents the equation of motion in which the dot above denotes
the derivative with respect to the time variable and ρ is the
density of mass. Equation (2.6) represents the energy con-
servation where ψ is a nonlinear constitutive function which
represents the heat generated by the work of internal forces
and q is a given volume heat source. Inclusion (2.7) describes
the evolution of damage field. Equalities (2.8) and (2.9) are
the displacement-traction boundary conditions, respectively.
Condition (2.11) represents the normal compliance condition
with adhesion where γν is a given adhesion coefficient and pν

is a given positive function which will be described below. In
this condition the interpenetrability between the body and the
foundation is allowed, that is uν can be positive on Γ3. The
contribution of the adhesive to the normal traction is repre-
sented by the term γν β 2Rν(uν) the adhesive traction is tensile
and is proportional, with proportionality coefficient γν , to the
square of the intensity of adhesion and to the normal displace-
ment, but only as long as it does not exceed the bond length
L. The maximal tensile traction is γν L. Rν is the truncation
operator defined by

Rν (s) =


L if s <−L,
−s if −L≤ s≤ 0,
0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond
which it does not offer any additional traction. The contact
condition (2.11) was used in various papers, see e.g. [6, 7,
26, 29]. Condition (2.12) represents the adhesive contact
condition on the tangential plane, in which pτ is a given
function and Rτ is the truncation operator given by

Rτ(v) =

{
v if |v| ≤ L,
L v
|v| if |v|> L.

This condition shows that the shear on the contact surface
depends on the adhesion field and on the tangential displace-
ment, but only as long as it does not exceed the adhesion
length L. The frictional tangential traction is assumed to be
much smaller than the adhesive one, and therefore omitted.
The introduction of the operator Rν , together with the operator
Rτ defined above, is motivated by mathematical arguments
but it is not restrictive for physical point of view, since no
restriction on the size of the parameter L is made in what
follows.
Next, equation (2.10) describes the evolution of the bonding
field and it was already used in [6, 7], see also [29] for more
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details. (2.13) and (2.14) represent, respectively a Fourier
boundary condition for the temperature and a homogeneous
Neumann boundary condition for the damage field on Γ. Fi-
nally the functions u0, w0, θ0 and ς0 in (2.15) and β0 in (2.16)
are the initial data. To obtain the variational formulation of
the problem(2.4)–(2.16) we introduce for the adhesive field
the set

Z ={ω ∈L∞
(
0,T ;L2(Γ3)

)
: 0≤ω(t)≤ 1, t ∈ [0,T ],a.e. on Γ3}.

In the study of the Problem P, we consider the following
assumptions:

The viscosity operator A : Ω×Sn→ Snsatisfies :

(a) There exists a constant LA > 0 such that
|A (x,ε1)−A (x,ε2)| ≤ LA |ε1− ε2| for all
ε1,ε2 ∈ Sn, a.e. x ∈Ω.
(b) There exists a constant mA such that
(A (x,ε1)−A (x,ε2)).(ε1− ε2)≥ mA |ε1− ε2|2
for all ε1,ε2 ∈ Sn a.e. x ∈Ω.
(c) The mapping x 7→A (x,ε) is Lebesgue
measurable on Ω for all ε ∈ Sn.
(d)The mapping x 7→A (x,0) ∈H .

(2.17)

The relaxation function E : Ω×Sn→ Sn satisfies:

(a)There exists a constant LE > 0 such that
|E (x,ε1)−E (x,ε2)| ≤ LE |ε1− ε2|
for all ε1,ε2 ∈ Sn,a.e. x ∈Ω.
(b)The mapping x 7→ E (x,ε)
is Lebesgue measurable on Ω for all ε ∈ Sn.
(c)The mapping x 7→ E (x,0) ∈H .

(2.18)

The plasticity operator G : Ω×Sn×Sn×R×R→ Sn

satisfies:

(a)There exists a constant LG > 0 such that
|G (x,σ1,ε1,θ1,ς1)−G (x,σ2,ε2,θ2,ς2)| ≤
LG (|σ1−σ2|+ |ε1− ε2|+ |θ1−θ2|+ |ς1− ς2|)
for all σ1,σ2,ε1,ε2 ∈ Sn for all θ1,θ2 ∈ R,
for all ς1,ς2 ∈ R, a.e. x ∈Ω.
(b)The mapping x 7→ G (x,σ ,ε,θ ,ς)
is Lebesgue measurable on Ω

for all σ ,ε ∈ Sn, for all θ ,ς ∈ R.
(c)The mapping x 7→ G (x,0,0,0,0) ∈H .

(2.19)

The function ψ : Ω×Sn×Sn×R×R→ R satisfies:

(a)There exists a constant Lψ > 0 such that
|ψ(x,σ1,ε1,θ1,ς1)−ψ(x,σ2,ε2,θ2,ς2)| ≤
Lψ(|σ1−σ2|+ |ε1− ε2|+ |θ1−θ2|+ |ς1− ς2|)
for all σ1,σ2 ∈ Sn, for all ε1,ε2 ∈ Sn,
for all θ1,θ2 ∈ R, for all ς1,ς2 ∈ R a.e. x ∈Ω.

(b)The mapping x 7→ ψ(x,σ ,ε,θ ,ς) is
Lebesgue measurable on Ω, for all σ ,ε ∈ Sn,
for all θ ,ς ∈ R.

