

https://doi.org/10.26637/MJM0703/0015

On generalized *b* star - interior and generalized *b* star - closure in topological spaces

S. Sekar¹* and S. Loganayagi²

Abstract

In this paper, we introduce a new class of generalized b star - interior and generalized b star - closure in topological spaces. Some characterizations and several properties concerning generalized b star - interior and generalized b star - closure are obtained and presented.

Keywords

gbs - closed set, gbs - closed map, gbs - continuous map, contra gbs - continuity.

AMS Subject Classification

54C05, 54C08, 54C10.

¹Department of Mathematics, Chikkanna Government Arts College, Tiruppur – 641 602, Tamil Nadu, India.

² Department of Mathematics, Bharathidasan College of Arts and Science, Ellispettai, Erode – 638 116, Tamil Nadu, India.

*Corresponding author: ¹ sekar_nitt@rediffmail.com; ²logusavin@gmail.com

Article History: Received 24 March 2019; Accepted 09 June 2019

©2019 MJM.

Contents

1	Introduction458
2	Preliminaries

- 3 On Generalized *b* Star interior in Topological space 459
- 4 On Generalized *b* Star closure in Topological space 460

1. Introduction

Generalized closed sets in topology as a generalization of closed sets introduced by Levine [11]. This concept was found to be useful and many results in general topology were improved. Generalized closed sets have worked by many researchers like Arya et al.[4], Balachandran et al.[5], Bhattarcharya et al.[6], Arockiarani et al.[3], Gnanambal [8], Malgham [13], Nagaveni [16] and Palaniappan et al.[17]. Andrjivic [2] gave a new class of generalized closed set in topological space called b closed sets. A.A. Omari and M.S.M. Noorani [1] made an analytical study and presented the concepts of generalized b closed sets in topological spaces.

In this paper, the notion of gbs -interior is defined and some of its basic properties are investigated. Also we introduce the idea of gbs -closure in topological spaces using the notions of gbs-closed sets and obtain some related results. Through out this paper (X, τ) and (Y, σ) represent the nonempty topological spaces on which no separation axioms are assumed, unless otherwise mentioned.

Let $A \subseteq X$, the closure of A and interior of A will be denoted by cl(A) and int(A) respectively, union of all bopen sets X contained in A is called b- interior of A and it is denoted by bint(A), the intersection of all b- closed sets of X containing A is called b- closure of A and it is denoted by bcl(A).

2. Preliminaries

Definition 2.1. *Let a subset A of a topological space* (X, τ) *, is called*

- *1) a pre-open set [15] if* $A \subseteq int(cl(A))$.
- 2) a semi-open set [10] if $A \subseteq cl(int(A))$.
- *3)* a α -open set [15] if $A \subseteq int(cl(int(A)))$.

4) a α generalized closed set (briefly αg - closed) [12] if

- $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 5) a generalized * closed set (briefly g^* -closed)[21] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} open in X.
- $\begin{array}{c} 0 \text{ whenevel } A \subseteq 0 \text{ und } 0 \text{ is g open in } X. \\ \end{array}$
- 6) a generalized b- closed set (briefly gb- closed) [2] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 7) a generalized semi-pre closed set (briefly gsp closed) [7] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (1) speci(A) \subseteq 0 whenever $A \subseteq$ 0 and 0 is open in X. 8) a generalized pre-closed set (briefly gp - closed) [8] if
- $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

9) a generalized semi-closed set (briefly gs - closed) [7] if

 $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

10) a semi generalized closed set (briefly sg- closed) [6] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X. 11) a generalized pre regular closed set (briefly gpr-closed)

[8] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in Χ.

12) a semi generalized b- closed set (briefly sgb- closed) [9] *if* $bcl(A) \subseteq U$ *whenever* $A \subseteq U$ *and* U *is semi open in* X*.*

13) a \ddot{g} - closed set [18] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg open in X.

14) a semi generalized star b - closed set (briefly sg*b closed)[19] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is so open in X.

15) a generalized b star-closed set (briefly gbs-closed) [20] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

3. On Generalized b Star - interior in **Topological space**

Definition 3.1. *Let A be a subset of X. A point* $x \in A$ *is said* to be gbs - interior point of A is A is a gbs - neighbourhood of x. The set of all gbs - interior points of A is called the gbs interior of A and is denoted by gbs - int(A).

