The generalized B curvature tensor on $(L C S)_{n}$-manifolds

Somashekhara P ${ }^{1}$, Venkatesha ${ }^{2 *}$ and R.T. Naveen Kumar ${ }^{3}$

Abstract

The present paper deals with the study of generalized B curvature tensor on $(L C S)_{n}$-manifolds. Here we describe flatness, semisymmetry and recurrent properties on $(L C S)_{n}$-manifolds. Moreover we consider the conditions $B \cdot R=0, B \cdot B=0$ and $B \cdot S=0$ and obtained interesting results

Keywords

Lorentzian metric, $(L C S)_{n}$-manifolds, semisymmetric, ϕ-recurrent, η-Einstein manifold.
AMS Subject Classification 53C10, 53C20, 53C25.
1,2 Department of Mathematics, Kuvempu University, Shankaraghatta - 577451, Shimoga, Karnataka, India.
${ }^{3}$ Department of Mathematics, Siddaganga Institute of Technology, B H Road, Tumakuru-572103, Karnataka, India.
*Corresponding author: ${ }^{1}$ vensmath@gmail.com; ${ }^{2}$ somumathrishi@gmail.com
Article History: Received 24 December 2018; Accepted 09 May 2019

Contents

1 Introduction 383
2 Preliminaries 383
3 Main Results 384
$4 B$ flat, $\xi-B$ flat and $\phi-B$ flat $(L C S)_{n}$-manifold 384
5 Semisymmetric properties on $(L C S)_{n}$ - manifold 385
$6 B-\phi$-recurrent $(L C S)_{n}$-manifold 386
7 An $(L C S)_{n}$ - manifold satisfying $B \cdot R=0, B \cdot B=0$ and $B \cdot S=$ $0 .$.References387

1. Introduction

The idea of Lorentzian concircular structure manifolds (briefly $(L C S)_{n}$-manifolds) was introduced by Shaikh [6] and studied their existence, more applications to general theory of relativity and cosmology. Also, $(L C S)_{n}$-manifolds generalizes the concept of $L P$ Sasakian manifolds, which is given by Matsumoto [4]. The notion of $(L C S)_{n}$-manifolds were weakened by several authors in different ways such as in $[7-9,11]$ and many others.

On the other hand Shaikh and Kundu [10] introduced and studied a type of tensor field, called generalized B curvature tensor on a Riemannian manifold. This includes the structures of Quasi-conformal, Weyl conformal, Conharmonic and Concircular curvature tensors.

In this paper we made an attempt to study certain properties of B curvature tensor on $(L C S)_{n}$-manifolds. The paper is organized as follows: After preliminaries, in Section 3 we study B flat, $\xi-B$ flat and $\phi-B$ flat $(L C S)_{n}$-manifolds and found that the manifold is Einstein or η-Einstein provided B curvature tensor is not an Weyl-conformal, concircular and conharmonic structures. Next we consider B semisymmetric and $B-\phi$ semi-symmetric $(L C S)_{n}$-manifolds and it is shown that manifold is Einstein or η-Einstein if B curvature tensor is not an Weyl-conformal, concircular and conharmonic curvature tensors. In Section 5 we proved that a B - ϕ-recurrent $(L C S)_{n}$-manifold with constant scalar curvature is $B-\phi$-symmetric manifold. In the last Section we describe an $(L C S)_{n}$-manifold satisfying conditions $B \cdot R=0, B \cdot B=0$ and $B \cdot S=0$.

2. Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor field g of type $(0,2)$ such that for each point $p \in M$, the tensor $g_{p}: T_{p} M \times T_{p} M \longrightarrow \Re$ is a non-degenerate inner product of signature $(-,+, \ldots,+)$, where $T_{p} M$ denotes the tangent vector space of M at p and R is the real number space. A non zero vector $v \in T_{p} M$ is said to be timelike (resp., non-spacelike, null, space like) if it satisfies $\left.g_{p}(v, v)<0\right)($ resp. $\leq=0,=0,>$ $0)$ [5].

