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Abstract
In this paper we consider an initial value problem for a fractional differential equation formulated in a Banach
space X where the fractional derivative is Riemann-Liouville type of order 0 < α < 1. We establish the existence
and uniqueness of a strong solution of the problem by applying the method of semi-discretization in time, also
known as the method of lines or more popularly as Rothe’s method. The dual space X∗ of X is assumed to be
uniformly convex. In the final section, we illustrate the applicability of the theoretical results with the help of an
example.
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1. Introduction
In recent years, many researchers have developed their

interest in fractional differential equations (FDEs). These type
of equations have various applications in different areas of
science and engineering such as viscoelasticity, fluid flows,
control theory, food science, electromagnetic, mathematical
modeling of real life problems and diffusion process (see-
[22],[23],[24],[25],[8]). Different theories has been proposed
and developed by researchers to investigate the existence of
solutions of FDEs (see- [21],[19],[11],[12]). The nonlocal
character and memory effect of fractional derivatives is quite
useful to model real life problems and some experimental
setups in a better way for example fractional model for vis-
coelasticity of soft-tissue materials improves the diagnosis in
MRE and stress-strain relationship for a viscoelastic material
can be well understood by fractional model.

In [1] , Ashyralyev demonstrated the well-posedness of
the following initial value problem for an FDE,

dy
dt

+D
1
2
0+y(t) + Ay(t) = f (t), 0 < t < 1, (1.1)

y(0) = 0, (1.2)

in a Banach Space, where the linear operator A is a strongly
positive. This problem corresponds to the Basset problem

studied in [6], which is a well-known problem in fluid dynam-
ics describing the motion of a accelerated particle in a viscous
fluid in the influence of gravity. Govindaraj and Balachandran
[10] discussed some stablizability criteria of Basset equation
in different range of arbitrary constants by using duality re-
sults considered in the case of controllability and observability
of fractional systems and feedback control. They discussed
some numerical examples and graphical illustration of stabil-
ity results. In [7], Lona considered the following Basset initial
value problem{ dx

dt +Dα
a+x(t) = f (t,x(t)),0 < α < 1,0 < t < T

x(0) = φ .

In the present work, we prove the existence of a unique
strong solution of following initial value problem for an FDE,

dy
dt

+Dα
0+y(t)+Ay(t) = f (t), 0 < t < T, 0 < α < 1

(1.3)

y(0) = 0, (1.4)

in a Banach space X whose dual X∗ is uniformly convex.
Here the operator −A is the infinitesimal generator of an ana-
lytic semigroup of contractions in X and Dα

0+ is the Riemann-
Liouville fractional derivative. For α = 1

2 , this problem re-
duces to the Basset problem (1.1).



Application of Rothe’s method to fractional differential equations — 400/407

Rothe’s method, firstly introduced by by Rothe in 1930
[31], has a long history in solving various type of problems.
Many researchers adopted this method for solving various
type of differential equations. The role of Rothe’s method
in the study of integer order and fractional order differential
equations has been seen in various papers (see-[5],[3],[15],[4],
[14], [16],[30]). This method has been well-founded as an
efficient tool in solving partial differential equations and gives
a numerical approach to find approximate solution. In this
method, we discretize the time variable using some discretiza-
tion scheme to approximate the problem at some equally
spaced discrete points and approximate the solution over en-
tire interval using linear approximation. The sequence of
approximate solutions are called Rothe’s functions. Here, we
discretize the problem in time and show that the limit func-
tion of Rothe’s functions gives the solution of the problem.
This method was firstly introduced by Rothe in 1930 to solve
parabolic differential equations with one space variables[31].
Later many researchers adopted this method for solving var-
ious type of problems. Ladyzenshaja [16] used this method
to study quasilinear and linear parabolic problems of sec-
ond order. Further, Rektorys found the solution of parabolic
boundary value problem and smooth solutions of certain dif-
ferential equations [29], [30].