Theorem 3.2. If A be a subset of X. Then gbs - int(A) = $\{\cup G : G \text{ is a gbs - open, } G \subset A\}.$

Proof. Let *A* be a subset of *X*.

 $x \in gbs - int(A) \iff x \text{ is a } gbs - interior point of A$ \Leftrightarrow A is a gbs - nbhd of point x \Leftrightarrow there exists gbs - open set G such that $x \in G \subset A$ $\Leftrightarrow x \in \{ \cup G : G \text{ is a } gbs \text{-open} ,$ $G \subset A$ Hence $gbs - int(A) = \{ \cup G : G \text{ is a } gbs \text{-open }, G \subset A \}$

Theorem 3.3. Let A and B be subsets of X. Then

1. gbs - int(X) = X and $gbs - int(\varphi) = \varphi$.

2.
$$gbs - int(A) \subset A$$
.

- 3. If B is any gbs open set contained in A, then $B \subset$ gbs - int(A).
- 4. If $A \subset B$, then $gbs int(A) \subset gbs int(B)$.

5.
$$gbs - int(gbs - int(A)) = gbs - int(A)$$
.

Proof. Let *A* and *B* be subsets of *X*.

1. Since X and φ are *gbs* open sets, by Theorem 3.2

$$gbs - int(X) = \{ \cup G : G \text{ is a } gbs \text{ - open, } G \subset X \}$$
$$= X \cup \{ \text{ all } gbs \text{ open sets } \}$$
$$= X$$

(i.e.,) gbsint(X) = X. Since φ is the only gbs - open set contained in φ , *gbs* – *int*(φ) = φ .

2. Let
$$x \in gbs - int(A)$$

$$\begin{array}{rcl} x \in gbs - int(A) & \Rightarrow & x \text{ is an int point of } A. \\ & \Rightarrow & A \text{ is a nbhd of } x. \\ & \Rightarrow & x \in A \end{array}$$

Thus, $x \in gbs - int(A) & \Rightarrow & x \in A$
Hence $gbs - int(A) & \subset & A. \end{array}$

- 3. Let *B* be any *gbs* open sets such that $B \subset A$. Let $x \in B$. Since B is a gbs - open set contained in A. x is a gbs interior point of A. (i.e.,) $x \in gbs - int(A)$. Hence $B \subset gbs - int(A)$.
- 4. Let A and B be subsets of X such that $A \subset B$. Let $x \in gbs - int(A)$. Then x is a gbs - interior point of A and so A is a gbs - nbhd of x. Since $B \supset A$, B is also gbs - nbhd of $x \Rightarrow x \in gbs - int(B)$. Thus we have shown that $x \in gbs - int(A) \Rightarrow x \in gbs - int(B)$.
- 5. Proof is obvious.

Theorem 3.4. If a subset A of space X is gbs - open, then gbs - int(A) = A.

Proof. Let A be gbs - open subset of X. We know that gbs $int(A) \subset A$. Also, A is gbs - open set contained in A. From Theorem 3.3 (iii) $A \subset gbs - int(A)$. Hence gbs - int(A) = A.

The converse of the above theorem need not be true, as seen from the following example.

 $\{b,c\}$. Then $gbs - O(X) = \{X, \varphi, \{a\}, \{b\}, \{c\}, \{b,c\}\}$. gbs- $int(\{a,c\} = \{a\} \cup \{c\} \cup \{\phi\} = \{a,c\}$. But $\{a,c\}$ is not gbs - open set in X.