Definition 2.1. In a Lorentzian manifold (M, g) a vector field P defined by

$$
g(X, P)=A(X)
$$

for any $X \in T_{p} M$ is said to be a concircular vector field if

$$
\left(\nabla_{X} A\right)(Y)=\alpha g(X, Y)+w(X) A(Y)
$$

where α is a non-zero scalar and w is a closed 1-form.
Let M be a Lorentzian manifold admitting a unit timelike concircular vector field ξ, called the characteristic vector field of the manifold. Then we have

$$
\begin{equation*}
g(\xi, \xi)=-1 \tag{2.1}
\end{equation*}
$$

Since ξ is a unit concircular vector field, it follows that there exists a non-zero 1-form η such that for

$$
\begin{equation*}
g(X, \xi)=\eta(X) \tag{2.2}
\end{equation*}
$$

the equation of the following form holds

$$
\begin{align*}
& \left(\nabla_{X} \eta\right)(Y)=\alpha\{g(X, Y)+\eta(X) \eta(Y)\} \tag{2.3}\\
& (\alpha \neq 0)
\end{align*}
$$

for all vector fields X, Y, where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g and α is a non-zero scalar function satisfying

$$
\begin{equation*}
\nabla_{X} \alpha=(X \alpha)=d \alpha(X)=\rho \eta(X) \tag{2.4}
\end{equation*}
$$

ρ being a certain scalar function given by $\rho=-(\xi \alpha)$. Let us put

$$
\begin{equation*}
\phi X=\frac{1}{\alpha} \nabla_{X} \xi \tag{2.5}
\end{equation*}
$$

Then from (2.3) and (2.5), we have

$$
\begin{equation*}
\phi X=X+\eta(X) \xi \tag{2.6}
\end{equation*}
$$

which tell us that ϕ is a symmetric $(1,1)$ tensor. Thus the Lorentzian manifold M together with the unit timelike concircular vector field ξ, its associated 1-form η and (1,1)-type tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly $(L C S)_{n}$-manifold) [6]. Especially, we take $\alpha=1$, then we can obtain the LP-Sasakian structure of Matsumoto [4]. In a $(L C S)_{n}$-manifold, the following relations hold [6].

$$
\begin{align*}
\eta(\xi)= & -1, \phi \xi=0, \eta(\phi X)=0 \tag{2.7}\\
g(\phi X, \phi Y)= & g(X, Y)+\eta(X) \eta(Y) \tag{2.8}\\
R(X, Y) Z= & \left(\alpha^{2}-\rho\right)[g(Y, Z) X \tag{2.9}\\
& -g(X, Z) Y] \\
\eta(R(X, Y) Z)= & \left(\alpha^{2}-\rho\right)[g(Y, Z) \eta(X) \tag{2.10}\\
& -g(X, Z) \eta(Y)] \\
\left(\nabla_{X} \phi\right)(Y)= & \alpha\{g(X, Y) \xi \tag{2.11}\\
& +2 \eta(X) \eta(Y) \xi+\eta(Y) X\} \\
S(X, \xi)= & (n-1)\left(\alpha^{2}-\rho\right) \eta(X) \tag{2.12}\\
S(\phi X, \phi Y)= & S(X, Y) \tag{2.13}\\
& +(n-1)\left(\alpha^{2}-\rho\right) \eta(X) \eta(Y) \\
Q \xi= & (n-1)\left(\alpha^{2}-\rho\right) \xi \tag{2.14}
\end{align*}
$$

for any vector fields X, Y, Z, where R, S denotes the curvature tensor, and the Ricci tensor of the manifold respectively.
Recently Shaikh and Kundu introduced generalized B curvature tensor [10] given by

$$
\begin{align*}
B(X, Y) Z= & a_{0} R(X, Y) Z+a_{1}[S(Y, Z) X \tag{2.15}\\
& -S(X, Z) Y+g(Y, Z) Q X \\
& -g(X, Z) Q Y]+2 a_{2} r[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where R, S, Q and r are the curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature respectively.

In particular, the B-curvature tensor is reduced to:

1. The quasi-conformal curvature tensor $C^{*}[14]$ if $a_{0}=a, a_{1}=b$ and $a_{2}=\frac{-1}{2 n}\left[\frac{a}{n-1}+2 b\right]$.
2. The weyl-conformal curvature tensor \tilde{C} [13] if $a_{0}=1, a_{1}=\frac{-1}{n-2}$ and $a_{2}=\frac{-1}{2(n-1)(n-2)}$.
3. The concircular curvature tensor C [12] if
$a_{0}=1, a_{1}=0$ and $a_{2}=\frac{-1}{n(n-1)}$.
4. The conharmonic curvature tensor P [3] if $a_{0}=1, a_{1}=\frac{-1}{n-2}$ and $a_{2}=0$.