Although, many analytical methods for example the method
of Laplace transform, Mellin transform, Fourier transform and
the Green function etc. have been developed to find the an-
alytical solution of FDEs, while there are only few cases in
which these methods are effective to give analytical solutions.
Solving FDEs accurately and efficiently is more difficult than
integer order DEs. Hence researchers focused on developing
different numerical methods to discretize fractional derivatives
so that approximate solutions could be find for FDEs with less
order of errors. But presence of memory term in fractional
deriavtives produces difficulties in developing efficient numer-
ical methods. Currently, there are various numerical methods
to solve FDEs such as the finite element, the finite difference,
fractional multi-step methods, spectral collocation method
and the spectral methods are available in literature. There
are various numerical techniques and methods to approximate
Riemann-Liouville fractional derivative such as Grünwald-
Letnikov approximation, the sifted Grünwald-Letnikov for-
mulae, matrix method, L1,L2 and L2C schemes (for details,
see Ref.[20]). The L2,L2C and L1 schemes for discretization
can be extended to approximate the Caputo derivative. In
2011, Changpin Li et. al [17], proposed some new piecewise
interpolation based numerical methods for fractional calculus
and Simpson method based some new improved methods for
FDEs. In 2014, Gao et. al introduced a modification of L1
formula i.e. L1−2 formula to give an approximation of the
Caputo derivative of order α (0 < α < 1). In 2013, Ongun
et. al, [26] discussed nonstandard finite difference schemes
for fractional order problem. To study discretization methods
for Caputo derivative we refer the readers to [18],[13]. The

numerical methods for FDEs use mainly two approaches, first
by discretizing directly fractional derivatives and second by
discretizing the corresponding fractional integral equation.

The paper is well organised in the following way. It con-
tains 5 sections. In the second section, we give the definitions
of some fractional derivatives and fractional integrals and
some preliminaries Lemmas. In the third section, we prove
some a priori estimates. In the forth section, main result is
established for the existence of solution. In last section, an
example is given.

2. Assumptions and Preliminaries
In the present section, we recall some notions, definitions

and basic facts about fractional calculus. Also, Here we men-
tion certain Lemmas and Hypothesis, which will be used
subsequently.

Definition 2.1. [32] The Riemann-Liouville fractional inte-
gral of a function f (t) of order α > 0 is defined by

Iα
0+ f (t) =

1
Γ(α)

∫ t

0

f (s)
(t− s)1−α

ds, t > 0.

Definition 2.2. [32] The Riemann-Liouville fractional deriva-
tive of order 0 < α < 1 of a function f (t) is defined by

Dα
0+ f (t) =

1
Γ(1−α)

d
dt

∫ t

0

f (s)
(t− s)α

ds, t > 0.

Definition 2.3. [32] The Caputo fractional derivative of or-
der 0 < α < 1 of a function f (t) is defined by

Dc
α f (t) =

1
Γ(1−α)

∫ t

0

f ′(s)
(t− s)α

ds, t > 0.

Lemma 2.4. [4] Suppose that the function η(t) ≥ 0 is con-
tinuous or piecewise continuous on 0 < t ≤ T and ξ (t) be
positive continuous function on 0≤ t ≤ T . If M and 0<α < 1
are such that

η(t)≤M
∫ t

0

η(p)
(t− p)α

d p+M
∫ t

0

ξ (p)
(t− p)α

d p, 0≤ t ≤ T,

(2.1)

then
η(t)≤C max

0≤t≤T
f (t),

for some positive constant C.

Let N ∈ N and τ = T
N .

Theorem 2.5 ([2]). Suppose that −A with its domain D(A)
dense, generates an analytic semigroup. Then it is necessary
and sufficient that

1. ‖Rk(τA)‖≤M,

2. ‖kτARk(pA)‖ ≤M,
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for all τ > 0 and k = 1, . . . ,N. R(τA) = (I + τA)−1 and M is
independent of k and τ .

We define fractional spaces Xβ and X ′
β

for β ∈ (0,1) as fol-
lows,
Xβ = Xβ (X ,A), which consist of all x ∈ X for which the norm

‖x‖Xβ
= sup

λ>0
λ

1−β‖A exp(−λA)x‖ is finite.

and X ′
β
= X ′

β
(X ,A), which consist of all x ∈ X for which the

norm

‖x‖X ′
β
= sup

λ>0
λ

β‖A(λ +A)−1x‖ is finite.

