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Abstract

In this paper, we investigate a nonparametric robust estimation for spatial regression. More precisely,
given a strictly stationary random field Zi = (Xi, Yi), i ∈ NN , we consider a family of robust nonparametric
estimators for a regression function based on the kernel method. We establish a p-mean consistency results of
the kernel estimator under some conditions.
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1 Introduction

In the last years spatial statistics has been widely applied in diverse areas such as climatology, epidemiol-
ogy, agronomy, meteorology, econometrics, image processing, etc. There is a vast literature on spatial models,
see, for example, the books by Cressie (1991), Guyon (1995), Anselin and Florax (1995), Banerjee, Carlin and
Gelfand (2004), Gelfand et al. (2010) and Cressie and Wikle (2011) for broad discussion and applications.
However, the nonparametric treatment of such data has so for being limited. The first results were obtained
by Tran (1990). For relevant works on the nonparametric modelization of spatial data, see Biau and Cadre
(2004), Carbon et al. (2007), Li et al. (2009). In this paper, we consider the problem of the estimation of the
regression function as the analysis tool of such kind of data. Noting that, this model is very interesting in
practice. It is used as an alternative approach to classical methods, in particular when the data are affected by
the presence of outliers. There is an extensive literature on robust estimation (see, for instance Huber (1964),
Robinson (1984), Collomb and Härdle (1986), Fan et al. (1994) for previous results and Boente et al. (2009)
for recent advances and references). The first results concerning the nonparametric robust estimation in func-
tional statistic were obtained by Azzedine et al. (2008). They studied the almost complete convergence of
robust estimators based on a kernel method, considering independent observations. Crambes et al. (2008)
stated the convergence in Lp norm in both cases (i.i.d and strong mixing). While the asymptotic normality
of these estimators is proved by Attouch et al. (2010). The main goal of this paper is to study the robust
nonparametric, we study Lp mean consistency results of a nonparametric estimation of the spatial regression
by using the robust approach.

The paper is organized as follows. We present our model and estimator in Section 2. Section 3 is devoted
to assumptions. The p-mean consistency of the robust nonparametric estimators is stated in Section 4. Proofs
are provided in the appendix.

2 The model

Consider Zi = (Xi, Yi), i ∈ NN be a Rd × R-valued measurable and strictly stationary spatial process,
defined on a probability space (Ω,A, ). We assume that the process under study (Zi) is observed over a
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rectangular domain In =
{

i = (i1, ..., iN) ∈ NN , 1 ≤ ik ≤ nk, k = 1, ..., N}, n = (n1, ..., nN) ∈ NN . A point i

will be referred to as a site. We will write n → ∞ if min{nk} → ∞ and |
nj

nk
| < C for a constant C such that

0 < C < ∞ for all j, k such that 1 ≤ j, k ≤ N. For n = (n1, ..., nN) ∈ NN , we set n̂ = n1 × ... × nN . The
nonparametric model studied in this paper, denoted by θx, is implicitly defined, for all vectors x ∈ Rd, as a
zero with respect to (w.r.t.) t ∈ R of the equation

Ψ(x, t) = [ψx(Yi, t)|Xi = x] = 0

where ψx is a real-valued integrable function satisfying some regularity conditions to be stated below. In what
follows, we suppose that, for all x ∈ Rd, θx exists and is unique (see, for instance, Boente and Fraiman (1989)).

For all (x, t) ∈ Rd+1, we propose a nonparametric estimator of Ψ(x, t) given by

Ψ̂(x, t) =
∑i∈In K(h−1(x − Xi))ψx(Yi, t)

∑i∈In K(h−1(x − Xi))
,

with the convention
0
0

= 0, where K is a kernel and h = hn is a sequence of positive real numbers. A

natural estimator θ̂x of θx is a zero w.r.t. t of the equation

Ψ̂(x, t) = 0.