(c)The mapping x 7→ ψ(x,0,0,0,0) ∈ L2(Ω).

(2.20)

The adhesion rate function Had : Γ3×R×R×R×Rd−1→ R
satisfies:

(a) There exists Lad > 0 such that :
|Had(x,β1,ξ1,r1,d1)−Had(x,β2,ξ2,r2,d2)| ≤
Lad
(
|β1−β2|+ |ξ1−ξ2|+ |r1− r2|+ |d1−d2|

)
,

∀β1,β2,ξ1,ξ2,r1,r2 ∈ R, d1,d2 ∈ Rd−1, a.e. x ∈ Γ3.
(b) The mapping x 7→ Had(x,β ,ξ ,r,d) is
measurable onΓ3, for any β ,ξ ,r ∈ R, d ∈ Rd−1,
(c) The mapping (β ,ξ ,r,d) 7→ Had(x,β ,ξ ,r,d) is
continuous on R×R×R×Rd−1 , a.e. x ∈ Γ3,
(d) Had(x,0,ξ ,r,d) = 0,∀ξ ,r ∈ R,

d ∈ Rd−1 ,a.e. x ∈ Γ3,
(e) Had(x,β ,ξ ,r,d)≥ 0, ∀β ≤ 0,ξ ,r ∈ R,

d ∈ Rd−1 ,a.e. x ∈ Γ3,
(f) Had(x,β ,ξ ,r,d)≤ 0, ∀β ≥ 1,ξ ,r ∈ R,

d ∈ Rd−1 ,a.e. x ∈ Γ3,

(2.21)

The normal compliance pν : Γ3 × R−→ R+ satisfies:

(a) There exists a constant Lν > 0 such that
|pν(x,r1)− pν(x,r2)| ≤ Lν |r1− r2|,
∀ r1,r2 ∈ R, a.e. x ∈ Γ3.
(b)The mapping x 7→ pν(x,r) is Lebesgue
measurable on , Γ3, ∀r ∈ R.

(c)The mapping x 7→ pν(x,r) = 0
for any r ≤ 0, a.e. x ∈ Γ3.

(2.22)

The damage source φ : Ω×Sn×Sn×R×R→ R satisfies:

(a)There exists a constant Lφ > 0 such that
|φ(x,σ1,ε1,θ1,ς1)−φ(x,σ2,ε2,θ2,ς2)| ≤
Lφ (|σ1−σ2|+ |ε1− ε2|+ |θ1−θ2|+ |ς1− ς2|)
for all σ1,σ2 ∈ Sn, for all ε1,ε2 ∈ Sn,

for all θ1,θ2,ς1,ς2 ∈ R, a.e. x ∈Ω.
(b)The mapping x 7→ φ(x,σ ,ε,θ ,ς) is
Lebesgue measurable on Ωfor all σ ,ε ∈ Sn,
for all θ ,ς ∈ R.

(c)The mapping x 7→ φ(x,0,0,0,0) ∈ L2(Ω).

(2.23)

The tangential contact function pτ : Γ3 × R−→ R+ satisfies:

(a)There exists a constant Lτ > 0 such that
‖pτ(x,d1)− pτ(x,d2)| ≤ Lτ |d1−d2|
∀ d1,d2 ∈ R, a.e. x ∈ Γ3,

(b)There exists a constantMτ > 0 such that
|pτ(x,d)| ≤Mτ ∀ d ∈ R, a.e. x ∈ Γ3.
(c)The mapping x 7→ pτ(x,d) is
Lebesgue measurable on Ω, ∀ d ∈ R.
(d)The mapping x 7→ pτ(x,0) ∈ L2(Γ3).

(2.24)

The body forces, surface tractions and the volume heat source

have the regularity

f ∈ L2(0,T ;H), f0 ∈ L2(0,T ;L2(Γ2)
n), q ∈ L2(0,T ;L2(Ω)),

(2.25)

u0 ∈ V , w0 ∈ H, θ0 ∈V, ς0 ∈ K, (2.26)

β0 ∈ L2(Γ3), 0≤ β0 ≤ 1, a.e on Γ3, (2.27)
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ki > 0, i = 0,1. (2.28)
The mass density ρ satisfies:

ρ ∈ L∞(Ω),∃ρ∗ > 0 such that ρ ≥ ρ
∗ a.e. x ∈Ω. (2.29)

The adhesion coefficient and the limit bound satisfy:
γν ,γτ ∈ L∞(Γ3), γν ,γτ ≥ 0. (2.30)

Using the Riesz representation theorem, we define the linear
mapping F → V ′, by

〈F(t),v〉V ′×V = ( f (t),v)H +( f0(t),γv)L2(Γ2)n

∀v ∈ V , t ∈ (0,T ).
(2.31)

The use of (2.25) permits to verify that

F ∈ L2(0,T ;V ′). (2.32)

We introduce the following continuous functionals

a0 : V ×V → R, a0(ζ ,ξ ) = k0
∫

Ω
∇ζ ·∇ξ dx+

α
∫

Γ
ζ ξ dΓ,

a1 : V ×V → R, a1(ζ ,ξ ) = k1

∫
Ω

∇ζ ·∇ξ dx.
(2.33)

Finally, we consider the adhesion functional j : L∞(Γ3)×V ×
V → R defined by

j(β ,u,v) =
∫

Γ3

pν(uν)vν da +∫
Γ3

(−γν β
2Rν(uν)vν + pτ(β )Rτ(uτ).vτ)da.

