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Abstract

In the recent paper, we give a formal solution of a certain one dimensional time fractional homogeneous
conduction heat equation. This equation and its solution impose a rise to new forms of generalized fractional
calculus. The new solution involves the Lauricella hypergeometric function of the third type. This type of
functions is utilized to explain the probability of thermal transmission in random media. We introduce the
analytic form of the thermal distribution related to such Lauricella function.
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1 Introduction

The fractional heat conduction equation is studied by Povstenko in 2004 [1]. He proposed a quasi-static
uncoupled theory of thermoelasticity based on the heat conduction equation with a time-fractional derivative.
Later he focused on the heat conduction with time and space fractional derivatives and on the theory of
thermal stresses based on this equation [2, 3]. Recently, Povstenko [4] obtained a solution of these equations
by applying Laplace and Weber integral transforms. Furthermore, he formulated fundamental solutions to
the central symmetric space-time fractional heat conduction equation and associated thermal stresses [5].

Newly, Li et. al., described heat conduction in fractal media, such as polar bear hair, wool fibers and goose
down. By employing the modified Riemann-Liouville derivative, a fractional complex transform is used to
convert time-fractional heat conduction equations into ordinary differential equations, therefore, precise so-
lutions can be easily obtained [6]. At the same time, the authors generalized the fractional complex transform
to obtain accurate solutions for time-fractional differential equations with the modified Riemann-Liouville
derivative [7]. Yang and Baleanu posed a local fractional variational iteration method for processing the local
fractional heat conduction equation accruing in fractal heat transfer [8]. Sherief and Latief created the problem
for a half-space formed of a material with variable thermal conductivity [9].

In this work, we utilize a Lauricella type function to describe the time evolution of the fractional heat equation.
We find the analytic form of these equations related to such Lauricella function. The fractional calculus is taken
in sense of the Caputo derivative. The advantage of Caputo fractional derivative is that the derivative of a
constant is zero, whereas for the Riemann- Liouville is not. Moreover, Caputo’s derivative requests higher
conditions of regularity for differentiability which allows us to geometrize various physical problems with
fractional order.
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Finally, the advantage of Caputo fractional derivative is that the fractional differential equations with Ca-
puto fractional derivative use the initial conditions (including the mixed boundary conditions) on the same
character as for the integer-order differential equations [10].

2 Calculus of arbitrary order

This section concerns with some preliminaries and notations regarding the Caputo operator. The Caputo
fractional derivative strongly poses the physical interpretation of the initial conditions required for the initial
value problems involving fractional differential equations.

Definition 2.1 The fractional order integral of the function h of order α > 0 is defined by

Iα
a h(t) =

∫ t

℘

(t− τ)α−1

Γ(α)
h(τ)dτ.

When ℘ = 0, we write Iα
℘h(t) = h(t) ∗ ψα(t), where (∗) denoted the convolution product, ψα(t) = tα−1

Γ(α) , t > 0
and ψα(t) = 0, t ≤ 0 and ψα → δ(t) as α → 0 where δ(t) is the delta function.

Definition 2.2 The Riemann-Liouville fractional order derivative of the function h of order 0 ≤ α < 1 is
defined by

Dα
℘h(t) =

d
dt

∫ t

℘

(t− τ)−α

Γ(1− α)
h(τ)dτ =

d
dt

I1−α
a h(t).

Remark 2.1 From Definition 2.1 and Definition 2.2, ℘ = 0, we have

Dαtν =
Γ(ν + 1)

Γ(ν− α + 1)
tν−α, ν > −1; 0 < α < 1

and

Iαtν =
Γ(ν + 1)

Γ(ν + α + 1)
tν+α, ν > −1; α > 0.

Definition 2.3 The Caputo fractional derivative of order α > 0 is defined, for a analytic function h(t) by

cDαh(t) :=
1

Γ(n− α)

∫ t

0

h(n)(ζ)
(t− ζ)α−n+1 dζ,

where n = [α] + 1, (the notation [α] stands for the largest integer not greater than α ). In the sequel, we shall
use the notation

cDαh(t) :=
∂αh(t)

∂tα
.

3 Generalized heat equation

Consider the two dimensional time fractional homogeneous heat conduction equation of the form

∂αT
∂tα

= δ(Txx + Tyy) (3.1)

(δ > 0, t > 0, 0 < x, y < 1, 0 < α ≤ 1),

where:

• T = T(x, y, t) is temperature as a function of space and time

• ∂αT
∂tα

is the rate of change of temperature at a point over time

• δ is the thermal diffusivity
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By using the fractional complex transform [7],

ζ =
φtα

Γ(1 + α)
+ ψx + κy,

it was shown that the exact solution of (3.1) can be expressed as

T(x, y, t) = c1 + c2 exp
( φψx

δ(ψ2 + κ2)
+

φκy
δ(ψ2 + κ2)

+
φ2tα

δΓ(1 + α)(ψ2 + κ2)
)
.