We define the the space C(Xβ ) as the space of all continuous
functions from [0,T ] to the space Xβ .
Throughout the paper we have assumed the following hypoth-
esis:

H1 f (t) ∈C(X ′
β
) for some β ∈ (0,1).

H2 ‖exp(−tA)‖≤Me−δ t , and ‖tAexp(−tA)‖≤M for M,δ >
0 and t > 0.

H3 (I +A)−1 : X → X is compact.

Theorem 2.6 ([2], Theorem 2.4.1 ). Xβ = X ′
β

for all 0 < β <
1.

Theorem 2.7 ([2]). Let x ∈ Xβ . Then

‖x‖ ≤ M
β
‖x‖Xβ

, (2.2)

for some M ≥ 0.

Proof. Since −A generates the analytic semigroup exp(−tA),
exp(−tA)x is continuously differentiable. i.e.

d
dt
[exp(−tA)x] =−A exp(−tA)x.

Integrating from 0 to 1, we have

(I− exp(−A))x =
∫ 1

0
A exp(−sA)x ds.

Since ‖exp(−A)‖ ≤ Me−δ , there exist a n0 ∈ N such that
‖[exp(−A)]n0‖ ≤ Me−δn0 < 1. Hence the inverse of I −
exp(−A) is bounded. This gives

x = (I− exp(−A))−1
∫ 1

0
A exp(−sA)x ds.

Hence,

‖x‖ ≤ ‖(I− exp(−A))−1‖
∫ 1

0
‖A exp(−sA)x‖ds

≤ ‖(I− exp(−A))−1‖sup
s>0
{s1−β‖A exp(−sA)x‖}

∫ 1

0

ds
s1−β

=
1
β
‖(I− exp(−A))−1‖‖x‖Xβ

.

Hence ‖x‖ ≤ M
β
‖x‖Xβ

.

We set al = (l +1)1−α − l1−α for l = 1,2, . . .

Lemma 2.8 ([13]). 1. al > al+1 for l = 1,2, . . ..

2. a0 = 1.

3. If 0 < α < 1 and l is non-negative integer, then there
exists a positive constant C(α) such that

(l +1)α − lα ≤C(α)(l +1)α−1, (2.3)

where C(α) = max{1,α21−α}.

3. Discretization scheme and A priori
estimates

In this section, we use some discretization scheme to
approximate the problem and find a priori estimates on the
approximate solution of the problem. Let hn =

T
n ,n ∈ N and

tn
k = khn for k = 1,2 . . .n. Thus for each n ∈ N [0,T ] is parti-

tioned into n subintervals [tn
j−1, t

n
j ], j = 0,1, . . . ,n.

Discretization scheme for fractional derivative Dα
0+y(t) :

At t = tn
k , the approximate value of Dα

0+y(t) is given by,

Dα
0+y(tn

k ) ≈ 1
Γ(2−α)

k

∑
i=1

ak−i
(yn

i − yn
i−1)

hn
h1−α

n (3.1)

=
k

∑
i=1

(yn
i − yn

i−1)b
n
k,i. (3.2)

where bn
k,i = ak−i

h−α
n

Γ(2−α) .
We denote the approximate value of Dα

0+y(t) at t = tn
k by

Dα yn
k .

We replace the equations (1.3)and (1.4) by following approx-
imate equations

yn
j − yn

j−1

hn
+Dα yn

j +Ayn
j = f (tn

j ) = f n
j j = 1, . . . ,n.

(3.3)

yn
0 = 0. (3.4)

Equation (3.3) can be written as

yn
j − yn

j−1

hn
+Ayn

j +bn
j, jy

n
j −

j−1

∑
i=1

(
bn

j,i+1−bn
j,i
)
yn

i = f n
j .

Hence

yn
j +hnAyn

j +hnbn
j, jy

n
j = yn

j−1+hn f n
j +hn

j−1

∑
i=1

(
bn

j,i+1−bn
j,i
)
yn

i .

The above equation implies that

[
(1+hnbn

j, j)I+hnA
]
yn

j = yn
j−1+hn f n

j +hn

j−1

∑
i=1

(
bn

j,i+1−bn
j,i
)
yn

i .
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Let En
j =

(
1

1+hnbn
j, j

yn
j−1+

hn
1+hnbn

j, j
f n

j +
hn

1+hnbn
j, j

∑
j−1
i=1

(
bn

j,i+1−

bn
j,i
)
yn

i

)
.

