Initial coefficient estimates for a new subclasses of analytic and m-fold symmetric bi-univalent functions

Abbas Kareem Wanas ${ }^{1}$ and Sibel Yalçın ${ }^{2 *}$

Abstract

In the present investigation, we define two new subclasses of the function class Σ_{m} of analytic and m-fold symmetric bi-univalent functions defined in the open unit disk U. Furthermore, for functions in each of the subclasses introduced here, we determine the estimates on the initial coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$. Also, we indicate certain special cases for our results.

Keywords
Analytic functions, univalent functions, bi-univalent functions, m-fold symmetric bi-univalent functions, coefficient estimates.

AMS Subject Classification 30C45, 30C50, 30C80.
${ }^{1}$ Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq.
${ }^{2}$ Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey.
Corresponding author: ${ }^{1}$ abbas.kareem.w@qu.edu.iq; ${ }^{2}$ syalcin@uludag.edu.tr
Article History: Received 19 September 2018; Accepted 06 February 2019

Contents

1 Introduction
472
2 Coefficient estimates for the function class $\mathscr{E}_{\Sigma_{m}}(\delta, \gamma, \lambda ; \alpha)$ 473

3 Coefficient estimates for the function class $E_{\Sigma_{m}}^{*}(\delta, \gamma, \lambda ; \beta)$ 474
\qquad

1. Introduction

Let \mathscr{A} stand for the class of functions f that are analytic in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ and having the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

Let S be the subclass of \mathscr{A} consisting of the form (1.1) which are also univalent in U. The Koebe one-quarter theorem (see [4]) states that the image of U under every function $f \in S$ contains a disk of radius $\frac{1}{4}$. Therefore, every function $f \in S$ has an inverse f^{-1} which satisfies $f^{-1}(f(z))=z,(z \in U)$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{align*}
g(w)=f^{-1}(w)= & w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3} \\
& -\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{align*}
$$

A function $f \in \mathscr{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. We denote by Σ the class of bi-univalent functions in U given by (1.1). For a brief history and interesting examples in the class Σ see [14], (see also [6, 7, 10-12]).

For each function $f \in S$, the function $h(z)=\left(f\left(z^{m}\right)\right)^{\frac{1}{m}}$, $(z \in U, m \in \mathbb{N})$ is univalent and maps the unit disk U into a region with m-fold symmetry. A function is said to be m-fold symmetric (see [8]) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1},(z \in U, m \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

We denote by S_{m} the class of m-fold symmetric univalent functions in U, which are normalized by the series expansion (1.3). In fact, the functions in the class S are one-fold symmetric.

In [15] Srivastava et al. defined m-fold symmetric biunivalent functions analogues to the concept of m-fold symmetric univalent functions. They gave some important results,
such as each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each $m \in \mathbb{N}$. Furthermore, for the normalized form of f given by (1.3), they obtained the series expansion for f^{-1} as follows:

$$
\begin{align*}
g(w)= & w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
- & {\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}\right.} \\
& \left.-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\cdots \tag{1.4}
\end{align*}
$$

where $f^{-1}=g$. We denote by Σ_{m} the class of m-fold symmetric bi-univalent functions in U. It is easily seen that for $m=1$, the formula (1.4) coincides with the formula (1.2) of the class Σ. Some examples of m-fold symmetric bi-univalent functions are given as follows:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}},\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)\right]^{\frac{1}{m}} \text { and }\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}
$$

with the corresponding inverse functions

$$
\left(\frac{w^{m}}{1+w^{m}}\right)^{\frac{1}{m}},\left(\frac{e^{2 w^{m}}-1}{e^{2 w^{m}}+1}\right)^{\frac{1}{m}} \text { and }\left(\frac{e^{w^{m}}-1}{e^{w^{m}}}\right)^{\frac{1}{m}}
$$

respectively.
Recently, many authors investigated bounds for various subclasses of m-fold bi-univalent functions (see $[1,2,5,13$, 15-17]).