Theorem 3.6. If A and B are subsets of X, then $gbs - int(A) \cup gbs - int(B) \subset gbs - int(A \cup B).$

Proof. We know that $A \subset A \cup B$ and $B \subset A \cup B$. We have Theorem 3.3 (iv) $gbs - int(A) \subset gbs - int(A \cup B)$, $gbs - int(B) \subset$ $gbs - int(A \cup B)$. This implies that $gbs - int(A) \cup gbs - int(B)$ $\subset gbs - int(A \cup B).$ \square

Theorem 3.7. If A and B are subsets of X, then $gbs - int(A \cap B) = gbs - int(A) \cap gbs - int(B).$

Proof. We know that $A \cap B \subset A$ and $A \cap B \subset B$. We have $gbs - int(A \cap B) \subset gbs - int(A)$ and $gbs - int(A \cap B) \subset gbs - int(A \cap B)$ int(B). This implies that

$$gbs - int(A \cap B) \subset gbs - int(A) \cap gbs - int(B).$$
 (3.1)

Again let $x \in gbs - int(A) \cap gbs - int(B)$. Then $x \in gbs - int(A)$ and $x \in gbs - int(B)$. Hence x is a gbs - int point of each of sets A and B. It follows that A and B is gbs - nbhds of x, so that their intersection $A \cap B$ is also a gbs - nbhds of x. Hence $x \in gbs - int(A \cap B)$. Thus $x \in gbs - int(A) \cap gbs - int(A)$ implies that $x \in gbs - int(A \cap B)$. Therefore

$$gbs - int(A) \cap gbs - int(B) \subset gbs - int(A \cap B)$$
 (3.2)

From (3.1) and (3.2),

We get $gbs - int(A \cap B) = gbs - int(A) \cap gbs - int(B)$. \Box

Theorem 3.8. If A is a subset of X, then $int(A) \subset gbs - int(A)$.

Proof. Let A be a subset of X.

Let
$$x \in int(A) \implies x \in \{ \cup G : G \text{ is open, } G \subset A \}$$

 \Rightarrow there exists an open set G
such that $x \in G \subset A$

 $\Rightarrow \quad \text{there exist a } gbs \text{ - open set } G$ such that $x \in G \subset A$,
as every open set is
a gbs - open set in X

$$\Rightarrow \quad x \in \{ \cup G : G \text{ is } gbs \text{ - open, } G \subset A \}$$

$$\Rightarrow \quad x \in gbs - int(A)$$

Thus
$$x \in int(A) \Rightarrow x \in gbs - int(A)$$

Hence $int(A) \subset gbs - int(A)$.

This completes the proof.

Remark 3.9. Containment relation in the above theorem may be proper as seen from the following example.

Example 3.10. Let $X = \{a, b, c\}$ with $\tau = \{X, \varphi, \{b\}, \{c\}, \{b, c\}\}$. Then $gbs - O(X) = \{X, \varphi, \{a\}, \{b\}, \{c\}, \{b, c\}\}$. Let $A = \{b, c\}$. Now $gbs - int(A) = \{b, c\}$ and $int(A) = \{c\}$. It follows that $int(A) \subset gbs - int(A)$ and $int(A) \neq gbs - int(A)$.

Theorem 3.11. If A is a subset of X, then $g - int(A) \subset gbs - int(A)$, where g - int(A) is given by $g - int(A) = \bigcup \{G : G \text{ is } g \text{ - open}, G \subset A\}.$

Proof. Let *A* be a subset of *X*.

Let
$$x \in int(A) \Rightarrow x \in \{ \cup G : G \text{ is } g \text{ - open, } G \subset A \}$$

 \Rightarrow there exists a g - open set G
such that $x \in G \subset A$
 \Rightarrow there exist a gbs - open set G
such that $x \in G \subset A$,
as every g open set
is a gbs - open set in X
 $\Rightarrow x \in \{ \cup G : G \text{ is } gbs \text{ - open, } G \subset A \}$
 $\Rightarrow x \in gbs - int(A)$
Thus $x \in int(A) \Rightarrow x \in gbs - int(A)$
Hence $g - int(A) \subset gbs - int(A)$.

This completes the proof.

Remark 3.12. *Containment relation in the above theorem may be proper as seen from the following example.*

Example 3.13. Let $X = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{b, c\}\}$. Then $gbs - O(X) = \{X, \varphi, \{a\}, \{b, c\}\}$. and $g - open(X) = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{b, c\}, gbs - int(A) = \{b, c\}$ and $g - int(A) = \{b\}$. It follows that $g - int(A) \subset gbs - int(A)$ and $g - int(A) \neq gbs - int(A)$.

