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Abstract

In this paper, the authors has proved the solution of a new type of functional equation

f

(
k

∑
j=1

jp xj

)
=

k

∑
j=1

(
jp f (xj)

)
, k, p ≥ 1

which is originating from sum of higher powers of an arithmetic progression. Its generalized Ulam - Hy-
ers stability in Banach space using direct and fixed point methods are investigated. An application of this
functional equation is also studied.
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1 Introduction

During the last seven decades, the perturbation problems of several functional equations have been ex-
tensively investigated by a number of authors [1, 2, 12, 13, 20, 21, 26, 28] . The terminology generalized
Ulam - Hyers stability originates from these historical backgrounds. These terminologies are also applied to
the case of other functional equations. For more detailed definitions of such terminologies, one can refer to
[5, 8, 9, 10, 14, 15, 16, 22, 23, 24, 27].

One of the most famous functional equations is the additive functional equation

f (x + y) = f (x) + f (y). (1.1)

In 1821, it was first solved by A.L. Cauchy in the class of continuous real-valued functions. It is often called
an additive Cauchy functional equation in honor of Cauchy. The theory of additive functional equations is
frequently applied to the development of theories of other functional equations. Moreover, the properties of
additive functional equations are powerful tools in almost every field of natural and social sciences. Every
solution of the additive functional equation (1.1) is called an additive function.
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The solution and stability of the following various additive functional equations

f (2x − y) + f (x − 2y) = 3 f (x)− 3 f (y), (1.2)

f (x + y− 2z) + f (2x + 2y− z) = 3 f (x) + 3 f (y)− 3 f (z), (1.3)

f (m(x + y)− 2mz) + f (2m(x + y)−mz) = 3m[ f (x) + f (y)− f (z)] m ≥ 1, (1.4)

f

(
a

n−1

∑
i=1

xi − 2axn

)
+ f

(
2a

n−1

∑
i=1

xi − axn

)
= 3a

(
n−1

∑
i=1

f (xi)− f (xn)

)
n ≥ 3, (1.5)

f (2x ± y± z) = f (x ± y) + f (x ± z) (1.6)

f (qx ± y± z) = f (x ± y) + f (x ± z) + (q− 2) f (x), q ≥ 2 (1.7)

were discussed by D.O. Lee [11], K. Ravi, M. Arunkumar [25], M. Arunkumar [3, 4].
Also M. Arunkumar et. al., [7] investigated the generalized Ulam-Hyers stability of a functional equation

f (y) =
f (y + z) + f (y− z)

2

which is originating from arithmetic mean of consecutive terms of an arithmetic progression using direct and
fixed point methods. Infact M. Arunkumar et. al.,[6] has proved the solution and generalized Ulam - Hyers -
Rassias stability of a n dimensional additive functional equation

f (x) =
n

∑
`=1

(
f (x + `y`) + f (x − `y`)

2 `

)
where n is a positive integer, which is originating from arithmetic mean of n consecutive terms of an arithmetic
progression.

In this paper, the authors established the solution and the generalized Ulam - Hyers stability of a new type
of additive functional equation

f

(
k

∑
j=1

jp xj

)
=

k

∑
j=1

(
jp f (xj)

)
, k, p ≥ 1 (1.8)

which is originating from sum of higher powers of an arithmetic progression. An application of this functional
equation is also studied.

In Section 2, some basic preliminaries about difference operator is discussed. In Section 3, the general
solution of the functional equation (1.8) is given. In Section 4 and 5, the generalized Ulam - Hyers stability
of the additive functional equation (1.8) using direct and fixed point methods are respectively proved. An
application of the additive functional equation (1.8) is discussed in Section 6.

2 Basic preliminaries on difference operator

Definition 2.1. [18] If {yk} is a sequence of numbers, then we define the difference operator ∆ as

∆(yk) = yk+1 − yk. (2.1)

Lemma 2.1. [18] From (2.1) and the shift relation, E(yk) = yk+1, we obtain

E = ∆ + 1. (2.2)

Definition 2.2. [18] If n is positive integer, then the positive polynomial factorial is defined as

k(n) = k(k− 1)(k− 2)...(k− (n− 1)). (2.3)

Lemma 2.2. [18] If Sn
r ’s are the Stirling numbers of second kind, then

kn =
n

∑
r=1

Sn
r k(r). (2.4)



M. Arunkumar et al. / Functional equation originating... 51

Definition 2.3. [18] For the positive integer n, the inverse operators are defined as if

∆n(zk) = yk, then zk = ∆−n(yk). (2.5)

Lemma 2.3. [18] If m, k are positive integers and k > m, then

∆−1k(m) =
k(m+1)

(m + 1)
+ c, where c is constant. (2.6)

Theorem 2.1. [18] If k is positive integer, then

∆−1(yk) =
k

∑
r=1

y(k−r) + c, where c is constant. (2.7)

Theorem 2.2. If k and p are positive integers then

p

∑
r=1

(k + 1− r)p =
n

∑
r=1

Sn
r k(p) [k + 1](r+1)

[r + 1]
. (2.8)

Proof. The proof follows by Lemmas 2.2, 2.3 and Theorem 2.1.

3 General solution of the functional equation(1.8)

In this section, the general solution of the functional equation (1.8) is given.

Theorem 3.3. Let X and Y be real vector spaces. The mapping f : X → Y satisfies the functional equation (1.1) for all
x, y ∈ X if and only if f : X → Y satisfies the functional equation (1.8) for all x1, x2, · · · , xk ∈ X.

Proof. The proof follows by the additive property.

Hereafter though out this paper, let us consider X and Y to be a normed space and a Banach space, respec-
tively.

4 Stability results: Direct method

In this section, the generalized Hyers - Ulam - Rassias stability of the additive functional equation (1.8) is
provided.