The aim of the present paper is to introduce the new subclasses $E_{\Sigma_{m}}(\delta, \gamma, \lambda ; \alpha)$ and $E_{\Sigma_{m}}^{*}(\boldsymbol{\delta}, \gamma, \lambda ; \beta)$ of Σ_{m} and find estimates on the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in each of these new subclasses.

In order to prove our main results, we require the following lemma.

Lemma 1.1. [3] If $h \in \mathscr{P}$, then $\left|c_{k}\right| \leq 2$ for each $k \in \mathbb{N}$, where \mathscr{P} is the family of all functions h analytic in U for which

$$
\operatorname{Re}(h(z))>0, \quad(z \in U)
$$

where

$$
h(z)=1+c_{1} z+c_{2} z^{2}+\cdots, \quad(z \in U)
$$

2. Coefficient estimates for the function class $\mathscr{E}_{\Sigma_{m}}(\delta, \gamma, \lambda ; \alpha)$

Definition 2.1. A function $f \in \Sigma_{m}$ given by (1.3) is said to be in the class $E_{\Sigma_{m}}(\delta, \gamma, \lambda ; \alpha)$ if it satisfies the following conditions:

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\delta}\left[(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\gamma}\right|<\frac{\alpha \pi}{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\delta}\left[(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\gamma}\right|<\frac{\alpha \pi}{2}, \tag{2.2}
\end{equation*}
$$

$(z, w \in U, 0<\alpha \leq 1,0 \leq \delta \leq 1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1, m \in \mathbb{N})$, where the function $g=f^{-1}$ is given by (1.4).

In particular, for one-fold symmetric bi-univalent functions, we denote the class $E_{\Sigma_{1}}(\delta, \gamma, \lambda ; \alpha)=E_{\Sigma}(\delta, \gamma, \lambda ; \alpha)$.

Remark 2.2. It should be remarked that the classes $E_{\Sigma_{m}}(\delta, \gamma, \lambda ; \alpha)$ and $E_{\Sigma}(\delta, \gamma, \lambda ; \alpha)$ are a generalization of wellknown classes consider earlier. These classes are:
(1) For $\delta=\lambda=0$ and $\gamma=1$, the class $E_{\Sigma_{m}}(\delta, \gamma, \lambda ; \alpha)$ reduce to the class $S_{\Sigma_{m}}^{\alpha}$ which was considered by Altınkaya and Yalçın [1].
(2) For $\delta=0$ and $\gamma=1$, the class $E_{\Sigma}(\delta, \gamma, \lambda ; \alpha)$ reduce to the class $M_{\Sigma}(\alpha, \lambda)$ which was introduced by Liu and Wang [9].
(3) For $\delta=\lambda=0$ and $\gamma=1$, the class $E_{\Sigma}(\delta, \gamma, \lambda ; \alpha)$ reduce to the class $S_{\Sigma}^{*}(\alpha)$ which was given by Brannan and Taha [3].

Theorem 2.3. Let $f \in E_{\Sigma_{m}}(\delta, \gamma, \lambda ; \alpha)$,
$(z, w \in U, 0<\alpha \leq 1,0 \leq \delta \leq 1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1, m \in \mathbb{N})$, be given by (1.3). Then
$\left|a_{m+1}\right| \leq \frac{2 \alpha}{m \sqrt{(\alpha+\delta)(\delta+2 \gamma(1+\lambda m))+\gamma(\gamma-\alpha)(1+\lambda m)^{2}}}$
and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}(m+1)}{m^{2}(\delta+\gamma(1+\lambda m))^{2}}+\frac{\alpha}{m(\delta+\gamma(1+2 \lambda m))} \tag{2.4}
\end{equation*}
$$