4. On Generalized *b* Star - closure in Topological space

Definition 4.1. Let A be a subset of a space X. We define the gbs - closure of A to be the intersection of all gbs - closed sets containing A. In symbols, $gbs - cl(A) = \{ \cap F : A \subset F \in gbsc(X) \}$.

Theorem 4.2. If A and B are subsets of a space X. Then

- 1. gbs cl(X) = X and $gbs cl(\varphi) = \varphi$
- 2. $A \subset gbs cl(A)$
- 3. If B is any gbs closed set containing A, then $gbs cl(A) \subset B$
- 4. If $A \subset B$ then $gbs cl(A) \subset gbs cl(B)$

Proof. Let A and B are subsets of a space X.

- 1. By the definition of gbs closure, X is the only gbs- closed set containing X. Therefore gbs - cl(X) =Intersection of all the gbs - closed sets containing X = $\cap \{X\} = X$. That is gbs - cl(X) = X. By the definition of gbs - closure, $gbs - cl(\varphi) =$ Intersection of all the gbs - closed sets containing $\varphi = \{\varphi\} = \varphi$. That is gbs $cl(\varphi) = \varphi$.
- 2. By the definition of gbs closure of A, it is obvious that $A \subset gbs cl(A)$.
- 3. Let *B* be any *gbs* closed set containing *A*. Since *gbs* cl(A) is the intersection of all *gbs* closed sets containing *A*, *gbs* cl(A) is contained in every *gbs* closed set containing *A*. Hence in particular *gbs* $cl(A) \subset B$.
- 4. Let *A* and *B* be subsets of *X* such that $A \subset B$. By the definition $gbs - cl(B) = \{ \cap F : B \subset F \in gbs - c(X) \}$. If $B \subset F \in gbs - c(X)$, then $gbs - cl(B) \subset F$. Since $A \subset B, A \subset B \subset F \in gbs - c(X)$, we have $gbs - cl(A) \subset F$. Therefore $gbs - cl(A) \subset \{ \cap F : B \subset Fgbs - c(X) \} = gbs - cl(B)$.

(i.e.,)
$$gbs - cl(A) \subset gbs - cl(B)$$
.

Theorem 4.3. If $A \subset X$ is gbs - closed, then gbs - cl(A) = A.

Proof. Let *A* be *gbs* - closed subset of *X*. We know that $A \subset gbs - cl(A)$. Also $A \subset A$ and *A* is *gbs* - closed. By Theorem 4.2 (iii) $gbs - cl(A) \subset A$. Hence gbs - cl(A) = A.

Remark 4.4. *The converse of the above theorem need not be true as seen from the following example.*

Example 4.5. Let $X = \{a, b, c\}$ with topology $\tau = \{X, \varphi, \{b\}, \{b, c\}\}$. Then $gbs - C(X) = \{X, \varphi, \{a\}, \{a, b\}, \{a, c\}\}$. $gbs - cl(\{c\}) = \{a, c\}$. But $\{c\}$ is not gbs - closed set in X.

Theorem 4.6. If A and B are subsets of a space X, then $gbs - cl(A \cap B) \subset gbs - cl(A) \cap gbs - cl(B)$.

Proof. Let *A* and *B* be subsets of *X*. Clearly $A \cap B \subset A$ and $A \cap B \subset B$. By Theorem $gbs - cl(A \cap B) \subset gbs - cl(A)$ and $gbs - cl(A \cap B) \subset gbs - cl(B)$. Hence $gbs - cl(A \cap B) \subset gbs - cl(A) \cap gbs - cl(B)$.

Theorem 4.7. If A and B are subsets of a space X then $gbs - cl(A \cup B) = gbs - cl(A) \cup gbs - cl(B)$.