3. Main Results

4. B flat, $\xi-B$ flat and $\phi-B$ flat $(L C S)_{n}$-manifold

First we consider B-flat $(L C S)_{n}$-manifold M, i.e., $B(X, Y) Z=$ 0 , for any vector fields $X, Y, Z \in T_{p} M$. It can be easily seen that

$$
\begin{align*}
& a_{0} R(X, Y) Z+a_{1}[S(Y, Z) X \tag{4.1}\\
& -S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \\
& +2 a_{2} r[g(Y, Z) X-g(X, Z) Y]=0 .
\end{align*}
$$

Taking inner product of (4.1) with respect to W, we get

$$
\begin{align*}
& a_{0} g(R(X, Y) Z, W)+a_{1}[S(Y, Z) g(X, W) \tag{4.2}\\
& -S(X, Z) g(Y, W)+g(Y, Z) S(X, W)-g(X, Z) \\
& S(Y, W)]+2 a_{2} r[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]=0 .
\end{align*}
$$

On plugging $X=W=e_{i}$ in (4.2), where e_{i} is an orthonormal basis for the tangent space at each point of the manifold and taking summation over $i, i=1,2, \ldots, n$, we have

$$
\begin{equation*}
S(Y, Z)=\frac{r\left[2 a_{2}(1-n)-a_{1}\right]}{a_{0}+a_{1}(n-2)} g(Y, Z) . \tag{4.3}
\end{equation*}
$$

This leads us to the following theorem:
Theorem 4.1. A B-flat $(L C S)_{n}$-manifold is an Einstein manifold provided B-curvature tensor is neither a weyl-conformal curvature tensor [13] nor a conharmonic curvature tensor [3].

Next we consider, $\xi-B$ flat $(L C S)_{n}$-manifold i.e., $B(X, Y) \xi=0$. Then it follows from above condition that

$$
\begin{align*}
& a_{0} R(X, Y) \xi+a_{1}[S(Y, \xi) X \tag{4.4}\\
& -S(X, \xi) Y+g(Y, \xi) Q X-g(X, \xi) Q Y] \\
& +2 a_{2} r[g(Y, \xi) X-g(X, \xi) Y]=0 .
\end{align*}
$$

Using (2.9) and (2.12) in (4.4) and then taking inner product with respect to W, we get

$$
\begin{align*}
& a_{0}[g(X, W) \eta(Y)-g(Y, W) \eta(X)] \tag{4.5}\\
& +a_{1}\left[(n-1)\left(\alpha^{2}-\rho\right)\{g(X, W) \eta(Y)\right. \\
& -g(Y, W) \eta(X)\}+S(X, W) \eta(Y)-S(Y, W) \eta(X)] \\
& +2 a_{2} r[g(X, W) \eta(Y)-g(Y, W) \eta(X)]=0 .
\end{align*}
$$

On plugging $X=\xi$ in (4.5), gives

$$
\begin{aligned}
S(Y, W)= & \frac{1}{a_{1}}\left[\left(-a_{0}-(n-1) a_{1}\right)\left(\alpha^{2}-\rho\right)\right. \\
& \left.+-2 a_{2} r\right] g(Y, W) \frac{1}{a_{1}}\left[\left(-a_{0}-2(n-1) a_{1}\right)\right. \\
& \left.\left(\alpha^{2}-\rho\right)-2 a_{2} r\right] \eta(Y) \eta(W) .
\end{aligned}
$$

Hence we can state the following theorem:
Theorem 4.2. $A \xi-B$ flat $(L C S)_{n}$-manifold is η-Einstein provided the B-curvature tensor is not a concircular curvature tensor [12].