In this work, we will assume that the random filed (Zi, i ∈ NN) satisfies the following mixing condition:

There exists a function ϕ (t) ↓ 0 quand t → ∞, such that
∀ E, E

′
subsets of NNwith finite cardinals

α
(
B (E) , B

(
E
′
))

= sup
B∈B(E), C∈B(E′ )

| (B ∩ C)− (B) (C)|

≤ s
(

Card (E) , Card
(

E
′
))

ϕ
(

dist
(

E, E
′
))

,

(2.1)

where B (E)(resp. B
(

E
′
)

) denotes the Borel σ-field generated by (Zi, i ∈ E) (resp.
(

Zi, i ∈ E
′
)

), Card(E)

(resp. Card
(

E
′
)

) the cardinality of E (resp. E
′
), dist

(
E, E

′
)

the Euclidean distance between E and E
′

and

s : N2 → R+ is a symmetric positive function nondecreasing in each variable such that either

s (n, m) ≤ C min (n, m) , ∀n, m ∈ N (2.2)

or
s (n, m) ≤ C (n + m + 1)β̃ , ∀n, m ∈ N (2.3)

for some β̃ ≥ 1 and some C > 0.We assume also that the process satisfies a polynomial mixing condition:

ϕ(t) ≤ Ct−θ , θ > 0, t ∈ R. (2.4)

3 Assumptions

From now on, let x stand for a fixed point in Rd and we assume that the Zi’s have the same distribution
with (X, Y). Moreover, we set f (·) to be the density of X and h(·|x) the conditional density of Y given X = x.
Consider the following hypotheses.

(H1) The functions f and h such that:

(i) The density f (.) has continuous derivative in the neighborhood of x with f (x) > 0

(ii) For all t ∈ R, the function h(t/.) has continuous derivative in the neighborhood of x.
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(iii) The following functions, defined for (u, t) ∈ Rd+1 by
g(u, t) = (ψx(Y, t)/X = u) f (u)
λ(u, t) = (ψ2

x(Y, t)/X = u) f (u) and
Γ(u, t) = ( ∂ψx

∂t (Y, t)/X = u) f (u)
(3.5)

have, also, continuous derivative w.r.t. the first component.

(H2) The function ψx is continuous, differentiable, strictly monotone bounded w.r.t. the second component

and its derivative
∂ψx(y, t)

∂t
is bounded and continuous at θx uniformly in y.

(H3) The joint probability density fi,j of Xi and Xj exists and satisfies

| fi,j(u, v)− f (u) f (v)| ≤ C

for some constant C and for all u, v,i and j.

(H4) The mixing coefficient defined in (2.2) satisfies, for some q > 2 and some integer r ≥ 1

lim
T→∞

Ta
∞

∑
i=T

tNr−1(ϕ(t))qr−2/qr = 0,

for some a ≥ (rq − 2)Nr/(2 + rq − 4r) with q > (4r − 2)/r.

(H5) The probability kernel function K is a symmetric and bounded density function on Rd with compact
support, CK, and finite variance such that
|K(x)− K(y)| ≤ M‖x − y‖ for x, y ∈ CK and 0 < M < ∞.

(H6) The individual hn satisfy

lim
n→∞

h = 0 and lim inf
n→∞

n̂h(2(r−1)a+N(qr−2))/(a+N)q > 0.

4 Main results

Let p ∈ [1, +∞[. In this section we state a pointwise p-mean consistency result for the estimator θ̂x. We start
with the case where p = 2 , we give precise asymptotic evaluations of the quadratic error of this estimator.

4.1 Mean square error

Theorem 4.1. If the assumptions (H1)-(H6) are satisfied and if Γ(x, θx) 6= 0 then

(θ̂x − θx)2 = B2(x, θx)h4 +
A(x, θx)

n̂hd + O
(

1
n̂hd

)

where A(x, θx) =
λ(x, θx)
Γ(x, θx)

∫
K2(t)dt and B(x, θx) =

g(2)(x, θx)
Γ(x, θx)

∫
t2K2(t)dt

Before giving the proof, let us introduce some notation. For y ∈ R, let

ĝ(x, t) =
1

n̂hd ∑
i∈In

K(h−1(x − Xi))ψx(Yi, t) and f̂ (x) =
1

n̂hd ∑
i∈In

K(h−1(x − Xi)).

