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Abstract

New results and new applications of fractional calculus for continuous random variables are presented. New
expectation and variance identities of order o > 1 are established. Under a new fractional normalisation technique,
other weighted random variable inequalities are generated and some classical results are deduced as special
cases.
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Theorem 1.1. For every absolutely continuous function h
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1. Introduction with b’ > 0, the inequality:

The int'egral inequalities are very important iFl physics and Varlg(X)] < E| Z/(X ) (& X))z] (1.4)
applied sciences. For some applications of this theory, we (0:
refer the reader [2, 4, 5, 8-11]. Let us now introduce some
papers that have motivate the present work. We begin by  holds, with equality iff g = cih+c2 , where
[1] where, T. Cacoullos and V. Papathanasiou established the

following nice covariance identity o = /X(E(h) — () f(t)dr. (1.5)
Cov(h(X),g(X)) = E(2(X)g' (X)), (1.1) a

where X is a continuous random variable ( CRV, for short)
with support an interval (a,b) ,—o0 < a < b < eo, f is proba-
bility density function ( pdf, for short) of X, g and h are two  Theorem 1.2. Let X be a random variable with a p.d.f.
continuous functions with 6> =V (X),|E(z(X)g'(X))| < oo defined on [a,b], such that i = E(X), 0% = Var(X) and w €
and C([a,b)); [F(b—1)* N —1)f(t)dt = (b—x)*"'o?w(x) f(x).
Then, we have

e / (E[R(X)) — h(r) £ (1) (1.2) gy (16)

=
~

Very recently, based on the notions of [4], Z. Dahmani [5]
proved the following theorem:
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Motivated by the papers in [2, 3, 5, 8], in this work, we fo-
cus our attention on the application of the Riemann-Liouville
fractional integration on random variables. We use some re-
cently introduced concepts on continuous random variables
to establish new identities on continuous random variables.
We prove new lower bounds for the variances as well as for
the expectations. For our results, some classical and excellent
results of [1-3], that correspond to the standard integration of
order @ = 1, are generalised for any o > 1.

2. Preliminaries

Definition 2.1. [7]The Riemann-Liouville fractional integral
operator of order o0 > 0, for a continuous function f on [a,b]
is defined as

t

1 a—1
r—/(t—r) f(t)dt,o0>0,a<t<b. (2.1)

0= Frg

For any o > 0 and any positive continuous function w
defined on [a,b], we recall the definitions [4]:

Definition 2.2. The fractional w—weighted expectation func-
tion of order «, for a CRV X with a pdf f defined on [a,D] is
given a by:
1 t
E =—— [(t—1)*! dt,a<t<b,
Kanlt) = gy [ -9 D (DdTas
2.2)

Definition 2.3. The fractional w—weighted expectation func-
tion of order o, for X — E(X) is given by

~0)* (1 —E(X))

(2.3)

Definition 2.4. The fractional w—weighted variance function
of order a, for X is defined as

1
2
GX,a w /

2.4)

Definition 2.5. The fractional w—weighted expectation of

order o for X is defined as

1

= = — )% Iy . .
Exaw= @ b—1)* "tw(r)f(1)dT (2.5)

Q\w
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)Lt —E(X))*w(t)f(1)dT.

Definition 2.6. The fractional w—weighted variance of order
« for X is given by:

b
O = / (b—1)* (1 —E(X))®

w(%)(1)d7.(2.6)

3. Main Results

We begin this section by proving the following theorem.
We have:

Theorem 3.1. Let X be a CRV with support an interval
[a,b] ,—o0 < a < b < o. Suppose that X has a pdf [ and
let w be a positive continuous function on [a,b]. Then, the
following equality holds for any o« > 1 :

Ezg’,ww = Egh.,a,w - Eh,a,wEg.(x,Wa 3.1

where g is an absolutely continuous function with |Ezg',a,w| <
oo, JEwf(b) = 1, h is a given function and z satisfies:

Proof.
We have

< w(t) f(t)dt

b t
_ r%) / (1) / (b— 1) w(u) f(u)
X (Epa w” h( );dudt
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Therefore,

= g(b) {Eh,oc,w]gwf(b) - Eh,(x,w}
- Eh,oc.wEg,a,w + Egh,mw'
Thanks to the hypothesis J%wf(b) = 1, we obtain

Ezg’,a,a) = Egh,a,w - Eh,(x,wEg,a,w-

The proof is thus achieved.

Remark 3.2. Ifwe take oo = 1,w(x) = 1in (3.1), we obtain

(1),

Lemma 3.3. Let X be a CRV with support an interval [a,b)]
,—o0 < a < b<oo and a pdf fand suppose that w: [a,b] —

R is a continuous function. Then, for any o > 1, we have

2

where g is an absolutely continuous function such that
|Ezg’,a,a)| < oo7g(b) = E(g) and

1
= G i

< [ (b= (B(g) — g(w)wlu)f ().