Finally we consider $\phi-B$ flat $(L C S)_{n}$-manifold, i.e.,

$$
\begin{equation*}
\phi^{2}(B(\phi X, \phi Y) \phi Z)=0 . \tag{4.7}
\end{equation*}
$$

By using (2.15) in (4.7) and then taking inner product with respect to W and then contracting, we get

$$
\begin{align*}
& S(Y, W)=\frac{1}{3 a_{1}}\left[a_{0}(n-2)\left(\alpha^{2}-\rho\right)\right. \tag{4.8}\\
& \left.+a_{1}\left(r-(n-1)\left(\alpha^{2}-\rho\right)\right)+2 a_{2} r(n-2)\right] \\
& g(X, W)+\frac{1}{3 a_{1}}\left[a_{0}(n-2)\left(\alpha^{2}-\rho\right)\right. \\
& +a_{1}\left\{r-4(n-1)\left(\alpha^{2}-\rho\right)+n(n-1)\right. \\
& \left.\left.\left(\alpha^{2}-\rho\right)\right\}+2 a_{2}(n-2) r\right] \eta(X) \eta(W)
\end{align*}
$$

Hence we can state the following theorem:
Theorem 4.3. $A \phi-B$ flat $(L C S)_{n}$-manifold is η-Einstein provided the B-curvature tensor is not a concircular curvature tensor [12].

5. Semisymmetric properties on $(L C S)_{n^{-}}$ manifold

Definition 5.1. An n-dimensional $(n>1)(L C S)_{n}$-manifold M is said to be B-semisymmetric, if it satisfy the condition $R \cdot B=0$.

Let us suppose that $(L C S)_{n}$-manifold is B-semisymmetric. Thus it follows from above condition that

$$
\begin{align*}
& R(\xi, X) B(U, V) W-B(R(\xi, X) U, V) W \tag{5.1}\\
& -B(U, R(\xi, X) V) W-B(U, V) R(\xi, X) W=0
\end{align*}
$$

Using (2.9), (2.12) and (2.15) in (5.1) and then taking inner product with respect to ξ, we get

$$
\begin{align*}
& -a_{0} R(U, V, W, X)-a_{1}[S(V, W) g(U, X) \tag{5.2}\\
& -S(U, W) g(V, X)+S(U, X) g(V, W)-S(V, X) g(U, W)] \\
& -2 a_{2} r[g(V, W) g(U, X)-g(U, W) g(V, X)] \\
& +\left(a_{0}\left(\alpha^{2}-\rho\right)+a_{1}(n-1)\left(\alpha^{2}-\rho\right)\right. \\
& \left.+2 a_{2} r\right)[g(X, U) g(V, W)-g(X, V) g(U, W)] \\
& +a_{1}(n-1)\left(\alpha^{2}-\rho\right)[g(X, V) g(U, W) \\
& +g(V, W) \eta(U) \eta(X)-g(X, V) g(U, W)-g(U, W) \\
& \eta(V) \eta(X)+g(V, X) \eta(U) \eta(W)+g(U, X) \eta(V) \eta(W)]=0 .
\end{align*}
$$

On contracting above equation, gives

$$
\begin{equation*}
S(V, W)=K_{1} g(V, W)+K_{2} \eta(V) \eta(W) . \tag{5.3}
\end{equation*}
$$

Where

$$
\begin{aligned}
& K_{1}=\frac{(n-1)\left(\alpha^{2}-\rho\right)\left(a_{0}+(n-2) a_{1}\right)-r\left(a_{1}+4 a_{2}(n-1)\right.}{a_{0}+a_{1}(n-2)}, \\
& K_{2}=\frac{(n-1) a_{1}\left(\alpha^{2}-\rho\right)}{a_{0}+a_{1}(n-2)} .
\end{aligned}
$$

Hence we can state the following:
Theorem 5.2. A B-semisymmetric $(L C S)_{n}$-manifold is η-Einstein provided B-curvature tensor is neither a weyl-conformal curvature tensor [13] nor a conharmonic curvature tensor [3].