Hence, yn
j =

[
I +
(

hn
1+hnbn

j, j

)
A
]−1

En
j , for j = 1,2, . . .n

Since 1+hnbn
j, j = 1+ h1−α

n
Γ(2−α) > 0, hence

[
I+
(

hn
1+hnbn

j, j

)
A
]−1

exists and this gives unique yn
j ∈ D(A).

Now equation (3.3) can be written as,

yn
j − yn

j−1

hn
+Ayn

j = f n
j −Dα yn

j = Fn
j .

Arranging the above equation we have

(I +hnA)yn
j = yn

j−1 +hnFn
j .

This gives yn
j = (I +hnA)−1(yn

j−1 +hnFn
j ).

Iterating the above equation n times and using yn
0 = 0, we get

yn
j = ∑

j
s=1 R j−s+1(hnA)Fn

s hn, where R(hnA) = (I + hnA)−1.
Hence,

yn
j =−

j

∑
s=1

R j−s+1(hnA)Dα yn
s hn+

j

∑
s=1

R j−s+1(hnA) fshn. (3.5)

Theorem 3.1. There exist a constant C independent of j,n
and hn such that

‖Dα yn
j‖ ≤C

Proof. Using equation (3.5) in (3.3), we get

yn
j − yn

j−1

hn
= −Dα yn

j −Ayn
j + f n

j

= −Dα yn
j +

j

∑
s=1

AR j−s+1(hnA)Dα yn
s hn

−
j

∑
s=1

AR j−s+1(hnA) f n
s hn + f n

j . (3.6)

Using equation (3.6) we get,

Dα yn
j =

j

∑
k=1

a j−k
yn

k− yn
k−1

hn

h1−α
n

Γ(2−α)

=
j

∑
k=1

a j−k[−Dα yn
k + f n

k ]
h1−α

n

Γ(2−α)

+
1

Γ(2−α)

j

∑
k=1

a j−k

( k

∑
s=1

ARk−s+1(hnA)Dα yn
s hn

−
k

∑
s=1

ARk−s+1(hnA) f n
s hn

)
h1−α

n

=
1

Γ(2−α)

j

∑
k=1

a j−kh1−α
n [−Dα yn

k + f n
k ]

+
1

Γ(2−α)

j

∑
s=1

j

∑
k=s

a j−kARk−s+1(hnA)Dα yn
s h2−α

n

− 1
Γ(2−α)

j

∑
s=1

j

∑
k=s

a j−kARk−s+1(hnA) fsh2−α
n .

Let us find the estimate for
‖ 1

Γ(2−α) ∑
j
k=s a j−kARk−s+1(hnA)h1−α

n ‖, for 1≤ s < j ≤ n.

j

∑
k=s

a j−kARk−s+1(hnA)
h1−α

n

Γ(2−α)

=
1

Γ(2−α)

[
s+ j

2

]
∑
k=s

a j−kARk−s+1(hnA)h1−α
n

+
1

Γ(2−α)

j

∑
k=
[

s+ j
2

]
+1

a j−kARk−s+1(hnA)h1−α
n

=S1 +S2.

S2 =
1

Γ(2−α) ∑
j

k=
[

s+ j
2

]
+1

a j−kARk−s+1(hnA)h1−α
n .

For k =
[

s+ j
2

]
+1 to k = j, we have

k− s+1≥
[

s+ j
2

]
+1− s+1≥ s+ j

2
− s+1

=
j− s+2

2
>

j− s+1
2

.