(2.34)

Keeping in mind (2.22) and (2.24), we observe that in-
tegrals in (2.34) are well defined. Using standard arguments
based on Green’s formula (2.3), we can derive the follow-
ing variational formulation of the frictionless problem with
normal compliance (2.4)−(2.16) as follows.

Problem PV
Find the displacement field u : [0,T ]→ Rn, the stress field
σ : [0,T ]→ Sn, the temperature θ : [0,T ]→ R, the damage
field ς : [0,T ]→R and the adhesion field β : [0,T ]→R such
that

σ(t) = A
(
ε(u̇(t))

)
+E

(
ε(u(t))

)
+∫ t

0
G
(
σ(s)−A

(
ε(u̇(s))

)
,ε
(
u(s)

)
,θ(s),ς(s)

)
ds

a.e. t ∈ (0,T ),

(2.35)

〈ρ ü(t),v〉V ′×V +(σ(t),ε(v))H + j(β (t),u(t),v)

= 〈F(t),v〉V ′×V ∀v ∈ V , a.e. t ∈ (0,T ),
(2.36)

〈ρθ̇(t),ω〉V ′×V +a0(θ(t),ω) = (q(t),ω)L2(Ω)+〈
ψ
(
σ(t)−A

(
ε(u̇(t))

)
,ε
(
u(t)

)
,θ(t),ς(t)

)
,ω
〉

V ′×V

∀ω ∈V, a.e. t ∈ (0,T ),

(2.37)

〈ρς̇(t),ξ − ς(t)〉V ′×V +a1(ς(t),ξ − ς(t))≥〈
φ
(
σ(t)−A

(
ε(u̇(t))

)
,ε
(
u(t)

)
,θ(t),ς(t)

)
,ξ − ς(t)

〉
V ′×V

∀ξ ∈ K, a.e. t ∈ (0,T ),ς(t) ∈ K,

(2.38)

β̇ = Had
(
β ,ξβ ,Rν(uν),Rτ(uτ)

)
a.e. t ∈ (0,T ), (2.39)

u(0) = u0, u̇(0) = w0, θ(0) = θ0, ς(0) = ς0, β (0) = β0.
(2.40)

3. Main Results
The existence of the unique solution to Problem PV is proved
in the next section. To this end, we consider the following
remark which is used in different places of the paper.

Remark 3.1. We note that, in Problem P and in Problem PV,
we do not need to impose explicitly the restriction 0≤ β ≤ 1.
Indeed, (2.40) guarantees that β (x, t)≤ β0(x) and, therefore,
assumption (2.27) shows that β (x, t)≤ 1 for t ≥ 0, a.e. x∈ Γ3.
On the other hand, if β (x, t0) = 0 at time t0, then it follows
from (2.40) that β (x, t) = β0(x) for all t ≥ t0, and therefore
β (x, t) = 0 for all t ≥ t0,x ∈ Γ3.
We conclude that 0≤ β (x, t)≤ 1 for all t ≥ t0,x ∈ Γ3.

Theorem 3.2 (Existence and uniqueness). Under assump-
tions (2.17)–(2.28), there exists a unique solution {u,σ ,θ ,ς ,β}
to problem PV. Moreover, the solution has the regularity

u ∈ C 0(0,T ;V )∩C 1(0,T ;H), (3.1)

u̇ ∈ L2(0,T ;V ), (3.2)

ü ∈ L2(0,T ;V ′), (3.3)

σ ∈ L2(0,T ;H ), (3.4)

θ ∈ L2(0,T ;V )∩C 0(0,T ;L2(Ω)), (3.5)

θ̇ ∈ L2(0,T ;V ′), (3.6)

ς ∈ L2(0,T ;V )∩C 0(0,T ;L2(Ω)), (3.7)

ς̇ ∈ L2(0,T ;V ′), (3.8)

β ∈W 1,∞(0,T ;L2(Γ3))∩Z . (3.9)

A quintuple (u,σ ,θ ,ς ,β ) which satisfies (2.35)–(2.40) is
called a weak solution to the compliance contact Problem P.
We conclude that under the stated assumptions, problem (2.4)–
(2.16) has a unique weak solution satisfying (3.1)–(3.9).
We turn now to the proof of Theorem 3.2, which will be car-
ried out in several steps and is based on arguments of nonlinear
equations with monotone operators, a classical existence and
uniqueness result on parabolic inequalities and fixed-point
arguments. To this end, we assume in the following that
(2.17)–(2.28) hold. Below, C denotes a generic positive con-
stant which may depend on Ω, Γ1, Γ2, Γ3, A , E , G , Had , ψ ,
φ , pν , pτ , γν , γτ , L and T but does not depend on t nor on the
rest of input data, and whose value may change from place
to place. Moreover, for the sake of simplicity we suppress in
what follows the explicit dependence of various functions on
x ∈Ω∪Γ.
Let η ∈ L2(0,T ;V ′) be given. In the first step we consider
the following variational problem.
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Problem PVη

Find the displacement field uη : [0,T ]→ Rn, such that

〈ρ üη(t),v〉V ′×V +
(
A
(
ε(u̇η(t))

)
,ε(v)

)
H
+

〈η(t),v〉V ′×V = 〈F(t),v〉V ′×V

∀v ∈ V , a.e. t ∈ (0,T ),
(3.10)

uη(0) = u0, u̇η(0) = w0 in Ω. (3.11)

Lemma 3.3. For all η ∈ L2(0,T ;V ′), there exists a unique
solution uη to the auxiliary problem PVη satisfying (3.1)–
(3.3).