So that if f̂ (x) 6= 0 we have

Ψ̂(x, t) =
ĝ(x, t)
f̂ (x)
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Proof.
A Taylor expansion of the function ĝ(x, .) in a neighborhood of θx gives:

ĝ(x, θ̂x) = ĝ(x, θx) + (θ̂x − θx)
∂ĝ
∂t

(x, θ∗xn)

where θ∗xn is between θ̂x and θx such that

ĝ(x, θ̂x) = g(x, θx) = 0.

Thus, we have under the case where f̂ (x) 6= 0

θ̂x − θx =
−ĝ(x, θx)
∂ĝ
∂t

(x, θ∗xn)
.

We have by lemma 6 of Gheriballah et al (2010),

∂ĝ
∂t

(x, θ∗xn)− Γ(x, θx)→0 almost completely ( a.co.)

It follows that

(θ̂x − θx)2 =
1

Γ(x, θx)
[(ĝ(x, θx))2] + o([(ĝ(x, θx))2]) + ( f̂ (x) = 0)

Now, Theorem 4.1 is a consequence of the following intermediate results, whose proofs are given in the
Appendix.

Lemma 4.1. Under Hypotheses (H1) and (H2)-(H4), we have,

Var
[(

ĝ(x, θx)
)]

=
A(x, θx)

n̂hd + O
(

1
n̂hd

)
.

Lemma 4.2. Under Hypotheses (H1) and (H2)-(H4), we have,[(
ĝ(x, θx)

)]
= B(x, θx)h2 + o(h2).

Lemma 4.3. Under the conditions of Theorem 4.1, we have

( f̂ (x) = 0) = O
(

1
n̂hd

)p
.

4.2 Convergence in Lp norm

Theorem 4.2. Under conditions (H1)-(H6) and if Γ(x, θx) 6= 0 we get

‖θ̂x − θx‖p = O
(

h2
)

+ O
(

1
n̂hd

)1/2

where ‖.‖p is the norm Lp

Proof. We prove the case where p = 2r (for all r ∈ N∗) and we use the Holder inequality for lower values
of p. Moreover, we use the same analytical arguments as those used in previous theorem, we have

‖θ̂x − θx‖2r ≤ C‖ĝ(x, θx)‖2r + ‖o( [ĝ(x, θx)])‖2r. (4.6)

Furthermore, we write

‖ĝ(x, θx)‖2r =
1

n̂hd

( ∑
i∈In

ξi

)2r
1/2r

.

where ξi = Kiψx(Yi, θx) = Ki[ψx(Yi, θx)− [ψx(Yi, θx)/Xi = x]] with Ki = K(h−1(x − Xi)).
Therefore, the first term of (4.6) is a consequence of the application of Theorem 2.2 of (Gao et al. 2008, P. 689)
on ξi while the second one is given in Lemma 4.2.
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5 Appendix

Proof of Lemma 4.1. Let ∆i(x) = K(h−1(x − Xi))ψx(Yi, θx), then

Var
(

ĝ(x, θx)
)

= Var

(
1

n̂hd ∑
i∈In

(
Kiψx(Yi, θx)

))

=
1

n̂2h2d Var
(

∑
i∈In

∆i

)
=

1
n̂h2d Var(∆i) +

1
n̂2h2d ∑

i 6=j∈In

∣∣Cov(∆i, ∆j)
∣∣

Concerning the variance term, we have

Var(∆i) = [∆i]2 − 2[∆i]

By the stationarity of the observations (Xi, Yi) we get, firstly,

[∆i] = [K(h−1(x − X1))ψx(Y1, θx)]

= [K(h−1(x − X1))(ψx(Y1, θx)|X = X1)]

=
∫

Rd
K(h−1(x − z))(ψx(Y1, θx)|X = X1) f (z)dz.

Next, by a classical change of variables, u = h−1(x − z) we write

[∆i] = hd
∫

Rd
K(u)g(x − hu, θx)du

and by the Taylor expansion, under (H1), we obtain

[∆i] = hdg(x, θx)
∫

Rd
K(u)du + o(hd) = o(hd) since g(x, θx) = 0

Secondly, by a similar arguments, we have

[∆i]2 = [K2(h−1(x − X1))ψ2
x(Y1, θx)]

= [K2(h−1(x − X1))(ψ2
x(Y1, θx)|X = X1)]

=
∫

Rd
K2(h−1(x − z))(ψ2

x(Y1, θx)|X1 = z) f (z)dz

= hdλ(x, θx)
∫

Rd
K2(u)du + o(hd).