Ogow = Ezg’,oc,a)a 3.3)

Proof:
‘We have
b
1 o—1 1 1
Bt = gy | 00" 0 G

b
:ﬁg@ [ -0 (E(g) -~ g(w)
b
xw(u)f(u)du— %a)/(b*t)a_l

Remark 3.4. If we take g(x) = x in Lemma 3.3, we obtain
E(X)=b, and

G)%,a,w =E 0.0 (3.4)

020
LI,
S22

S50tz
‘n: :v S
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with,

t

1
0= G |

x w(u)f(u)du

1 / .
= =D / (b= u)%w(u) f (w)du.

a

b—u)* (E[X] — u)

3.5)

Now, taking three continuous functions U, V, Q defined on
[a,b], we prove the following result:

Theorem 3.5. Let U,V and Q be three continuous functions
on la,b] and J*Q(b) =1, then

JZUVQ(b) —JFUQ(D)IZV Q(b)

=Jg [(U—-JZUQ(b))
< (V=J2VQ(b)) Q(b)

and let w : [a,b] — RT be a continuous function. Then, for
any o > 1, we have
E2

28,0 w

P 0< @, (3.7)

—E, s
Epaw ~ le~Eg

where g is an absolutely continuous function with |Ezg/’a,w| <
oo and J*wf(b) =1, his a given function and z is given by

t

1
b _ oa—1
) = GrgEa ] 0 W
% (En i — h(w))du.
Proof
Thanks to (3.1), we observe that
Ezg’,oc,co Egh,(x,w - Eh,ot,wEg,oc,w
= Jighwf(b) —Jihwf(b)J gwf(b).

In (3.6), we take U = g,V = h and Q = wf. Then, we

(3.6) observe that

is valid, for any o« > 1.

Proof
We have

JZ (U= IZUQ(b) (V= JZVQ(b))] ()

| b
o) (b—1)*
x (V(t) =JSVQ(b)) O(t)dt
b

- /—t“lU V()0(r)dr —

U - JTUQ(®b))

JaVO(b)
I(e)

JEU0(b)

x/(b—t)o‘ e 5

a
b

x/(b—t)“‘lv(t)Q(t)dt—i—

a

JaUQ(b)JZVQ(b)
INa)

X

b
1 .
Fa / (b—1)%"10(1)dt

= JIUVQ(b)
+IZUQ(b)IVO(b)

—2J7UQ(b)J7VO(b)
13 O(D).
Since J*Q(b) = 1, then we ca write
JZ (U —=IZUQ(b) (V =JFVQ(b) QL (b)
= JZUVQ(b) —JFUQ(D)ISVO(b).

Taking into account the above theorem, we prove the
following theorem:

Theorem 3.6. Let X be a continuous random variable with
support an interval [a,b] ,—eo < a < b < o, having a pdf f

432

T3 (g = I gwf (b)) (h—Jghwf (b)) wf] (b)

Ezg’,a‘,w =

‘ B

b
- e / (b—1)%"" (g(t) —I%gwf (b))

x (h(t) = Jghwf (b)) wf (t)dt
Thanks to Cauchy-Shwarz inequality, we obtain
E2,

28,0,

( —0)% (g(t) — g gw (b))  wf (1)dt

IN
._j

)2 (h(r) — T hwf (b)) w (1)dt

= g~ J“ng( D2 wr| ()2 [(h= g s (5) wr] (b)

= E
= E

(g—JI%gwf(b)) ,oc,wE(hflghwf(b))z.a,w
(ngg_a,w)z,Oc,wE(thh.a‘w)z,a,w'
Again, taking g = h in (3.1), we get
2
w (Eh,oc,w)
2 2
Eh?,oc,w*z(Eh,a,w) + (Eh,tx,w) .
Thanks to the hypothesis J%wf(b) = 1, it yields that
2 2
Ehz,a,w -2 (Eh,ot,w) + (Eh_,o“w) Jng(b)
= J& (BPwf) (b) = 2Epands (hwf) (b)
2
+ (Enaaw) Jgwf (D)
2
— ( [hz —2Enquh+ (Enaw) } w f) (b)
2
= 5 ([h= Enan]*wf) )

E .
(thh'a,w)z,oc,w

EZh/,O!,(A) = Eh2,a’

E

a0

(3.8)



Further results and applications on continuous random variables — 433/435

Using (3.8) and (3.9), we deduce that

2
28’ ,ow

B o = Cle—Eganlan
The proof is thus achieved.

Remark 3.7. If we take o =1 and w(x) =1 in (3.7), we
obtain (1.3).

Lemma 3.8. Let X be a CRV with support an interval |a,b)
,—o0 < a < b <oo having a pdf f and let w : [a,b] — RT be
a continuous function. Then, for any a > 1, we have

(3.10)

)% (g(x) —g(v))?