Next we consider $(L C S)_{n}$-manifold which is $B-\phi$-semisymmetric i.e, $B \cdot \phi=0$. Then it follows

$$
\begin{equation*}
B(X, Y) \phi Z-\phi B(X, Y) Z=0 \tag{5.4}
\end{equation*}
$$

By virtue of (2.6) and (2.9) we have from (2.15), that

$$
\begin{align*}
& B(X, Y) \phi Z=a_{0}[g(Y, Z) X+\eta(Y) \eta(Z) X \tag{5.5}\\
& -g(X, Z) Y-\eta(X) \eta(Z) Y]+a_{1}[S(Y, Z) X+(n-1) \\
& \left(\alpha^{2}-\rho\right) \eta(Y) \eta(Z) X-S(X, Z) Y-(n-1)\left(\alpha^{2}-\rho\right) \\
& \eta(X) \eta(Z) Y+g(Y, Z) Q X+\eta(Y) \eta(Z) Q X \\
& -g(X, Z) Q Y-\eta(X) \eta(Z) Q Y]+2 a_{2} r[g(Y, Z) X \\
& +\eta(Y) \eta(Z) X-g(X, Z) Y-\eta(X) \eta(Z) Y],
\end{align*}
$$

$$
\begin{align*}
& \phi B(X, Y) Z=a_{0}\left(\alpha^{2}-\rho\right)[g(Y, Z) X+\eta(Y) \tag{5.6}\\
& \eta(Z) X-g(X, Z) Y-\eta(X) \eta(Z) Y]+a_{1}[S(Y, Z) X \\
& +\eta(X) S(Y, Z) \xi-S(X, Z) Y-\eta(Y) S(X, Z) \xi \\
& +g(Y, Z) Q X+\eta(X) g(Y, Z) Q \xi-g(X, Z) Q Y \\
& -\eta(Y) g(X, Z) Q \xi]+2 a_{2} r[g(Y, Z) X+\eta(X) \\
& g(Y, Z) \xi-g(X, Z) Y-\eta(Y) g(X, Z) \xi] .
\end{align*}
$$

Substituting (5.5) and (5.6) in (5.4) and then taking inner product with respect to U, we get

$$
\begin{aligned}
& a_{1}\left[\left(\alpha^{2}-\rho\right)(\eta(Y) \eta(Z) g(X, U)-\eta(X) \eta(Z)(5.7)\right. \\
& g(Y, U))+\eta(Y) \eta(Z) S(X, U)-\eta(X) \eta(Z) \\
& S(Y, U)-\eta(X) \eta(U) S(Y, Z)+\eta(Y) \eta(U) S(X, Z) \\
& -\eta(X) g(Y, Z) S(\xi, U)+\eta(Y) g(X, Z) S(\xi, U)] \\
& +2 a_{2} r[\eta(Y) \eta(Z) g(X, U)-\eta(X) \eta(Z) g(Y, U) \\
& -\eta(X) \eta(U) g(Y, Z)+\eta(Y) \eta(U) g(X, Z)]=0 .
\end{aligned}
$$

On plugging $Y=U=e_{i}$ in (5.7), where e_{i} is an orthonormal basis for the tangent space at each point of the manifold and taking summation over $i, i=1,2, \ldots, n$, we get

$$
\begin{gathered}
S(X, Z)=\frac{1}{a_{1}}\left[(n-1)\left(\alpha^{2}-\rho\right) a_{1}+2 a_{2} r\right] g(X, Z)(5.8) \\
+\frac{1}{a_{1}}\left[-a_{1}\left((n-1)^{2}\left(\alpha^{2}-\rho\right)+r\right)\right. \\
\left.-2 n a_{2} r\right] \eta(X) \eta(Z) .
\end{gathered}
$$

Hence we can state the following:
Theorem 5.3. Let M be a $B-\phi$-semisymmetric $(L C S)_{n}$-manifold. Then the manifold is η-Einstein provided B-curvature tensor is not a concircular curvature tensor [12].

6. $B-\phi$-recurrent $(L C S)_{n}$-manifold

Definition 6.1. $A n(L C S)_{n}$-manifold is said to be $B-\phi$-recurrent manifold if there exists a non-zero 1-form A such that

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} B\right)(X, Y) Z\right)=A(W) B(X, Y) Z, \tag{6.1}
\end{equation*}
$$

for any vector fields $X, Y, Z, W \in T_{p} M$. If $A(W)=0$ then $B-\phi$-recurrent manifold reduces to $B-\phi-$ symmetric manifold.