Using estimates of Theorem 2.5 and Lemma 2.8, we get

‖S2‖ ≤
1

Γ(2−α)

j

∑
k=
[

s+ j
2

]
+1

a j−k‖ARk−s+1(hnA)‖h1−α
n

≤ 2M
Γ(2−α)

C(α)

( j− s+1)hn

j

∑
k=
[

s+ j
2

]
+1

hn

[( j− k+1)hn]α

Since hn
[( j−k+1)hn]α

≤
∫ tn

k
tn
k−1

dw
(tn

j−w)α ≤ hn
[( j−k)hn]α

‖S2‖ ≤

2M
Γ(2−α)

C(α)

( j− s+1)hn

j

∑
k=
[

s+ j
2

]
+1

∫ tn
k

tn
k−1

dw
(tn

j −w)α

=
2M

Γ(2−α)

C(α)

( j− s+1)hn

∫ tn
j

tn[
s+ j

2

] dw
(tn

j −w)α
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=
2M

Γ(2−α)

C(α)

( j− s+1)hn

(
j−
[ s+ j

2

])1−α

h1−α
n

1−α

≤ 2M
Γ(2−α)

C(α)

( j− s+1)hn

( j− s+1)1−α h1−α
n

1−α

=
M1

[( j− s+1)hn]α
. (3.7)

S1 =
1

Γ(2−α)

[
s+ j

2

]
∑
k=s

a j−khnARk−s+1(hnA)h−α
n

=

[
s+ j

2

]
∑
k=s

a j−k[I +hn− I]Rk−s+1(hnA)
h−α

n

Γ(2−α)

=
1

Γ(2−α)
a j−sh−α

n −
1

Γ(2−α)
a

j−
[

s+ j
2

]
×R
[

s+ j
2

]
−s+1(hnA)h−α

n

+

[
s+ j

2

]
∑

k=s+1
(a j−k−a j−k+1)Rk−s(hnA)

h−α
n

Γ(2−α)
.

Now

a
j−
[

s+ j
2

] ≤C(α)

(
j−
[

s+ j
2

]
+1
)−α

≤C(α)

(
j− s+ j

2
+1
)−α

=
C(α)2α

( j− s+2)α
≤ C(α)2α

( j− s+1)α
. (3.8)

Hence using Theorem 2.5 and Lemma 2.8, we get

‖S1‖ ≤
1

Γ(2−α)

C(α)

[( j− s+1)hn]α

+
M2αC(α)

Γ(2−α)[( j− s+1)hn]α

+M

[
s+ j

2

]
∑

k=s+1
(a j−k−a j−k+1)

h−α
n

Γ(2−α)

=
C(α)

[( j− s+1)hn]α Γ(2−α)
+

M2αC(α)

Γ(2−α)[( j− s+1)hn]α

+M(a
j−
[

s+ j
2

]−a j−s)
h−α

n

Γ(2−α)

≤ 1
Γ(2−α)

Cα

[( j− s+1)hn]α
+

M2αCα

Γ(2−α)[( j− s+1)hn]α

+
M

Γ(2−α)
a

j−
[

s+ j
2

]h−α
n

Applying inequality (3.8), we get a constant M2 such that

‖S1‖ ≤
M2

[( j− s+1)hn]α
. (3.9)

Using equations (3.7) and (3.9), we have∥∥∥∥ 1
Γ(2−α)

j

∑
k=s

a j−kARk−s+1(hnA)h1−α
n

∥∥∥∥≤ M3

[( j− s+1)hn]α
.

(3.10)

Hence using equation (3.10) and Lemma 2.8, we have

‖Dα yn
j‖ ≤

j

∑
k=1

a j−i[‖Dα yn
k‖+‖ f n

k ‖]
h1−α

n

Γ(2−α)

+
h1−α

n

Γ(2−α)

j

∑
s=1
‖

j

∑
k=s

a j−kARk−s+1(hnA)h1−α
n ‖‖Dα yn

s‖hn

+
1

Γ(2−α)

j

∑
s=1
‖

j

∑
k=s

a j−kARk−s+1(hnA)‖‖ f n
s ‖h2−α

n

≤M
j

∑
s=1

hn

[( j− s+1)hn]α
(‖Dα yn

s‖+‖ f n
s ‖).

Using discrete analog of Lemma 2.4, we get

‖Dα yn
j‖ ≤M max

0≤t≤T
‖ f (t)‖ ≤C. (3.11)

Theorem 3.2. Let f (t) ∈ C(X ′
β
). Then there is a positive

number C independent of j,n and hn satisfying ‖Dα yn
j‖X ′

β
≤

C,

∥∥∥∥ yn
j−yn

j−1
hn

∥∥∥∥
X ′

β

≤C and ‖Ayn
j‖X ′

β
≤C.