Proof. It follows from conditions (2.1) and (2.2) that

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\delta}\left[(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\gamma}=[p(z)]^{\alpha} \tag{2.5}
\end{equation*}
$$

and
$\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\delta}\left[(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\gamma}=[q(w)]^{\alpha}$
where $g=f^{-1}$ and p, q in \mathscr{P} have the following series representations:

$$
\begin{equation*}
p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+q_{3 m} w^{3 m}+\cdots . \tag{2.8}
\end{equation*}
$$

Comparing the corresponding coefficients of (2.5) and (2.6) yields

$$
\begin{align*}
& \quad m(\delta+\gamma(1+\lambda m)) a_{m+1}=\alpha p_{m} \tag{2.9}\\
& m\left[2(\delta+\gamma(1+2 \lambda m)) a_{2 m+1}\right. \\
& \left.-\left(\delta+\gamma\left(1+2 \lambda m+\lambda m^{2}\right)\right)\right] a_{m+1}^{2}+\frac{m^{2}}{2}[\delta(\delta-1) \tag{2.10}\\
& +\gamma(1+\lambda m)(2 \delta+(\gamma-1)(1+\lambda m))] a_{m+1}^{2} \\
& =\alpha p_{2 m}+\frac{\alpha(\alpha-1)}{2} p_{m}^{2} \\
& \quad-m(\delta+\gamma(1+\lambda m)) a_{m+1}=\alpha q_{m} \tag{2.11}
\end{align*}
$$

and

$$
\begin{align*}
& m\left[\left(\delta(2 m+1)+\gamma\left(3 \lambda m^{2}+2(\lambda+1) m+1\right)\right) a_{m+1}^{2}\right. \\
& \left.\quad-2(\delta+\gamma(1+2 \lambda m)) a_{2 m+1}\right]+\frac{m^{2}}{2}[\delta(\delta-1) \\
& \quad+\gamma(1+\lambda m)(2 \delta+(\gamma-1)(1+\lambda m))] a_{m+1}^{2} \\
& =\alpha q_{2 m}+\frac{\alpha(\alpha-1)}{2} q_{m}^{2} \tag{2.12}
\end{align*}
$$

Making use of (2.9) and (2.11), we obtain

$$
\begin{equation*}
p_{m}=-q_{m} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
2 m^{2}(\delta+\gamma(1+\lambda m))^{2} a_{m+1}^{2}=\alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{2.14}
\end{equation*}
$$

Also, from (2.10), (2.12) and (2.14), we find that

$$
\begin{aligned}
& m^{2}\left[(1+\delta)(\delta+2 \gamma(1+\lambda m))+\gamma(\gamma-1)(1+\lambda m)^{2}\right] a_{m+1}^{2} \\
& \quad=\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}+q_{m}^{2}\right) \\
& \\
& \quad=\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{m^{2}(\alpha-1)(\delta+\gamma(1+\lambda m))^{2}}{\alpha} a_{m+1}^{2}
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
a_{m+1}^{2}=\frac{\alpha^{2}\left(p_{2 m}+q_{2 m}\right)}{m^{2}\left[(\alpha+\delta)(\delta+2 \gamma(1+\lambda m))+\gamma(\gamma-\alpha)(1+\lambda m)^{2}\right]} \tag{2.15}
\end{equation*}
$$

Now, taking the absolute value of (2.15) and applying Lemma 1.1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we deduce that

$$
\left|a_{m+1}\right| \leq \frac{2 \alpha}{m \sqrt{(\alpha+\delta)(\delta+2 \gamma(1+\lambda m))+\gamma(\gamma-\alpha)(1+\lambda m)^{2}}}
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (2.3).