Let us consider a $B-\phi$-recurrent $(L C S)_{n}$-manifold. Then by using (2.6) in (6.1), we have

$$
\begin{align*}
& \left(\nabla_{W} B\right)(X, Y) Z+\eta\left(\left(\nabla_{W} B\right)(X, Y) Z\right) \xi \tag{6.2}\\
& =A(W) B(X, Y) Z,
\end{align*}
$$

from which it follows that

$$
\begin{gathered}
g\left(\left(\nabla_{W} B\right)(X, Y) Z, U\right) \\
+\eta\left(\left(\nabla_{W} B\right)(X, Y) Z\right) \eta(U)=A(W) g(B(X, Y) Z, U) .
\end{gathered}
$$

By virtue of (2.9), (2.12) and (2.15), above equation becomes

$$
\begin{gather*}
a_{0} g\left(\left(\nabla_{W} R\right)(X, Y) Z, U\right)+a_{1}\left[g\left(\left(\nabla_{W} S\right)(Y, Z) X, U\right)\right. \tag{6.4}\\
-g\left(\left(\nabla_{W} S\right)(X, Z) Y, U\right)+g(Y, Z)\left(\nabla_{W} S\right)(X, U) \\
\left.-g(X, Z)\left(\nabla_{W} S\right)(Y, U)\right]+2 a_{2} d_{r} W[g(Y, Z) g(X, U) \\
-g(X, Z) g(Y, U)]+\eta(U)\left\{a_{0} g\left(\left(\nabla_{W} R\right)(X, Y) Z, \xi\right)\right. \\
+a_{1}\left[g\left(\left(\nabla_{W} S\right)(Y, Z) X, \xi\right)-g\left(\left(\nabla_{W} S\right)(X, Z) Y, \xi\right)\right. \\
\left.\left.+g(Y, Z)\left(\nabla_{W} S\right)(X, \xi)-g(X, Z)\left(\nabla_{W} S\right)(Y, \xi)\right]\right\} \\
+2 a_{2} d r W[g(Y, Z) g(X, \xi)-g(X, Z) g(Y, \xi)] \\
=A(W)\left\{g(R(X, Y) Z, U)+a_{1}[S(Y, Z) g(X, U)\right. \\
\quad-S(X, Z) g(Y, U)+g(Y, Z) S(X, U) \\
\left.-g(X, Z) S(Y, U)]+2 a_{2} r[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)]\right\} .
\end{gather*}
$$

On contracting (6.4), we get

$$
\begin{align*}
& a_{1}(n-2)\left(\nabla_{W} S\right)(Y, Z)+\left[a_{1}+2 a_{2}(2 n-1)\right] \tag{6.5}\\
& g(Y, Z) d r W+a_{1} \alpha \eta(Z) S(Y, W) \\
& -\alpha a_{1}(n-1)\left(\alpha^{2}-\rho\right) \eta(Z) g(Y, W) \\
& -2 a_{2} d r W \eta(Y) \eta(Z)=A(W)\left\{\left(a_{0}-a_{1}(n-2)\right) S(Y, Z)\right. \\
& \left.+\left(2 a_{2} r(n-1)-a_{1} r\right) g(Y, Z)\right\} .
\end{align*}
$$

On plugging $Z=\xi$ in (6.5), gives

$$
\begin{align*}
& a_{1} \alpha(n-1)^{2}\left(\alpha^{2}-\rho\right) g(Y, W)+\left[a_{1}+4 n a_{2}\right] \tag{6.6}\\
& \eta(Y) d r W=a_{1} \alpha(n-1) S(Y, W)+A(W)\left\{\left[a_{0}-a_{1}(n-2)\right]\right. \\
& \left.(n-1)\left(\alpha^{2}-\rho\right)+\left(2 a_{2} r(n-1)-a_{1} r\right)\right\} \eta(Y)
\end{align*}
$$

Again taking $Y=\xi$ in (6.6), we get
$A(W)=\frac{\left[a_{1}+4 n a_{2}\right] d r W}{\left[a_{0}-a_{1}(n-2)\right](n-1)\left(\alpha^{2}-\rho\right)+\left(2 a_{2} r(n-1)-a_{1} r\right)}$.
If the manifold has a constant scalar curvature r, then we have $d r W=0$.
Hence the equation (6.7) turns into

$$
\begin{equation*}
A(W)=0 . \tag{6.8}
\end{equation*}
$$

By using (6.8) in (6.1), we get

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} B\right)(X, Y) Z\right)=0 . \tag{6.9}
\end{equation*}
$$

Hence we can state the following:
Theorem 6.2. An n-dimensional $B-\phi$-recurrent $(L C S)_{n^{-}}$ manifold with constant scalar curvature r is a $B-\phi$-symmetric manifold.