Proof. Using the definition of norm in X ′
β

and repeating the
same steps as in Theorem 3.1, we get

‖Dα yn
j‖X ′

β
≤M‖ f‖C(X ′

β
) (3.12)

From equation (3.6), we have

yn
j − yn

j−1

hn
= f n

j −Dα yn
j +

j

∑
s=1

AR j−s+1(hnA)Dα yn
s hn

−
j

∑
s=1

AR j−s+1(hnA) fshn. (3.13)

Taking norm and using triangle inequality, equations (3.6),
(3.12) and Theorem (2.4.2) in [2], we have∥∥∥∥yn

j − yn
j−1

hn

∥∥∥∥
X ′

β

≤ ‖ f n
j ‖X ′

β
+‖Dα yn

j‖X ′
β

+‖
j

∑
s=1

AR j−s+1(hnA)Dα yn
s hn‖X ′

β

+‖
j

∑
s=1

AR j−s+1(hnA) fshn‖X ′
β

≤ ‖ f‖C(X ′
β
)+M‖ f‖C(X ′

β
)+

M
β (1−β )

max
1≤ j≤N

{‖Dα yn
j‖X ′

β
}

+
M

β (1−β )
‖ f‖C(X ′

β
) ≤

M′

β (1−β )
‖ f‖C(X ′

β
) =C
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Now using equation (3.6) and the triangle inequality, we have

‖Ayn
j‖X ′

β
≤ M′

β (1−β )
‖ f‖C(X ′

β
).

Hence proved.

Corollary 3.3. Let f (t) ∈ C(X ′
β
). Then we have a positive

number C independent of j,hn and n such that

‖Dα yn
j‖ ≤C,

∥∥∥∥yn
j − yn

j−1

hn

∥∥∥∥≤C and ‖Ayn
j‖ ≤C. (3.14)

Proof. The proof follows directly from Theorems 3.2, 2.7 and
2.6.

Corollary 3.4. There is a positive number C independent of
j, hn and n such that ‖yn

j‖ ≤C .

Proof. From equation (3.3), we obtain

yn
j = yn

j−1 +hn( f n
j −Dα yn

j −Ayn
j)

Hence using the Corollary (3.3), we get

‖yn
j‖ ≤ ‖yn

j−1‖+hn(‖ f n
j ‖+‖Dα yn

j‖+‖Ayn
j‖)

≤ ‖yn
j−1‖+C1hn

≤ ‖yn
j−2‖+2C1hn

≤ ‖yn
0‖+ jC1hn ≤ TC1 ≤C.

We consider a sequences X n and Y n : [0,T ] −→ D(A)
given by

X n(t) =
{

0, t = 0,
yn

j , t ∈ (tn
j−1, tn

j ].

and

Y n(t) =

{
0, t = 0,

yn
j−1 +

t−tn
j−1

hn
(yn

j − yn
j−1), t ∈ (tn

j−1, tn
j ].

Further we introduce a sequence of step functions D̃αY n(t)
by

D̃αY n(t) =

{
0, t = 0,

∑
j
i=1 a j−i

yn
i −yn

i−1
hn

h1−α
n

Γ(2−α) , t ∈ (tn
j−1, tn

j ].

Remark 3.5. Sequences Y n(t) and X n(t) are uniformly
bounded in X. Furthermore functions Y n(t) are uniformly
Lipschitz continuous on [0,T ] and Y n(t)−X n(t)→ 0 in X
as n→ ∞ on [0,T ].

For a given t ∈ (0,T ], there exists a j such that t ∈ (tn
j−1, t

n
j ].