In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (2.12) from (2.10), we get

$$
\begin{align*}
& 2 m(\delta+\gamma(1+2 \lambda m))\left[2 a_{2 m+1}-(m+1) a_{m+1}^{2}\right] \\
& =\alpha\left(p_{2 m}-q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right) \tag{2.16}
\end{align*}
$$

It follows from (2.13), (2.14) and (2.16) that

$$
\begin{equation*}
a_{2 m+1}=\frac{\alpha^{2}(m+1)\left(p_{m}^{2}+q_{m}^{2}\right)}{4 m^{2}(\delta+\gamma(1+\lambda m))^{2}}+\frac{\alpha\left(p_{2 m}-q_{2 m}\right)}{4 m(\delta+\gamma(1+2 \lambda m))} \tag{2.17}
\end{equation*}
$$

Taking the absolute value of (2.17) and applying Lemma 1.1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}(m+1)}{m^{2}(\delta+\gamma(1+\lambda m))^{2}}+\frac{\alpha}{m(\delta+\gamma(1+2 \lambda m))}
$$

which completes the proof of Theorem 2.3.
For one-fold symmetric bi-univalent functions, Theorem 2.3 reduce to the following corollary:

Corollary 2.4. Let $f \in E_{\Sigma}(\delta, \gamma, \lambda ; \alpha)$
$(z, w \in U, 0<\alpha \leq 1,0 \leq \delta \leq 1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1)$, be given by (1.1). Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(\alpha+\delta)(\delta+2 \gamma(1+\lambda))+\gamma(\gamma-\alpha)(1+\lambda)^{2}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(\delta+\gamma(1+\lambda))^{2}}+\frac{\alpha}{\delta+\gamma(1+2 \lambda)}
$$

3. Coefficient estimates for the function class $E_{\Sigma_{m}}^{*}(\delta, \gamma, \lambda ; \beta)$

Definition 3.1. A function $f \in \Sigma_{m}$ given by (1.3) is said to be in the class $E_{\Sigma_{m}}^{*}(\delta, \gamma, \lambda ; \beta)$ if it satisfies the following conditions:
$\operatorname{Re}\left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\delta}\left[(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\gamma}\right\}>\beta$
and
$\operatorname{Re}\left\{\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\delta}\left[(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\gamma}\right\}>\beta$,
$(z, w \in U, 0<\alpha \leq 1,0 \leq \delta \leq 1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1, m \in \mathbb{N})$, where the function $g=f^{-1}$ is given by (1.4).

In particular, for one-fold symmetric bi-univalent functions, we denote the class $E_{\Sigma_{1}}^{*}(\delta, \gamma, \lambda ; \beta)=E_{\Sigma}^{*}(\delta, \gamma, \lambda ; \beta)$.

Remark 3.2. It should be remarked that the classes $E_{\Sigma_{m}}^{*}(\delta, \gamma, \lambda ; \beta)$ and $E_{\Sigma}^{*}(\delta, \gamma, \lambda ; \beta)$ are a generalization of wellknown classes consider earlier. These classes are:
(1) For $\delta=\lambda=0$ and $\gamma=1$, the class $E_{\Sigma_{m}}^{*}(\delta, \gamma, \lambda ; \beta)$ reduce to the class $S_{\Sigma_{m}}^{\beta}$ which was considered by Altınkaya and Yalçın [1].
(2) For $\delta=0$ and $\gamma=1$, the class $E_{\Sigma}^{*}(\delta, \gamma, \lambda ; \beta)$ reduce to the class $B_{\Sigma}(\beta, \tau)$ which was introduced by Liu and Wang [9]. (3) For $\delta=\lambda=0$ and $\gamma=1$, the class $E_{\Sigma}^{*}(\delta, \gamma, \lambda ; \beta)$ reduce to the class $S_{\Sigma}^{*}(\beta)$ which was given by Brannan and Taha [3].

Theorem 3.3. Let $f \in E_{\Sigma_{m}}^{*}(\delta, \gamma, \lambda ; \beta)$
$(0 \leq \beta<1,0 \leq \delta \leq 1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1, m \in \mathbb{N})$ be given by (1.3). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{2}{m} \sqrt{\frac{1-\beta}{(1+\delta)(\delta+2 \gamma(1+\lambda m))+\gamma(\gamma-1)(1+\lambda m)^{2}}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{2(m+1)(1-\beta)^{2}}{m^{2}(\delta+\gamma(1+\lambda m))^{2}}+\frac{1-\beta}{m(\delta+\gamma(1+2 \lambda m))} \tag{3.4}
\end{equation*}
$$