Proof. Let us introduce the operator A : V → V ′,

〈Au,v〉V ′×V =
(
A
(
ε(u)

)
,ε(v)

)
H
. (3.12)

Therefore, (3.10) can be rewritten as follows

ρ üη(t)+A
(
u̇η(t)

)
= Fη(t) on V ′ a.e. t ∈ (0,T ), (3.13)

where

Fη(t) = F(t)−η(t) ∈ V ′.

It follows from (2.1), (3.12) and hypothesis (2.17) that A is
bounded, semi-continuous and coercive on V . We recall that
by (2.32) we have Fη ∈ L2(0,T ;V ′). Then by using classical
arguments of functional analysis concerning parabolic equa-
tions [5] we can easily prove the existence and uniqueness of
wη satisfying

wη ∈ L2(0,T ;V )∩C 0(0,T ;H), (3.14)

ẇη ∈ L2(0,T ;V ′), (3.15)

ρẇη(t)+A(wη(t)) = Fη(t)
on V ′ a.e. t ∈ (0,T ), (3.16)

wη(0) = w0. (3.17)

Consider now the function uη : (0,T )→ V defined by

uη (t) =
∫ t

0
wη (s)ds+u0 ∀t ∈ (0,T ). (3.18)

It follows from (3.16) and (3.17) that uη is a solution of the equation
(3.13) and it satisfies (3.1)–(3.3).

In the second step we use the displacement field uη ob-
tained in Lemma 3.3 and we consider the following initial
value problem.

Problem PVβ

Find the adhesion field βη : [0,T ]→ L2(Γ3) such that

β̇
η
(t) = Had

(
β

η
(t),ξβ

η
, ‘Rν(uην

(t)),Rτ(uητ
(t))
)
, (3.19)

βη(0) = β0 in Ω. (3.20)

Lemma 3.4. Problem PVβ has a unique solution βη such
that

βη ∈W 1,∞(0,T ;L2(Γ3))∩Z .

Proof. We consider the mapping H
η

: [0,T ]×L2(Γ3)→L2(Γ3),

H
η
(t,β ) = Had

(
β

η
(t),ξβ

η
,Rν(uην

(t)),Rτ(uητ
(t))
)
,

for all t ∈ [0,T ] and β ∈ L2(Γ3). It follows from the properties
of the truncation operator Rν and Rτ that H

η
is Lipschitz

continuous with respect to the second variable, uniformly
in time. Moreover, for all β ∈ L2(Γ3), the mapping t →
H

η
(t,β ) belongs to L∞(0,T ;L2(Γ3)). Thus using the Cauchy–

Lipschitz theorem given in [30, p. 60], we deduce that there
exists a unique function β

η
∈W 1,∞(0,T ;L2(Γ3)) solution of

the equation (3.19). Also, the arguments used in Remark 3.1
show that 0 ≤ β

η
(t) ≤ 1 for all t ∈ [0,T ], a.e. on Γ3. This

completes the proof.

Problem PVλ

Find the temperature θλ : [0,T ]→ R such that

〈ρθ̇λ (t),ω〉V ′×V +a0(θλ (t),ω) =
〈λ (t)+q(t),ω〉V ′×V , ∀ω ∈V, a.e. t ∈ (0,T ),

(3.21)

θλ (0) = θ0 in Ω. (3.22)

Lemma 3.5. For all λ ∈ L2(0,T ;V ′), there exists a unique
solution θλ to the auxiliary problem PVλ satisfying (3.5) and
(3.6).

Proof. By an application of the Poincaré–Friedrichs inequal-
ity, we can find a constant α ′ > 0 such that∫

Ω

|∇ζ |2dx+
α

k0

∫
Γ

|ζ |2dγ ≥ α
′
∫

Ω

|ζ |2dx ∀ζ ∈V.

Thus, we obtain

a0(ζ ,ζ )≥C1‖ζ‖2
V ∀ζ ∈V, (3.23)

where C1 = k0 min(1,α ′)/2, which implies that a0 is V -elliptic.
Consequently, based on classical arguments of functional anal-
ysis concerning parabolic equations, the variational equation
(3.21) has a unique solution θλ satisfies (3.5) and (3.6).

Problem PVµ

Find the damage field ςµ : [0,T ]→ R such that

〈ρς̇µ(t),ξ − ςµ(t)〉V ′×V +a1(ςµ(t),ξ − ςµ(t))
≥ 〈µ,ξ − ςµ(t)〉V ′×V
∀ξ ∈ K, a.e. t ∈ (0,T ), ςµ(t) ∈ K,

(3.24)

ςµ(0) = ς0 in Ω. (3.25)

Lemma 3.6. For all µ ∈ L2(0,T ;V ′), there exists a unique
solution ςµ to the auxiliary problem PVµ satisfying (3.7)–
(3.8).