7. An $(L C S)_{n}$ - manifold satisfying $B \cdot R=0$, $B \cdot B=0$ and $B \cdot S=0$

Let us consider an $(L C S)_{n^{-}}$manifold satisfying the condition $B \cdot R=0$. Then we have

$$
\begin{align*}
& B(\xi, U) R(X, Y) Z-R(B(\xi, U) X, Y) Z \tag{7.1}\\
& -R(X, B(\xi, U) Y) Z-R(X, Y) B(\xi, U) Z=0 .
\end{align*}
$$

By using (2.9), (2.12) and (2.15) in (7.1) and then plugging $Z=\xi$, we get

$$
\begin{aligned}
& \quad-2 a_{1}\left[S(U, X)+(n-1)\left(\alpha^{2}-\rho\right) \eta(U) \eta(X)\right] Y(7.2) \\
& -2 a_{1}\left[S(U, Y)+(n-1)\left(\alpha^{2}-\rho\right) \eta(U) \eta(X)\right] X=0 .
\end{aligned}
$$

Taking inner product of above equation with respect to W, gives

$$
\begin{aligned}
& a_{1}[S(U, X) g(Y, W)+S(U, Y) g(X, W) \\
& +(n-1)\left(\alpha^{2}-\rho\right)[\eta(U) \eta(X) g(Y, W) \\
& +\eta(U) \eta(Y) g(X, W)]]=0
\end{aligned}
$$

Which implies that either $a_{1}=0$ or

$$
\begin{align*}
& S(U, X) g(Y, W)+S(U, Y) g(X, W) \tag{7.3}\\
& +(n-1)\left(\alpha^{2}-\rho\right)[\eta(U) \eta(X) g(Y, W) \\
& +\eta(U) \eta(Y) g(X, W)]=0
\end{align*}
$$

Putting $X=U=e_{i}$ in (7.3), where e_{i} is an orthonormal basis for the tangent space at each point of the manifold and taking summation over $i, i=1,2, \ldots, n$, we get

$$
\begin{align*}
S(Y, W)= & {\left[(n-1)\left(\alpha^{2}-\rho\right)-r\right] g(Y, W) } \tag{7.4}\\
& +\left[(1-n)\left(\alpha^{2}-\rho\right)\right] \eta(Y) \eta(W)
\end{align*}
$$

Hence we can state the following:
Theorem 7.1. Let M be an $(L C S)_{n}$-manifold satisfying the condition $B \cdot R=0$. Then M is η-Einstein or B-curvature tensor reduces to concircular curvature tensor [12].

Next consider an $(L C S)_{n}$-manifold satisfying the condition $B \cdot B=0$. Then it can be easily seen that

$$
\begin{align*}
& B(\xi, U) B(X, Y) \xi-B(B(\xi, U) X, Y) \xi \tag{7.5}\\
& -B(X, B(\xi, U) Y) \xi-B(X, Y) B(\xi, U) \xi=0 .
\end{align*}
$$

By using (2.9), (2.12) and (2.15) in (7.5) and then taking inner product with respect to ξ and finally plugging $X=\xi$, we get

$$
\begin{equation*}
S(U, Y)=\lambda_{1} g(U, Y)+\lambda_{2} \eta(U) \eta(Y) \tag{7.6}
\end{equation*}
$$