Proof. Let *A* and *B* be subsets of *X*. Clearly $A \subset A \cup B$ and $B \subset A \cup B$. We have

$$gbs - cl(A) \cup gbs - cl(B) \subset gbs - cl(A \cup B)$$
 (4.1)

Now to prove $gbs - cl(A \cup B) \subset gbs - cl(A) \cup gbs - cl(B)$. Let $x \in gbs - cl(A \cup B)$ and suppose $x \notin gbs - cl(A) \cup gbs - cl(B)$. Then there exists gbs - closed sets A_1 and B_1 with $A \subset A_1, B \subset B_1$ and $x \notin A_1 \cup B_1$. We have $A \cup B \subset A_1 \cup B_1$ and $A_1 \cup B_1$ is gbs - closed set by Theorem such that $x \notin A_1 \cup B_1$. Thus $x \notin gbs - cl(A \cup B)$ which is a contradiction to $x \in gbs - cl(A \cup B)$. Hence

$$gbs - cl(A \cup B) \subset gbs - cl(A) \cup gbs - cl(B)$$
 (4.2)

From (4.1) and (4.2), we have $gbs - cl(A \cup B) = gbs - cl(A) \cup gbs - cl(B)$.

Theorem 4.8. For an $x \in X$, $x \in gbs - cl(A)$ if and only if $V \cap A \neq \varphi$ for every gbs - open sets V containing x.

Proof. Let $x \in X$ and $x \in gbs - cl(A)$. To prove $V \cap A \neq \varphi$ for every gbs - open set V containing x.

Prove the result by contradiction. Suppose there exists a *gbs* - open set *V* containing *x* such that $V \cap A = \varphi$. Then $A \subset X - V$ and X - V is *gbs*-closed. We have $gbs - cl(A) \subset X - V$. This shows that $x \notin gbs - cl(A)$, which is a contradiction. Hence $V \cap A \neq \varphi$ for every *gbs* - open set *V* containing *x*.

Conversely, let $V \cap A = \varphi$ for every gbs - open set V containing x. To prove $x \in gbs - cl(A)$. We prove the result by contradiction. Suppose $x \notin gbs - cl(A)$. Then $x \in X - F$ and S - F is gbs - open. Also $(X - F) \cap A = \varphi$, which is a contradiction. Hence $x \in gbs - cl(A)$.

Theorem 4.9. *If A is a subset of a space X*, *then* $gbs - cl(A) \subset cl(A)$.

Proof. Let *A* be a subset of a space *S*. By the definition of closure,

 $cl(A) = \{ \cap F : A \subset F \in C(X) \}. \text{ If } A \subset F \in C(X), \text{ Then } A \subset F \in gbs - C(X), \text{ because every closed set is } gbs - closed. \\ \text{That is } gbs - cl(A) \subset F. \text{ Therefore } gbs - cl(A) \subset \{ \cap F \subset X : F \in C(X) \} = cl(A). \text{ Hence } gbs - cl(A) \subset cl(A). \Box$

Theorem 4.10. If A is a subset of X, then $gbs - cl(A) \subset g - cl(A)$, where g - cl(A) is given by $g - cl(A) = \{ \cap F \subset X : A \subset F \text{ and } f \text{ is a } g \text{ - closed set in } X \}.$

Proof. Let *A* be a subset of *X*. By definition of $g - cl(A) = \{ \cap F \subset X : A \subset F \text{ and } f \text{ is a } g \text{ - closed set in } X \}$. If $A \subset F$ and *F* is *g* - closed subset of *x*, then $A \subset F \in gbs - cl(X)$, because every *g* closed is gbs - closed subset in *X*. That is $gbs - cl(A) \subset F$. Therefore $gbs - cl(A) \subset \{ \cap F \subset X : A \subset F \text{ and } f \text{ is a } g \text{ - closed set in } X \} = g - cl(A)$. Hence $gbs - cl(A) \subset g - cl(A)$.

Corollary 4.11. *Let A be any subset of X. Then*

1. $(gbs - int(A))^c = gbs - cl(A^c)$ 2. $gbs - int(A) = (gbs - cl(A^c))^c$ 3. $gbs - cl(A) = (gbs - int(A^c))^c$

Proof. Let *A* be any subset of *X*.

- 1. Let $x \in (gbs int(A))^c$. Then $x \notin gbs int(A)$. That is every gbs - open set U containing x is such that U not subset of A. That is every gbs - open set U containing xis such that $U \cap A^c \neq \varphi$. By Theorem $x \in (gbs - cl(A^c))$ and therefore $(gbs - int(A))^c \subset gbs - cl(A^c)$. Conversely, let $x \in gbs - cl(A^c)$. Then by theorem, every gbs - open set U containing x is such that $U \cap A^c \neq \varphi$. That is every gbs - open set U containing x is such that U not subset of A. This implies by definition of gbs - interior of A, $x \notin gbs - int(A)$. That is $x \in (gbs - int(A))^c$ and $gbs - cl(A^c) \subset (gbs - int(A))^c$. Thus $(gbs - int(A))^c = gbs - cl(A^c)$.
- 2. Follows by taking complements in (1).
- 3. Follows by replacing A by A^c in (1).