Proof. It follows from conditions (3.1) and (3.2) that there exist $p, q \in \mathscr{P}$ such that

$$
\begin{align*}
& \left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\delta}\left[(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\gamma} \\
& \quad=\beta+(1-\beta) p(z) \tag{3.5}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\delta}\left[(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\gamma} \\
& \quad=\beta+(1-\beta) q(w) \tag{3.6}
\end{align*}
$$

where $p(z)$ and $q(w)$ have the forms (2.7) and (2.8), respectively. Equating coefficients (3.5) and (3.6) yields

$$
\begin{equation*}
m(\delta+\gamma(1+\lambda m)) a_{m+1}=(1-\beta) p_{m} \tag{3.7}
\end{equation*}
$$

$$
\begin{align*}
& m\left[2(\delta+\gamma(1+2 \lambda m)) a_{2 m+1}\right. \\
& \left.\quad-\left(\delta+\gamma\left(\lambda m^{2}+2 \lambda m+1\right)\right) a_{m+1}^{2}\right]+\frac{m^{2}}{2}[\delta(\delta-1) \\
& \quad+\gamma(1+\lambda m)(2 \delta+(\gamma-1)(1+\lambda m))] a_{m+1}^{2} \\
& =(1-\beta) p_{2 m} \tag{3.8}
\end{align*}
$$

$$
\begin{equation*}
-m(\delta+\gamma(1+\lambda m)) a_{m+1}=(1-\beta) q_{m} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{align*}
& m\left[\left(\delta(2 m+1)+\gamma\left(3 \lambda m^{2}+2(\lambda+1) m+1\right)\right) a_{m+1}^{2}\right. \\
& \left.\quad-2(\delta+\gamma(1+2 \lambda m)) a_{2 m+1}\right]+\frac{m^{2}}{2}[\delta(\delta-1) \\
& \quad+\gamma(1+\lambda m)(2 \delta+(\gamma-1)(1+\lambda m))] a_{m+1}^{2} \\
& =(1-\beta) q_{2 m} \tag{3.10}
\end{align*}
$$

From (3.7) and (3.9), we get

$$
\begin{equation*}
p_{m}=-q_{m} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2 m^{2}(\delta+\gamma(1+\lambda m))^{2} a_{m+1}^{2}=(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{3.12}
\end{equation*}
$$

Adding (3.8) and (3.10), we obtain

$$
\begin{align*}
& m^{2}\left[(1+\delta)(\delta+2 \gamma(1+\lambda m))+\gamma(\gamma-1)(1+\lambda m)^{2}\right] a_{m+1}^{2} \\
& =(1-\beta)\left(p_{2 m}+q_{2 m}\right) \tag{3.13}
\end{align*}
$$

Therefore, we have
$a_{m+1}^{2}=\frac{(1-\beta)\left(p_{2 m}+q_{2 m}\right)}{m^{2}\left[(1+\delta)(\delta+2 \gamma(1+\lambda m))+\gamma(\gamma-1)(1+\lambda m)^{2}\right]}$.
Applying Lemma 1.1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we obtain

$$
\left|a_{m+1}\right| \leq \frac{2}{m} \sqrt{\frac{1-\beta}{(1+\delta)(\delta+2 \gamma(1+\lambda m))+\gamma(\gamma-1)(1+\lambda m)^{2}}}
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (3.3). In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (3.10) from (3.8), we get

$$
\begin{aligned}
& 2 m(\delta+\gamma(1+2 \lambda m))\left[2 a_{2 m+1}-(m+1) a_{m+1}^{2}\right] \\
& =(1-\beta)\left(p_{2 m}-q_{2 m}\right)
\end{aligned}
$$

or equivalently

$$
a_{2 m+1}=\frac{m+1}{2} a_{m+1}^{2}+\frac{(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{4 m(\delta+\gamma(1+2 \lambda m))}
$$