Proof. We know that the form a1 is not V -elliptic. To solve
this problem we introduce the functions

ς̃µ(t) = e−k1t
ςµ(t), ξ̃ (t) = e−k1t

ξ (t).
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We remark that if ςµ , ξ ∈ K then ς̃µ , ξ̃ ∈ K. Consequently,
(3.24) is equivalent to the inequality

〈ρ
·
ς̃ µ(t), ξ̃ − ς̃µ(t)〉V ′×V +a1(ς̃µ(t), ξ̃ − ς̃µ(t))

+k1(ρς̃µ , ξ̃ − ς̃µ(t))L2(Ω) ≥ 〈e
−k1t

µ, ξ̃ − ς̃µ(t)〉V ′×V

∀ξ̃ ∈ K, a.e. t ∈ (0,T ), ς̃µ ∈ K.

(3.26)

The fact that

a1(ξ̃ , ξ̃ )+k1(ρξ̃ , ξ̃ )L2(Ω) ≥ k1 min(ρ∗,1)‖ξ̃‖2
V ∀ξ̃ ∈V,

(3.27)

and using classical arguments of functional analysis concern-
ing parabolic inequalities [5], implies that (3.24) has a unique
solution ς̃µ having the regularity (3.7) and (3.8).

Let us consider now the auxiliary problem.

Problem PVη ,λ ,µ

Find the stress field ση ,λ ,µ : [0,T ]→ Sn which is a solution
of the problem

ση ,λ ,µ(t) = E
(
ε(uη(t))

)
+
∫ t

0
G
(
ση ,λ ,µ(s),ε

(
uη(s)

)
,θλ (s),ςµ(s)

)
ds

∀t ∈ [0,T ].

(3.28)

Lemma 3.7. There exists a unique solution of Problem PVη ,λ ,µ

and it satisfies (3.4). Moreover, if uηi ,θλi ,ςµi and σηi,λi,µi
represent the solutions of problems PVηi , PVλi , PVµi and
PVηi,λi,µi , respectively, for i = 1,2, then there exists C > 0
such that

‖ση1,λ1,µ1(t)−ση2,λ2,µ2(t)‖
2
H ≤C

(
‖uη1(t)−uη2(t)‖

2
V

+
∫ t

0
(‖uη1(s)−uη2(s)‖

2
V +‖θλ1(s)−θλ2(s)‖

2
V+

‖ςµ1(s)− ςµ2(s)‖
2
V )ds

)
.

(3.29)

Proof. Let Ση ,λ ,µ : L2(0,T ;H )→ L2(0,T ;H ) be the map-
ping given by

Ση ,λ ,µ σ(t) = E
(
ε(uη(t))

)
+∫ t

0
G
(
σ(s),ε

(
uη(s)

)
,θλ (s),ςµ(s)

)
ds.

(3.30)

Let σi ∈ L2(0,T ;H ), i = 1,2 and t1 ∈ (0,T ).
Using hypothesis (2.19) and Hölder’s inequality, we find

‖Ση ,λ ,µ σ1(t1)−Ση ,λ ,µ σ2(t1)‖2
H ≤

L2
G T
∫ t1

0
‖σ1(s)−σ2(s)‖2

H ds.
(3.31)

By reapplication of mapping Ση ,λ ,µ , it yields∥∥∥Σ
2
η ,λ ,µ σ1(t1−Σ

2
η ,λ ,µ σ2(t1)

∥∥∥2

H
≤

L4
G T 2

t1∫
0

t2∫
0

‖σ1(s)−σ2(s)‖2
H dsdt2.

Reiterating this inequality m times leads to∥∥∥Σ
m
η ,λ ,µ σ1(t1)−Σ

m
η ,λ ,µ σ2(t1)

∥∥∥2

H
≤

L2m
G T m

t1∫
0

t2∫
0

...

tm∫
0

‖σ1(s)−σ2(s)‖2
H dsdtm...dt2.

Integration on the time interval (0,T ) , it follows that

∥∥∥Σm
η ,λ ,µ σ1−Σ

m
η ,λ ,µ σ2

∥∥∥2

L2(0,T ;H )
≤

L2m
G T 2m

m!
‖σ1−σ2‖2

L2(0,T ;H ) .

(3.32)

It follows from this inequality that for m large enough, a
power m of the mapping Ση ,λ ,µ is a contraction on the space
L2(0,T ;H ) and, therefore, from the Banach fixed point theo-
rem, there exists a unique element ση ,λ ,µ ∈ L2(0,T ;H ) such
that Ση ,λ ,µ ση ,λ ,µ = ση ,λ ,µ , which represents the unique so-
lution of the problem PVη ,λ ,µ . Moreover, if uηi ,θλi ,ςµi and
σηi,λi,µi represent the solutions of the problems PVηi , PVλi
, PVµi and PVηi,λi,µi , respectively, for i = 1,2, then we use
(2.1), (2.17)−(2.19) and Young’s inequality to obtain

‖ση1,λ1,µ1(t)−ση2,λ2,µ2(t)‖
2
H ≤C

(
‖uη1(t)−uη2(t)‖

2
V

+
∫ t

0
(‖ση1,λ1,µ1(s)−ση2,λ2,µ2(s)‖

2
H +‖uη1(s)−uη2(s)‖

2
V

+‖θλ1(s)−θλ2(s)‖
2
V +‖ςµ1(s)− ςµ2(s)‖

2
V )ds

)
.