For special case we may have a solution of the form

T(x, y, t) = exp
(
− φψx

δ(ψ2 + κ2)
− φκy

δ(ψ2 + κ2)
− φ2tα

δΓ(1 + α)(ψ2 + κ2)
)
. (3.2)

In [11], the authors generalized the fractional probability of extinction, by applying the Caputo fractional
derivative of one parameter as follows:

Pµ(k, z) =
(νzµ)k

k!

∞

∑
n=0

(n + k)!
n!

(−νzµ)n

Γ(µ(n + k) + 1)
(3.3)

and the probability of transmission

Pµ(0, z) =
∞

∑
n=0

(−νz)n

Γ(µn + 1)
= Eµ(−νzµ),

where

Eα(z) =
∞

∑
n=0

zn

Γ(1 + nα)

is the Mittag-Leffler function and its popularity increased significantly due to its important role in applications
and fractional of arbitrary orders related differential and integral equations of fractional order, solutions of
problems of control theory, fractional viscoelastic models, diffusion theory, continuum mechanics and fractals
[10].

Newly, numerical routines for Mittag-Leffler functions have been developed, e.g., by Freed et al. [12], Gorenflo
et al. [13] (with MATHEMATICA), Podlubny [14] (with MATLAB), Seybold and Hilfer [15].

Here, we generalize probability of extinction, using the fractional Poisson process of three variables as follows:

Pµ,β,σ(k, z, w, u) =
(νz)k

k!
(ρw)k

k!
(σu)k

k!

×
∞

∑
n=0

∞

∑
j=0

∞

∑
m=0

(n + k)!
n!

(j + k)!
j!

× (m + k)!
m!

(−νzµ)n

Γ(µ(n + k) + 1)
(−ρwβ)j

Γ(β(j + k) + 1)

× (−σuγ)m

Γ(γ(m + k) + 1)
;

(3.4)

thus the 3-D probability of transmission becomes

Pµ,β,σ(0, z, w, u) =
∞

∑
n=0

∞

∑
j=0

∞

∑
m=0

(−νzµ)n

Γ(µn + 1)
(−ρwβ)j

Γ(βj + 1)
(−σuγ)m

Γ(γm + 1)

= Eµ,β,γ(−νzµ,−ρwβ,−σuγ),

where Eµ,β,γ(−νzµ,−ρwβ,−σuγ) is a multi-index Mittag-Leffler function, which can be found in [10].



46 R.W.Ibrahim / An application of Lauricella ...

Our approach depends on the Lauricella hypergeometric function of third type of three variables, which can
be defined by

F(3)
A (a, b1, b2, b3, c1, c2, c3; x1, x2, x3) =

∞

∑
i1=0

∞

∑
i2=0

∞

∑
i3=0

(a)i1+i2+i3(b1)i1(b2)i2(b3)i3
(c1)i1(c2)i2(c3)i3 i1! i2! i3!

xi1
1 xi2

2 xi3
3

for |x1|+ |x2|+ |x3| < 1 and

F(3)
B (a1, a2, a3, b1, b2, b3, c; x1, x2, x3) =

∞

∑
i1=0

∞

∑
i2=0

∞

∑
i3=0

(a1)i1(a2)i2(a3)i3(b1)i1(b2)i2(b3)i3
(c)i1+i2+i3 i1! i2! i3!

xi1
1 xi2

2 xi3
3

for |x1| < 1, |x2| < 1, |x3| < 1 and

F(3)
C (a, b, c1, c2, c3; x1, x2, x3) =

∞

∑
i1=0

∞

∑
i2=0

∞

∑
i3=0

(a)i1+i2+i3(b)i1+i2+i3
(c1)i1(c2)i2(c3)i3 i1! i2! i3!

xi1
1 xi2

2 xi3
3

for |x1| 1
2 + |x2| 1

2 + |x3| 1
2 < 1 and

F(3)
D (a, b1, b2, b3, c; x1, x2, x3) =

∞

∑
i1=0

∞

∑
i2=0

∞

∑
i3=0

(a)i1+i2+i3(b1)i1(b2)i2(b3)i3
(c)i1+i2+i3 i1! i2! i3!

xi1
1 xi2

2 xi3
3 .