Upon substituting the value of a_{m+1}^{2} from (3.12), it follows that
$a_{2 m+1}=\frac{(m+1)(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right)}{4 m^{2}(\delta+\gamma(1+\lambda m))^{2}}+\frac{(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{4 m(\delta+\gamma(1+2 \lambda m))}$.
Applying Lemma 1.1 once again for the coefficients $p_{m}, p_{2 m}$, q_{m} and $q_{2 m}$, we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{2(m+1)(1-\beta)^{2}}{m^{2}(\delta+\gamma(1+\lambda m))^{2}}+\frac{1-\beta}{m(\delta+\gamma(1+2 \lambda m))}
$$

which completes the proof of Theorem 3.3.
For one-fold symmetric bi-univalent functions, Theorem 3.3 reduce to the following corollary:

Corollary 3.4. Let $f \in E_{\Sigma}^{*}(\delta, \gamma, \lambda ; \beta)$,
($0 \leq \beta<1,0 \leq \delta \leq 1,0 \leq \gamma \leq 1,0 \leq \lambda \leq 1$) be given by (1.1). Then

$$
\left|a_{2}\right| \leq 2 \sqrt{\frac{1-\beta}{(1+\delta)(\delta+2 \gamma(1+\lambda))+\gamma(\gamma-1)(1+\lambda)^{2}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(\delta+\gamma(1+\lambda))^{2}}+\frac{1-\beta}{\delta+\gamma(1+2 \lambda)}
$$

References

${ }^{[1]}$ Ş. Altınkaya and S. Yalçın, Coefficient bounds for certain subclasses of m -fold symmetric bi-univalent functions, Journal of Mathematics, Art. ID 241683 (2015), 1-5.
${ }^{[2]}$ Ş. Altınkaya and S. Yalçın, On some subclasses of mfold symmetric bi-univalent functions, Commun. Fac. Sci. Univ. Ank. Series Al, 67(1)(2018), 29-36.
${ }^{\text {[3] D. A. Brannan and T. S. Taha, On Some classes of bi- }}$ univalent functions, Studia Univ. Babes-Bolyai Math., 31(2)(1986), 70-77.
${ }^{\text {[4] P. L. Duren, Univalent Functions, Grundlehren der Math- }}$ ematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
${ }^{[5]}$ S. S. Eker, Coefficient bounds for subclasses of mfold symmetric bi-univalent functions, Turk. J. Math., 40(2016), 641-646.
${ }^{[6]}$ B. A. Frasin and M. K. Aouf, New subclasses of biunivalent functions, Appl. Math. Lett., 24(2011), 15691573.
${ }^{[7]}$ S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20(2012), 179-182.
${ }^{[8]} \mathrm{W}$. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105(1989), 324-329.
${ }^{[9]}$ X. F. Li and A. P. Wang, Two new subclasses of biunivalent functions, Int. Math. Forum, 7(2012), 14951504.
${ }^{[10]}$ H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23(2015), 242-246.
${ }^{[11]}$ H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(5)(2013), 831842.
${ }^{[12]}$ H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845.
${ }^{[13]}$ H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia, 36B(3)(2016), 863-871.
${ }^{[14]}$ H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
${ }^{[15]}$ H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m -fold symmetric bi-univalent functions, Tbilisi Math. J., 7(2)(2014), 1-10.
${ }^{[16]}$ H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö functional problems for some subclasses of m -fold symmetric bi-univalent functions, J. Math. Inequal., 10(2016), 1063-1092.
${ }^{[17]}$ A. K. Wanas and A. H. Majeed, Certain new subclasses of analytic and m-fold symmetric bi-univalent functions, Applied Mathematics E-Notes, 18(2018), 178-188.
$\star \star \star \star \star \star \star \star *$
ISSN(P):2319-3786
Malaya Journal of Matematik
ISSN(O):2321-5666
** 1 * $\star \star \star \star \star$