Acknowledgment

The authors gratefully acknowledge the Dr. G. Balaji, Professor of Mathematics & Head, Department of Science & Humanities, Al-Ameen Engineering College, Erode — 638 104, for encouragement and support. The authors also heartfelt thank to Dr. M. Vijayarakavan, Associate Professor, Department of Mathematics, VMKV Engineering College, Salem – 636 308, Tamil Nadu, India, for his kind help and suggestions.

References

- Ahmad Al Omari and Mohd. Salmi Md. Noorani, On Generalized b - closed sets, Bull. Malays. Math. Sci. Soc(2), 32 (1) (2009), 19-30.
- [2] D. Andrijevic, b open sets, Mat. Vesink, 48 (1996), 59-64.
- [3] Arockiarani, K. Balachandran and M. Ganster, Regular generalized continuous maps in topological spaces, *Kyn-gbook Math. J.*, 37 (1997), 305-314.
- [4] S.D. Arya and R. Gupta, On strongly continuous mappings, *Kyungpook Math. J.*, 14 (1974), 131-143.
- [5] K. Balachandran, P. Sundraram and H. Maki, On generalized continuous maps in topological spaces, *Memoirs* of the Faculty of Science Kochi University Series A, 12 (1991), 5-13.
- [6] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets on topology, *Indian J. Maths.*, 29 (3) (1987), 375-382.
- [7] J. Dontchev, on generalized semi- pre open sets, *Mem. Fac. Sci. Kochi. Univ. ser. A. math.*, 16 (1995), 35.
- [8] Y. Gnanambal, On generalized pre-regular closed sets in topological spaces, *Indian J. Pure. Appl. Math.*, 28 (1997), 351-360.
- [9] D. Iyappan and N. Nagaveni, On semi generalized bclosed set, *Nat. Sem. On Mat. & Comp. Sci.*, Proc. 6, Jan (2010).
- ^[10] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70 (1963), 36-41.
- [11] N.Levine, Generalized closed sets in topology, *Tend Circ.*, *Mat. Palermo* (2), 19 (1970), 89-96.
- [12] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and αgeneralized closed sets, *Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.*, 15 (1994), 51-63.
- ^[13] S.R. Malghan, Generalized closed mappings, *J.Karnatak Univ. Sc.*, 27 (1982), 82-88.
- [14] K.Mariappa, Investigations On Regular Generalized bclosed set in Topological Spaces, Ph.D., Thesis, Periyar University, Salem, (2015).
- [15] A.S. Mashor Abd., M.E. El-Monsef and S.N. Ei-Deeb, On Pre continous and weak pre-continous mapping, *Proc. Math. Phys. Soc. Egypt*, 53 (1982), 47-53.
- ^[16] N. Nagaveni, Studies on generalized on homeomorphisms in topological spaces, *Ph.D., Thesis, Bharathiar University, Coimbatore*, (1999).
- [17] N. Palaniappan and K. Chandrasekar Rao, rg closed sets, Kyungpook Math. J., 33 (1993), 211-219.
- [18] O. Ravi and S. Ganesan, *ÿ* closed sets in Topology, *International Journal of Computer Science & Emerging Technologies*, 2 (3) (2011), 330-337.
- [19] S. Sekar and B. Jothilakshmi, On semi generalized star b closed set in Topological Spaces, *International Journal of Pure and Applied Mathematics*, 111 (3) (2016), 419-428.
- ^[20] S.Sekar and S. Loganayagi, On generalized *b* star closed set in Topological Spaces, *Malaya Journal of Mathematik*,

5 (2) (2017), 401-406.

[21] M.K.R.S. Veerakumar, Between closed sets and g-closed sets, *Mem. Fac. Sci. Kochi. Univ. Ser.A, Math.*, 21 (2000), 1-19.

> ******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********