Dα
0+Y n(t) =

1
Γ(1−α)

d
dt

∫ t

0

Y n(s)
(t− s)α

ds

=
1

Γ(1−α)

d
dt

( j−1

∑
k=1

∫ tn
k

tn
k−1

Y n(s)
(t− s)α

ds+
∫ t

tn
k−1

Y n(s)
(t− s)α

ds
)

=
1

Γ(1−α)

j−1

∑
k=1

d
dt

∫ tn
k

tn
k−1

Y n(s)
(t− s)α

ds+
d
dt

∫ t

tn
j−1

Y n(s)
(t− s)α

ds

=
1

Γ(1−α)

[ j−1

∑
k=1

(
−Y n(tn

k )(t− tn
k )
−α +Y n(tn

k−1)×

(t− tn
k−1)

−α +
yn

k− yn
k−1

hn

(t− tn
k−1)

1−α − (t− tn
k )

1−α

1−α

)
+

yn
j − yn

j−1

hn

(t− tn
j−1)

1−α

1−α
+Y n(tn

j−1)(t− tn
j−1)

−α

]
=

1
Γ(2−α)

j−1

∑
i=1

yn
k− yn

k−1

hn
[(t− tn

k−1)
1−α − (t− tn

k )
1−α ]

+
yn

j − yn
j−1

hn

(t− tn
j−1)

1−α

Γ(2−α)
.

Lemma 3.6. ([4]) ‖D̃αY n(t)−Dα
0+Y n(t)‖ → 0 as n→ ∞

uniformly on (0,T ].

Proof. The proof directly follows from a easy calculation
using the above equation and definition of functions D̃αY n(t).

Lemma 3.7. ([4]) There exists a subsequence {Y nk} of
{Y n} such that d−Y nk

dt ⇀ dy
dt and Dα

0+Y nk(t)⇀ Dα
0+y(t) in

L2([0,T ],X), as n→ ∞.

Proof. See the proof of Lemma 10 in [4].

Remark 3.8.

D̃αY n(t)⇀ Dα
0+y(t) in L2([0,T ],X) as n→ ∞.

We consider a sequence of functions f n(t) as,

f n(t) =
{

f (0), t = 0,
f (tn

j ), t ∈ (tn
j−1, tn

j ].

We can write equation (3.3) can as

d−

dt
Y n(t)+D̃αY n(t)+AX n(t) = f n(t), t ∈ (0,T ]. (3.15)

4. Main Results
Theorem 4.1. Let −A generate an analytic semigroup of
contractions in X such that (H1)− (H3) hold. Then the FDE
(1.3)-(1.4) has a unique strong solution.
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Proof. Integrating equation (3.15) from 0 to t and then for
each φ ∈ X∗, we get∫ t

0
〈AX n(p),φ〉d p =−〈Y n(t),φ〉+

∫ t

0
〈 f n(p),φ〉d p

−
∫ t

0
〈D̃αY n(s),φ〉d p. (4.1)

Rewriting above equation for the subsequence nk of n, we
have ∫ t

0
〈AX nk(p),φ〉d p =−〈Y nk(t),φ〉+

∫ t

0
〈 f nk(p),φ〉d p

−
∫ t

0
〈D̃αY nk(p),φ〉d p. (4.2)

From Lebesgue dominated convergence theorem, Lemmas 3.7
and Remark 3.8 and Lemma 2.3 and Theorem 2.1 of [5], as
k→ ∞ it follows that∫ t

0
〈Ay(p),φ〉ds =−〈y(t),φ〉+

∫ t

0
〈 f (p),φ〉ds

−
∫ t

0
〈Dα

0+y(p),φ〉d p. (4.3)

Using
∫ t

0〈Dα
0+y(p),φ〉d p = 〈I1−α

0+ y(t),φ〉 in equation (4.3),
we obtain

〈y(t)+I1−α

0+ y(t),φ〉=−
∫ t

0
〈Ay(p),φ〉d p+

∫ t

0
〈 f (p),φ〉d p.

Continuity of the integrands on the RHS gives the continuous
differentiability of 〈y(t)+ I1−α y(t),φ〉. Now, since Ay(t) is
Bochner integrable, the strong derivative of y(t)+ I1−α y(t)
exists a.e. on the interval [0,T ]. Hence

d
dt

(
y(t)+ I1−α

0+ y(t)
)
=−Ay(t)+ f (t),a.e on [0,T ].

As the function y(t) is Lipschitz continuous, I1−α

0+ y(t) is dif-
ferentiable(see [28]), hence y(t) is differentiable. Hence, we
have

dy
dt

+Dα
0+y(t)+Ay(t) = f (t), a.e. t ∈ [0,T ].

i.e. y(t) is a strong solution to the problem (1.3)-(1.4).
To prove the uniquness, let y1 and y2 be two strong solutions
of the problem (1.3)-(1.4), then they will satisfy

dyi

dt
+Dα

0+yi(t)+Ayi(t) = f (t), for i = 1,2.