The notation (x)n refers to the Pochhammer symbol

(x)n = x(x + 1)(x + 2) · · · (x + n− 1)

or in gamma function

(x)n =
Γ(x + n)

Γ(x)
, (x)n =

(−1)nΓ(1− x)
Γ(1− x − n)

.

For special case, we obtain

F(3)
D (α, c, c, c, c;−ψ̂x,−κ̂y,−φ̂tα) =

∞

∑
i1=0

∞

∑
i2=0

∞

∑
i3=0

(α)i1+i2+i3
(−ψ̂x)i1(−κ̂y)i2(−φ̂tα)i3

i1! i2! i3!
,

where ψ̂, κ̂ and φ̂ are the coefficients in Eq.(3.2).

Now we proceed to define a Lauricella hypergeometric functions in the positive semi-space in order to intro-
duce the probability of heat distribution. For non negative variables X, Y, T, we may describe the following
distribution:

Ω(x, y, t) := P(X ≤ x, Y ≤ y, T ≤ t) = 1− F(3)
D (α, c, c, c, c;−ψ̂x,−κ̂y,−φ̂t1/α), (3.5)

(t, x, y ≥ 0, α ∈ (0, 1]).

Also we define

Θ(x, y, t) := P(X > x, Y > y, T > t) = 1−Ω(x, y, t)

:= F(3)
D (α, c, c, c, c;−ψ̂x,−κ̂y,−φ̂t1/α).

(3.6)

Physically, the above equations correspond to the probability of heat transmission. We impose the following
result

Theorem 3.1 Assume Ω and Θ as in (3.5) and (3.6) respectively. Then Eq.(3.1) has a solution in terms of
Lauricella hypergeometric functions.
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Proof. The probability density function corresponding to (3.1) can be written by

ω(x, y, t) =
∂3

∂x∂y∂t
Ω(x, y, t)

with ∫
D

ω(x, y, t)dxdydt = 1, D ∈ R3.

The probability of the transmission, during time t in 2-dimensional space (x, y), of object can be related to
(x′, y′, t′) to be between (x, y, t) and (x + dx, y + dy, t + dt). It is read by

∂3P(x, y, t) = |∂
3Θ(x, y, t)
∂x∂y∂t

|(∂x∂y∂t).

Thus we pose that

∂3Θ(x, y, t)
∂x∂y∂t

(∂x∂y∂t) =
∂

∂x∂y∂t

( ∞

∑
i1=0

∞

∑
i2=0

∞

∑
i3=0

(α)i1+i2+i3

× (−ψ̂x)i1(−κ̂y)i2(−φ̂t1/α)i3

i1! i2! i3!

)
∂x∂y∂t

= − ψ̂κ̂φ̂ t
1
α −1(α)3

α

∞

∑
i1=0

∞

∑
i2=0

∞

∑
i3=0

(α)i1+i2+i3

× (−ψ̂x)i1(−κ̂y)i2(−φ̂t1/α)i3

i1! i2! i3!
∂x∂y∂t

= −ψ̂κ̂φ̂ t
1
α −1(α + 1)2 F(3)

D (α, c, c, c, c;−ψ̂x,−κ̂y,−φ̂t1/α) ∂x∂y∂t

(3.7)

Now for a function f (x, y, z) has a series expansion of the form

f (x, y, z) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

λ1(i)λ2(j)λ3(k)
(−1)ixi

i!
(−1)jyj

j!
(−1)kzk

k!
,

with
λ1(0) 6= 0, λ2(0) 6= 0, λ3(0) 6= 0,

then

∫ ∞

0

∫ ∞

0

∫ ∞

0
xα1−1yα2−1zα3−1 f (x, y, z)dxdydz =

Γ(α1)Γ(α2)Γ(α3)λ1(−α1)λ2(−α2)λ3(−α3).
(3.8)

The last assertion is called the generalized Ramanujan Master Theorem. By applying (3.8) in (3.7), where

λ1 = (α)i1 , λ2 = (α)i2 , λ3 = (α)i3

and that

λ1(0) = 1, λ2(0) = 1, λ3(0) = 1,

we have a solution of (3.1) which is in terms of Lauricella hypergeometric functions.

4 Conclusion

Distributions of barriers do not elaborate in some physical states, e.g. in media with locative interconnec-
tions between particles. In this work, we utilized the 3- D fractional derivative Poisson process which can be
viewed as a utility tool to put into account long domain interconnections between particles in the medium.
In addition, we applied the generalized Lauricella hypergeometric functions to give various methods of the
probability of the heat transmission, depending on the renewal process. Our main result showed a solution
of 2- D fractional heat equation in terms of the Lauricella hypergeometric functions based on the generalized
Ramanujan Master Theorem.
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