E(S_Eg.,oc,w')27 5

o,w
L[ [0
= —_— —_ x J—
T Ja Ja ’
X f(0)f(y)w(x)w(y)dxdy,
where g is an absolutely continuous function and
JEwf(b) = 1.

Proof.
We have

o Ja L2 (=0 (=) ((x) — g())°

1

i | Ja b=

< f () f () w(x)w(y)dxdy = 2

xfFw(y) J3 (b—x)*"g*(x) f(x)w(x)dxdy
0 f)w) [ (b —x)*!
x f)w(x)dxdy —2 [2(b—y)*'g(y) f(y)

xw(y) [ (b —x)""lg(x)f(x)w(x)dxdy] .

a—1,2

+[(b—y)* g

3.11)

Then, we can write

J2O =) FOw) [ (b—x)* g (x)

 f)w(x)dxdy = [7(b—y)*' f(y)w(y)dy
(3.12)

J2 (b —x)% 12 (x) f)w(x)dx — [ (b —y)*!

xg2 () fw) 2 (b —x)* fx)w(x)dxdy

and

[0 erome) [0 g
2

< ity = ( [ 63" 01 w0)ay)

[ g0prome [ 69

x g(x) f(x)w(x)dxdy. (3.13)

433

By (3.11),(3.12) and (3.13), we obtain

1 b ry " .
moof/cz/a“’—x) Hb=y)"" (g0 —g(y)’
X f(x) f(y)w(x)w(y)dxdy

1

[N(e)? Uab(b‘”a1f(y>W(y)dy/ab(b—x)algz(x)

2
<~ (63 e w0Iay) ]

JE fw(b)IEg fw(b) — (IS gfw(b))®
I8 fw(b) — (Jogfw(b))®

= Egz,a,w - Egz,a,»v

= Epg,—2E 4 tE;q,

= Epg,—2E; o, +Idfw(b)E; 4,
Elq g ann

Finally, based on Lemma 3.7, we present to the reader the
following results:

Theorem 3.9. Let X be a CRV with support an interval
[a,b] ,—e0 < a < b <eo, having a pdf f andletw: [a,b] — R™
be a continuous function. Then, for any @ > 1, the following
inequality holds

(3.14)

)

E 2 <E 2
—F RN — z /
[8—Eg aw]? 0w (i/) aw

where g is an absolutely continuous function, with |Ezg/7a7w| <
oo and J®wf(b) = 1, h is continuous function on |a,b], with
0<h and

(3.15)

Proof: By Lemma 3.7, we have

E[ngg-‘%W]z!avw

by
mj)‘)]Z//(bx)“—l(by)a—1[g(y)g(x)]z

a a

X f()w(x) f (y)w(y)dxdy

by
-

X f()w(x)f (y)w(y)dxdy.

(S}

y

/g’(t)dt

X
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Thanks to the condition on 4’ and by Cauchy-Schwarz

inequality, we get

IN
—
=
an)
=
N~—
|
=
run
=
S~—
=
—

By (3.16) and (3.17), we can write

E[g*Eg,a,w]zﬂ-,W

by
el i (G R R LR E)

y
x/
X

On the other hand, since

x<t<y
a<x<y &
a<y<b

then, by changing the order of integration, it yields that

')
(1)

dr f(x)w(x)f (y)w(y)dxdy

a<x<t
r<y<b ,
a<t<b

E[K*Egﬁa,w]zv%w

b b t
0k -
= ra)}za/ (1) [//b 9 -y
< (h(y) - h(x))f(x)w(x)f(y)w(y)dxdy] d.
(3.19)

Also, we have

bt
[ [ =260 () ~ 1) f@w()

a
t

y)dxdy = /b/ b—x)*" 1 (b—y)*!

 (h0) = () £ () )
- / / (b =) (b= )" (h(y) ~ h(x)) F(W()

x f(y)w(y)dxdy
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dy/b x) % Lf(

dy/ (b—2)%"h(x) f(x)w(x)dx

b
= /@ ") h(y)
a
b

— [o=y" s w

a
t t

- / (b= )W)y [ (b=5)% Fx)w(x)dx

a

dy/ (b =) h(x) f(x)w(x)dx

dy/b x)*L(

dy/ (b—2)%"h(x) f(¥)w(x)dx.

(3.20)

= [6=9

a

Multiplying (3.20) by 757, We obtain

( )’

bt
][00 =) 0) =) Fwt)

t

X FOIwO)dxdy = (fw) (8) [ (b =5)%" £(x)

xwlx)dx—J2 (fw) (6) [ (b =x)%" (o) f(w(x)dx

a
t

JE (fw) (8) [ (b =) (5wl

a
t

= [0 W@ fwdx

a

(b =) I (hfw) (b) —h(x)] f (x)w(x)dx

(3.21)

INA
=
Ni=
\w
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Theorem 3.9 is thus achieved.

Remark 3.10. Ifwe take a =1, and w(x) =1in(3.14), we
obtain (1.4).
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