Where

$$
\begin{gathered}
\lambda_{1}=\frac{a_{1}(n-1)\left(\alpha^{2}-\rho\right)\left[a_{1}-1-A\right]-2 A a_{2} r-2 A^{2}}{a_{1}\left(\alpha^{2}-\rho\right)\left[n-1+a_{0}\right]+2 a_{0}\left(\alpha^{2}-\rho\right)+4 a_{2} r+2 a_{1} a_{2} r} \\
\lambda_{2}=\frac{A_{1}-A B+2 A^{2}-6 A a_{2} r-2 A a_{0}\left(\alpha^{2}-\rho\right)+2 B\left[a_{0}\left(\alpha^{2}-\rho\right)+2 a_{2} r\right]}{a_{1}\left(\alpha^{2}-\rho\right)\left[n-1+a_{0}\right]+2 a_{0}\left(\alpha^{2}-\rho\right)+4 a_{2} r+2 a_{1} a_{2} r} \\
A_{1}=(n-1)\left(\alpha^{2}-\rho\right)\left[-a_{0} a_{1}\left(\alpha^{2}-\rho\right)\right. \\
\left.+2 A\left(a_{1}+1\right)-a_{1}\left(a_{1}-1\right)(n-1)-2 a_{1} a_{2} r-B\right], \\
A=a_{0}\left(\alpha^{2}-\rho\right)+a_{1}(n-1)\left(\alpha^{2}-\rho\right)+2 a_{2} r, \\
B=a_{0}\left(\alpha^{2}-\rho\right)+2 a_{1}(n-1)\left(\alpha^{2}-\rho\right)+2 a_{2} r .
\end{gathered}
$$

Hence we can state the following:
Theorem 7.2. An n-dimensional $(L C S)_{n}$-manifold satisfying $B \cdot B=0$ is an η-Einstein manifold.

Finally we consider an $(L C S)_{n}$ - manifold satisfying the condition $B \cdot S=0$. Then we have

$$
\begin{equation*}
S(B(\xi, X) U, V)+S(U, B(\xi, X) V)=0 \tag{7.7}
\end{equation*}
$$

using (2.12), (2.14) and (2.15) in (7.7) and then plugging $U=\xi$, we get

$$
\begin{equation*}
S(X, V)=(n-1)\left(\alpha^{2}-\rho\right) g(X, V) \tag{7.8}
\end{equation*}
$$

Hence we can state the following:
Theorem 7.3. An n-dimensional $(L C S)_{n}$-manifold satisfying $B \cdot S=0$ is an Einstein manifold.

References

${ }^{[1]}$ E. Cartan, Sur une classe remarquable d'espaces de Riemannian, Bll. Soc. Math. France, 54 (1926), 214-264.
${ }^{[2]}$ U. C. De, A, A. Shaikh, and A. F. Yaliniz, On ϕ-recurrent Kenmotsu manifold, Turkish. J. of Sci, 12(1989), 151-156.
${ }^{\text {[3] }}$ Ishii, Y., On conharmonic transformations, Tensor(N. S.), 7 (1957), 73-80.
${ }^{\text {[4] K. Matsumoto, On Lorentzian paracontact mani- }}$ folds, Bull. Yamagata Univ. Natur. Sci, 12(2) (1989),151156.
${ }^{\text {[5] B.O'. Neil, Semi Riemannian Geometry, Academic press, }}$ Newyork, (1983).
[6] A. A. Shaikh, On Lorentzian almost Paracontact manifolds with a structure of the concircular type, Kyungpook Math. J, 43(2003), 305-314.
${ }^{[7]}$ A. A. Shaikh, and K. K. Baisha, On Conircular Structure Spacetimes, J. Math. Stat., 1(2005), 129-132.
${ }^{[8]}$ A. A. Shaikh, and K. K. Baisha, On Conircular Structure Spacetimes II, American Journal of Applied Science, 3(4) (2006), 1790-1794.
${ }^{[9]}$ A. A. Shaikh, and T. Q. Binh, On Weakly Symmetric $(L C S)_{n}$-manifolds, J. Adv. Math. Studies, 2(2009), 103118.
[10] A. A. Shaikh, and H. Kundu, On Equivalency of Various Geometric Structures, J. geom., 105(2014), 139-165.
${ }^{[11]}$ Venkatesha, and R. T. Naveen Kumar, Some symmetric Properties on $(L C S)_{n}$-manifolds, Kyungpook Math. J, 55(2015), 149-156.
${ }^{[12]}$ K. Yano, Concircular geometry, Proc. Imp. Acad., Tokyo, 16 (1940), 195-200.
${ }^{\text {[13] K. Yano and M. Kon, Structures of manifolds, World }}$ Scientific Publishing, Singapore 1984.
${ }^{[14]}$ K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom. 2 (1968), 161-184.
$\operatorname{ISSN}(\mathrm{P}): 2319-3786$
Malaya Journal of Matematik ISSN(O): $2321-5666$