Which permits us to obtain, using Gronwall’s lemma, the in-
equality (3.29).

By taking into account the above results and the properties
of the operators E and G of the functions ψ and φ , we may
consider the operator

Λ : L2(0,T ;V ′×V ′×V ′)→ L2(0,T ;V ′×V ′×V ′),

Λ
(
η(t),λ (t),µ(t)

)
=
(
Λ

0(η(t),λ (t),µ(t)),

Λ
1(η(t),λ (t),µ(t)),Λ2(η(t),λ (t),µ(t))

)
,

(3.33)

defined by〈
Λ

0(
η(t),λ (t),µ(t)

)
,v
〉
V ′×V

=
(
E
(
ε(uη(t)),ε(v)

)
H

+
(∫ t

0
G
(
ση ,λ ,µ(s),ε

(
uη(s)

)
,θλ (s),ςµ(s)

)
ds,ε(v)

)
H

+ j(βη(t),uη(t),v) ∀v ∈ V ,

(3.34)

,Λ
1(η(t),λ (t),µ(t)) = ψ

(
ση ,λ ,µ(t),ε(uη(t)),θλ (t),ςµ(t)

)
(3.35)

Λ
2(η(t),λ (t),µ(t)) = φ

(
ση ,λ ,µ(t),ε(uη(t)),θλ (t),ςµ(t)

)
.

(3.36)
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Lemma 3.8. The mapping Λ has a fixed point

(η∗,λ ∗,µ∗) ∈ L2(0,T ;V ′×V ′×V ′).

Proof. Let (η1,λ1,µ1),(η2,λ2,µ2) ∈ L2(0,T ;V ′×V ′×V ′).

We use the notation uηi = ui, u̇ηi = u̇i, üηi = üi, βηi =
βi ,θλi = θi,ςµi = ςi and σηi,λi,µi = σi, for i = 1,2. Let us
start by using (2.1), hypotheses (2.17)–(2.19), (2.23)–(2.24)
and the definition of Rη , Rτ and Remark 3.1 we have

‖Λ0(
η1(t),λ1(t),µ1(t)

)
−Λ

0(
η2(t),λ2(t),µ2(t)

)
‖2

V ′

≤ ‖E
(
ε(u1(t))

)
−E

(
ε(u2(t))

)
‖2

V

+
∫ t

0
‖G
(
σ1(s),ε

(
uη(s)

)
,θ1(s),ς1(s)

)
−

G
(
σ2(s),ε

(
u2(s)

)
,θ2(s),ς2(s)

)
‖2

H ds

+C
(
‖pν(u1ην(t))− pν(u2ην(t))‖2

L2(Γ3)

)
+C
(
‖β 2

1 (t)Rν(u1ην(t))−β
2
2 (t)Rν(u2ην(t))‖

2

L2(Γ3)

)
+C
(
‖pτ(β1(t))Rτ(u1ητ(t))− pτ(β2(t))Rτ(u2ητ(t))‖2

L2(Γ3)

)
,

so we obtain

‖Λ0(η1(t),λ1(t),µ1(t))−Λ
0(η2(t),λ2(t),µ2(t))‖2

V ′

≤C
(∫ t

0

(
‖σ1(s)−σ2(s)‖2

H +‖u1(s)−u2(s)‖2
V +

‖θ1(s)−θ2(s)‖2
L2(Ω)+‖ς1(s)− ς2(s)‖2

L2(Ω)

)
ds+

‖u1(t)−u2(t)‖2
V +‖β1(t)−β2(t)‖2

L2(Γ3)

)
.

(3.37)

We use estimate (3.29) to obtain

‖Λ0(
η1(t),λ1(t),µ1(t)

)
−Λ

0(
η2(t),λ2(t),µ2(t)

)
‖2

V ′

≤C
(∫ t

0

(
‖u1(s)−u2(s)‖2

V +‖θ1(s)−θ2(s)‖2
L2(Ω)

+‖ς1(s)− ς2(s)‖2
L2(Ω)

)
ds+‖u1(t)−u2(t)‖2

V

+‖β1(t)−β2(t)‖2
L2(Γ3)

)
.

(3.38)

Also, from the Cauchy problem (3.19)–(3.20) we can write

βi(t)=β0−
∫ t

0
Had
(
βi(s),ξβi(s),Rν(uiν(s)),Rτ(uiτ(s))

)
ds

and, employing (2.21) we obtain that

∥∥β1(t)−β2(t)
∥∥

L2(Γ3)
≤C
∫ t

0

∥∥β1(s)−β2(s)
∥∥

L2(Γ3)
ds

+ C
∫ t

0

∥∥Rν(u1ν(s))−Rν(u2ν(s))
∥∥

L2(Γ3)
ds

+ C
∫ t

0

∥∥Rτ(u1τ(s))−Rτ(u2τ(s))
∥∥

L2(Γ3)
ds.

Using the definition of Rν and Rτ and writing β1 = β1−β2 +
β2, we get∥∥β1(t)−β2(t)

∥∥
L2(Γ3)

≤C
(∫ t

0
‖β1(s)−β2(s)‖L2(Γ3)

ds

+
∫ t

0

∥∥u1(s)−u2(s)
∥∥

L2(Γ3)d ds
)
.