Hence,

Var(∆i) = A(x, θx)hd + o(hd). (5.7)

Now, to evaluate the second part, denoted by Rn = ∑
i 6=j∈In

∣∣Cov(∆i(x), ∆j(x))
∣∣, we divide the rectangular

region In into two sets.

S1 = {i, j ∈ In : 0 < ‖i − j‖ ≤ cn}, S2 = {i, j ∈ In : ‖i − j‖ > cn},

where cn is a real sequence that converges to infinity and will be made precise later:

Rn = ∑
(i,j)∈S1

∣∣Cov
(
∆i(x), ∆j(x)

)∣∣+ ∑
(i,j)∈S2

∣∣Cov
(
∆i(x), ∆j(x)

)∣∣
= R1

n + R2
n.
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On the one hand, on S1 we have, under (H2):∣∣Cov
(
∆i(x), ∆j(x)

)∣∣ ≤ C
∣∣ [KiKj

]
− [Ki]

[
Kj
]∣∣

≤ C
∫

Rd

∫
Rd

K(h−1(x − v))| fij(u, v)− f (u, v)|dudv

≤ C
(∫

Rd
K(h−1(x − v))du

)2

≤ Ch2d.

R1
n = ∑

(i,j)∈S1

∣∣ [KiKj
]
− [Ki]

[
Kj
]∣∣

≤ Cn̂cN
n h2d.

On the other hand, on S2 we apply Lemma 2.1(ii) of Tran(1990) and we deduce that∣∣Cov
(
∆i, ∆j

)∣∣ ≤ Cϕ (‖i − j‖) . (5.8)

By (5.8) we have for some v > N

R2
n = ∑

(i,j)∈S2

∣∣Cov
(
∆i, ∆j

)∣∣ ≤ C ∑
(i,j)∈S2

ϕ (‖i − j‖) ≤ Cn̂ ∑
i:‖i‖≥cn

ϕ (‖i‖)

≤ Cn̂c−v
n ∑

i:‖i‖≥cn

‖i‖v ϕ (‖i‖) .

Taking cn = h−d/v, we see

R2
n ≤ Cn̂hd ∑

i:‖i‖≥cn

‖i‖v ϕ (‖i‖)

≤ Cn̂hd ∑
i:‖i‖≥cn

‖i‖v ϕ (‖i‖) .

Employing (H4) and the fact that a−1 > 2 choose v positive numbers such that

∑
i
‖i‖v ϕ (‖i‖) < ∞ and v > N.

Which allows us to write
R2

n = o(n̂hd) and R1
n = o(n̂hd)

Finally

Rn = o
(

1
n̂hd

)
.

Combining the last result together with equation (5.7) we derive

Var
(

ĝ(x, θx)
)

=
A(x, θx)

n̂hd + o
(

1
n̂hd

)
Proof of Lemma 4.2. Keeping the notation of previous lemma, we write

[
ĝ(x, θx)

]
=

[
1

n̂hd ∑
i∈In

(
Kiψx(Yi, θx)

)]

=
1
hd

[
∆i

]
=

1
hd

∫
Rd

K(h−1(x − z))(ψx(Y1, θx)/X1 = z) f (z)dz.
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Next, by the classical change of variables, u = h−1(x − z) we have

1
hd [∆i] =

∫
Rd

K(u)g(x − hu, θx)du

Using a Taylor expansion of order two , under (H1), we obtain[
ĝ(x, θx)

]
= B(x, θx)h2 + o(hd) = o(hd).

Proof of Lemma 4.3. We have

( f̂ (x) = 0) = ( f̂ (x) ≤ f (x)− ε)
≤ (| f̂ (x)− f (x)| ≥ ε)

The Markov’s inequality allows to get, for any p > 0,

( f̂ (x) = 0) ≤ (| f̂ (x)− f (x)|)p

εp

This yields the proof.
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