Let y= y1−y2, then y(t)= y1(t)−y2(t) satisfies the following
fractional differential equation,

dy
dt

+Dα
0+y(t)+Ay(t) = 0. (4.4)

y(0) = 0. (4.5)

Hence there exists a strong solution of the problem (4.4)-(4.5)
by Theorem 4.1. Equation (4.4) can also be re-written as

dy
dt

+Ay(t) =−Dα
0+y(t).

If the semigroup generated by −A is exp(−At) = T (t), then

y(t) =−
∫ t

0
T (t− p)Dα

0+y(p)d p.

Differentiating y(t), we obtain

y′(t) =−Dα
0+y(t)+

∫ t

0
AT (t− p)Dα

0+y(p)d p. (4.6)

Using (4.6), in the definition of Dα
0+y(t), we get

Dα
0+y(t) =

1
Γ(1−α)

∫ t

0

−Dα
0+y(p)

(t− p)α
d p+∫ t

0

∫ t

p

1
Γ(1−α)

AT (s− p)dsDα
0+y(p)d p.

Similarly as in [1], we have∥∥∥∥ 1
Γ(1−α)

∫ t

p
AT (s− p)ds

∥∥∥∥≤ M
(t− p)α

(4.7)

for a constant M. This gives

‖Dα
0+y(t)‖ ≤M

∫ t

0

‖Dα
0+y(s)‖

(t− s)α
ds. (4.8)

Using Lemma (2.4), we have ‖Dα
0+y(t)‖= 0.

Thus ‖y(t)‖ = 0. Hence y1(t) = y2(t), i.e. the solution is
unique.

Corollary 4.2. The following initial value problem for the
FDE,

dy
dt

+Dα
0+y(t)+Ay(t) = f (t), 0 < t < T, (4.9)

y(0) = y0, (4.10)

has a unique strong solution for y0 ∈D(A2) under the assump-
tions (H1)− (H3).

5. Example
We consider the following fractional initial boundary value
problem

∂u(t,x)
∂ t

+Dα
0+u(t,x)− ∂ 2u(t,x)

∂x2 +δu(t,x) = g(t,x),

t ∈ [0,1], x ∈ [0,1],0 < α < 1,δ > 0,

u(t,0) = 0 = u(t,1), t ∈ [0,1],
u(0,x) = 0. (5.1)
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We set X = L2([0,1],R) and g : [0,1]× [0,1]−→R be enough
smooth such that G(t) ∈C(X ′

β
), where G(t)(x) = g(t,x). We

define U(t) : [0,1]→ R by U(t)(x) = u(t,x) as a function of
x and operator K : D(K)→ X by Kv =−v′′ .
D(K)= {ω ∈L2([0,1],R) : ω,ω ′is absolutely continuous ω ′′ ∈
L2([0,1],R),ω(0) = ω(1) = 0}.
From [27], it is clear that −K is generates a compact ana-
lytic semigroup of contractions on X . Consider an opera-
tor A : D(A)→ X defined by Aw = −w′′+ δw with D(A) =
D(K). Then −A = −K− δ I also generates a compact ana-
lytic semigroup with contractions satisfying the hypothesis
(H2)− (H3).
Then the reformulated problem in in abstract form is

dU
dt

+Dα
0+U(t)+AU(t) = G(t), 0 < t < 1,

U(0) = 0.

Thus we may apply the Theorem 4.1 to obtain the existence
of a unique strong solution of the above problem.

6. Conclusion
The problem presented in this paper is the generalization

of a problem in viscoelasticity, named as Basset problem.
Existence and uniqueness of the problem is considered by
Rothe’s method. Here we defined some fractional spaces and
the function takes the values from the fractional Banach space
which contains the domain of the infinite dimensional oper-
ator A. Some a priori estimates has been established on the
approximate solution of the problem, which also guarantees
the wellposedness of the discrete problem in fractional spaces.
The considered problem (1.3)-(1.4) has zero initial condition,
but Corollary 4.2 shows this condition can be dropped by
assuming a regularity condition on the initial values.
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