(3.39)

Next, we apply Gronwall’s inequality to deduce

‖β1(t)−β2(t)‖L2(Γ3)

≤C
∫ t

0
‖u1(s)−u2(s)‖L2(Γ3)d ds,

and from the relation (2.1) we obtain that

‖β1(t)−β2(t)‖2
L2(Γ3)

≤C
∫ t

0
‖u1(s)−u2(s)‖2

V ds (3.40)

holds.
On the other hand, since ui(t) = u0 +

∫ t
0 u̇i(s)ds, we know

that for a.e. t ∈ (0,T ),

‖u1(t)−u2(t)‖V ≤
∫ t

0
‖u̇1(s)− u̇2(s)‖V ds. (3.41)

Applying Young’s and Hölder’s inequalities, (3.38) becomes,
via (3.40) and (3.41)

‖Λ0(
η1(t),λ1(t),µ1(t)

)
−Λ

0(
η2(t),λ2(t),µ2(t)

)
‖2

V ′

≤C
(∫ t

0

(
‖u̇1(s)− u̇2(s)‖2

V +‖u1(s)−u2(s)‖2
V

+‖θ1(s)−θ2(s)‖2
V +‖ς1(s)− ς2(s)‖2

V
)
ds
)

a.e. t ∈ (0,T ).
(3.42)

Furthermore, we find by taking the substitution η = η1, η =
η2 in (3.10) and choosing v = u̇1− u̇2 as test function

〈ρ(ü1(t)− ü2(t))+Au̇1(t)−Au̇2(t), u̇1(t)− u̇2(t)〉V ′×V

= 〈η2(t)−η1(t), u̇1(t)− u̇2(t)〉V ′×V a.e. t ∈ (0,T ).

By virtue of (2.17) and (2.29), this equation becomes

(ρ∗)2

2
d
dt ‖u̇1(t)− u̇2(t)‖2

H +mA ‖u̇1(t)− u̇2(t)‖2
V ≤

‖η2(t)−η1(t)‖V ′‖u̇1(t)− u̇2(t)‖V .

Integrating this inequality over the interval time variable (0, t),
Young’s inequality leads to

(ρ∗)2‖u̇1(t)− u̇2(t)‖2
H +mA

∫ t
0 ‖u̇1(s)− u̇2(s)‖2

V ds≤
2

mA

∫ t
0 ‖η1(s)−η2(s)‖2

V ′ds.

Consequently,∫ t

0
‖u̇1(s)− u̇2(s)‖2

V ds≤C
∫ t

0
‖η1(s)−η2(s)‖2

V ′ds,

a.e. t ∈ (0,T ),
(3.43)
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which also implies, using a variant of (3.41), that

‖u1(t)−u2(t)‖2
V ≤C

∫ t

0
‖η1(s)−η2(s)‖2

V ′ds a.e. t ∈ (0,T ).

(3.44)

Moreover, if we take the substitution λ = λ1, λ = λ2 in (3.21)
and subtracting the two obtained equations, we deduce by
choosing ω = θλ1 −θλ2 as test function

(ρ∗)2

2
‖θ1(t)−θ2(t)‖2

L2(Ω)+C1

∫ t

0
‖θ1(s)−θ2(s)‖2

V ds≤∫ t

0
‖λ1(s)−λ2(s)‖V ′‖θ1(s)−θ2(s)‖V ds a.e. t ∈ (0,T ).

(3.45)

Employing Hölder’s and Young’s inequalities, we deduce that

‖θλ1(t)−θλ2(t)‖
2
L2(Ω)+

∫ t

0
‖θλ1(s)−θλ2(s)‖

2
V ds

≤C
∫ t

0
‖λ1(s)−λ2(s)‖2

V ′ds a.e. t ∈ (0,T ).
(3.46)

Substituting now {µ = µ1,ξ = ς̃µ1}, {µ = µ2,ξ = ς̃µ2} in
(3.26) and subtracting the two inequalities, we obtain

‖ς̃1(t)− ς̃2(t)‖2
L2(Ω)+

∫ t

0
‖ς̃1(s)− ς̃2(s)‖2

V ds

≤C
∫ t

0
‖e−k1t(µ1(s)−µ2(s))‖2

V ′ds a.e. t ∈ (0,T ),

from which also follows that

‖ς1(t)− ς2(t)‖2
L2(Ω)+

∫ t

0
‖ς1(s)− ς2(s)‖2

V ds

≤C
∫ t

0
‖µ1(s)−µ2(s)‖2

V ′ds a.e. t ∈ (0,T ).
(3.47)

We can infer, using (3.42)–(3.47), that

‖Λ0(η1(t),λ1(t),µ1(t))−Λ
0(η2(t),λ2(t),µ2(t))‖2

V ′ ≤
C
(
‖η1(t)−η2(t)‖2

V ′ +‖λ1(t)−λ2(t)‖2
V ′+‖µ1(t)−µ2(t)‖2

V ′
)
.

(3.48)

From hypothesis (2.20), (3.29) and (2.23) it follows

‖Λ1(η1(t),λ1(t),µ1(t))−Λ
1(η2(t),λ2(t),µ2(t))‖2

V ′

=‖ψ
(
σ1(t),ε(u1(t)),θ1(t),ς1(t)

)
−

ψ
(
σ2(t),ε(u2(t)),θ2(t),ς2(t)

)
‖2

V ′

≤C
(
‖u1(t)−u2(t)‖2

V +‖θ1(t)−θ2(t)‖2
V +‖ς1(t)− ς2(t)‖2

V
)

a.e. t ∈ (0,T ).

This permits us to deduce, via (3.43), (3.46) and (3.47), that

‖Λ1(η1(t),λ1(t),µ1(t))−Λ
1(η2(t),λ2(t),µ2(t))‖2

V ′ ≤
C
(
‖η1(t)−η2(t)‖2

V ′ +‖λ1(t)−λ2(t)‖2
V ′+‖µ1(t)−µ2(t)‖2

V ′
)
.

(3.49)

Similarly, using (3.29), (3.44), (3.46) and (3.47), we obtain
the following estimate for Λ2

‖Λ2(η1(t),λ1(t),µ1(t))−Λ
2(η2(t),λ2(t),µ2(t))‖2

V ′

=‖φ
(
σ1(t),ε(u1(t)),θ1(t),ς1(t)

)
−

φ
(
σ2(t),ε(u2(t)),θ2(t),ς2(t)

)
‖2

V ′ ≤
C
(
‖η1(t)−η2(t)‖2

V ′ +‖λ1(t)−λ2(t)‖2
V ′+‖µ1(t)−µ2(t)‖2

V ′
)
.

(3.50)

From (3.48), (3.49) and (3.50), we conclude that there exists
a positive constant C > 0 verifying

‖Λ(η1,λ1,µ1)−Λ(η2,λ2,µ2)‖2
V ′×V ′×V ′ ≤

C‖(η1−η2,λ1−λ2,µ1−µ2)‖2
V ′×V ′×V ′ .

(3.51)

We generalize this procedure by recurrence on m. Then we
obtain the formula

‖Λm(η1,λ1,µ1)−Λ
m(η2,λ2,µ2)‖2

L2(0,T ;V ′×V ′×V ′)

≤CmT m

m!
‖(η1−η2,λ1−λ2,µ1−µ2)‖2

L2(0,T ;V ′×V ′×V ′).

(3.52)

Thus, for m sufficiently large, Λm is a contraction on L2(0,T ;V ′×
V ′×V ′). Hence, Banach’s fixed point theorem shows that Λ

admits a unique fixed point (η∗,λ ∗,µ∗) ∈ L2(0,T ;V ′×V ′×
V ′).

Now, we have all the ingredients to prove Theorem (3.2).

Proof. Let (η∗,λ ∗,µ∗) ∈ L2(0,T ;V ′×V ′×V ′) be the fixed
point of Λ defined by (3.33)–(3.36) and denote by

(a) u = uη∗ , (b) θ = θλ ∗ , (c) ς = ςµ∗ , (3.53)

(d) σ = A ε(u̇)+ση∗λ ∗µ∗ , (e) β = βη∗ . (3.54)

We prove that (u,σ ,θ ,ς ,β ) satisfies (2.35)–(??) and (3.1)–
(3.9). Indeed, we write (3.28) for η =η∗ , λ = λ ∗ and µ = µ∗

using (3.53) and (3.54)(a) to obtain that (2.35) is satisfied.
Now we consider (3.10) for η = η∗ and using (3.53)(a) to
find

〈ρ ü,v〉V ′×V +(A (ε(u̇(t))),ε(v))H + 〈η∗(t),v〉V ′×V
= 〈F(t),v〉V ′×V , ∀v ∈V,a.e.t ∈ (0,T ). (3.55)

Equalities Λ1(η∗,λ ∗,µ∗) = η∗ , Λ2(η∗,λ ∗,µ∗) = λ ∗ and
Λ2(η∗,λ ∗,µ∗) = µ∗ combined with (3.34)–(3.36),(3.53) and
(3.54) show that

〈η∗(t),v〉V ′×V =
(
E (ε(u(t))),ε(v)

)
H
+(∫ t

0 G
(
σ(s)−A (ε(u̇(s))),ε(u(s)),ς(s)

)
ds,ε(v)

)
H

+ j(β (t),u(t),v), ∀v ∈ V ,
(3.56)

λ ∗(t) = ψ
(
σ(t)−A (ε(u̇(t))),ε(u(t)),θ(t),ς(t)

)
, (3.57)

µ∗(t) = φ
(
σ(t)−A (ε(u̇(t))),ε(u(t)),θ(t),ς(t)

)
. (3.58)

380



A frictionless contact problem for elastic-visco-plastic materials with adhesion and thermal effects — 381/382

Now we substitute (3.56) in (3.55) and use (2.35) to see
that (2.36) is satisfied. We write (3.21) for λ = λ ∗ and use
(3.53)(b) and (3.57) to find that (2.37) is satisfied, also we
write (3.23) for µ = µ∗ and using (3.53)(c) and (3.58) to find
that (2.38) is satisfied. We consider now (3.19) for η = η∗

and use (3.53)(a) and (3.54)(b) to obtain that (2.40) is sat-
isfied. Next (??) and the regularities (3.1)–(3.3), (3.5)–(3.9)
follow lemmas (3.3), (3.4), (3.5) and (3.6). The regularity
(3.4) follows from lemma (3.7). The uniqueness part of the-
orem (3.2) is a consequence of the uniqueness of the fixed
point of the operator Λ defined (3.34)–(3.36) and the unique
solvability of the problems PVη , PVβ , PVλ , PVµ and PVη ,λ ,µ

which completes the proof.
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