Theorem 4.4. Let i ∈ {−1, 1} and α : Xk → [0, ∞) be a function such that

∞

∑
t=0

α
[
℘tix1, ℘tix2, · · · , ℘tixk

]
℘ti converges in R (4.1)

for all x1, x2, x3 · · · , xk ∈ X. Let f : X → Y be a function satisfying the inequality∥∥∥∥∥ f

[
k

∑
j=1

jp xj

]
−

k

∑
j=1

[
jp f [xj]

]∥∥∥∥∥ ≤ α [x1, x2, x3 · · · , xk] (4.2)

for all x1, x2, x3 · · · , xk ∈ X. Then there exists a unique additive mapping A : X → Y satisfying the functional equation
(1.8) and

‖ f [x]− A[x]‖ ≤ 1
℘

∞

∑
s= 1−i

2

α[℘six, ℘six, · · · , ℘six]
℘si (4.3)

where

℘ =
p

∑
r=1

Sp
r

[k + 1](r+1)

[r + 1]
(4.4)

for all x ∈ X. The mapping A[x] is defined by

A[x] = lim
t→∞

f [℘tix]
℘ti (4.5)

for all x ∈ X.
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Proof. Assume i = 1. Replacing [x1, x2, · · · , xk] by [x, x, · · · , x] in (4.2), we get

‖ f [[1p + 2p + · · ·+ kp] x]− [1p + 2p + · · ·+ kp] f [x]‖ ≤ α [x, x, · · · , x] (4.6)

for all x ∈ X. The above equation can be rewritten as∥∥∥∥∥ f

[{
k

∑
r=1

[k + 1− r]p

}
x

]
−

[
k

∑
r=1

[k + 1− r]p

]
f [x]

∥∥∥∥∥ ≤ α [x, x, · · · , x] (4.7)

for all x ∈ X. Using Theorem 2.2, we have∥∥∥∥∥ f

[{
p

∑
r=1

Sp
r

[k + 1](r+1)

[r + 1]

}
x

]
−

[
p

∑
r=1

Sp
r

[k + 1](r+1)

[r + 1]

]
f [x]

∥∥∥∥∥ ≤ α [x, x, · · · , x] (4.8)

for all x ∈ X. Define

℘ =
p

∑
r=1

Sp
r

[k + 1](r+1)

[r + 1]

in the above equation and re modifying, we arrive∥∥∥∥ f [℘ x]
℘

− f [x]
∥∥∥∥ ≤ α [x, x, · · · , x]

℘
(4.9)

for all x ∈ X. Now replacing x by ℘x and dividing by ℘ in (4.9), we get∥∥∥∥ f [℘x]
℘

− f [℘2x]
℘2

∥∥∥∥ ≤ α [℘x, ℘x, · · · , ℘x]
℘2 (4.10)

for all x ∈ X. From (4.8) and (4.10), we obtain∥∥∥∥ f [x]− f [℘2y]
℘2

∥∥∥∥ ≤ ∥∥∥∥ f [x]− f [℘x]
℘

∥∥∥∥+
∥∥∥∥ f [℘x]

℘
− f [℘2x]

℘2

∥∥∥∥
≤ 1

℘

{
α [x, x, · · · , x] +

α [℘x, ℘x, · · · , ℘x]
℘

}
(4.11)

for all x ∈ X. In general for any positive integer t , we get∥∥∥∥ f [x]− f [℘tx]
℘t

∥∥∥∥ ≤ 1
℘

t−1

∑
s=0

α [℘sx, ℘sx, · · · , ℘sx]
℘s (4.12)

≤ 1
℘

∞

∑
s=0

α [℘sx, ℘sx, · · · , ℘sx]
℘s

for all x ∈ X. In order to prove the convergence of the sequence{
f [℘tx]

℘t

}
,

replace x by ℘l x and dividing by ℘l in (4.12), for any t, l > 0 , we deduce∥∥∥∥∥ f [℘l x]
℘l − f [℘l+tx]

℘[l+t]

∥∥∥∥∥ =
1
℘l

∥∥∥∥∥ f [℘l x]− f [℘t · ℘l x]
℘t

∥∥∥∥∥
≤ 1

℘

t−1

∑
s=0

α
[
℘s+l x, ℘s+l x, · · · , ℘s+l x

]
℘s+l

≤ 1
℘

∞

∑
s=0

α
[
℘s+l x, ℘s+l x, · · · , ℘s+l x

]
℘s+l

→ 0 as l → ∞
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for all x ∈ X. Hence the sequence
{

f [℘tx]
℘t

}
, is a Cauchy sequence. Since Y is complete, there exists a mapping

A : X → Y such that

A[x] = lim
t→∞

f [℘tx]
℘t ∀ x ∈ X.

Letting t → ∞ in (4.12) we see that (4.3) holds for all x ∈ X.
To show that A satisfies (1.8), replacing [x1, x2, x3 · · · , xk] by

[
℘tx1, ℘tx2, · · · , ℘txk

]
and dividing by ℘t in

(4.2) and using the definition of A(x) , and then letting t → ∞, we see that A satisfies (1.8) for all x1, x2, · · · , xk ∈
X. To prove that A is unique, let B[x] be another additive mapping satisfying (1.8) and (4.3), then

‖A[x]− B[x]‖ =
1
℘t

∥∥A[℘tx]− B[℘tx]
∥∥

≤ 1
℘t

{∥∥A[℘tx]− f [℘tx]
∥∥+

∥∥ f [℘tx]− B[℘tx]
∥∥}

≤
∞

∑
s=0

2 α[℘t+sx, ℘t+sx, · · · , ℘t+sx]
℘ · ℘t+s

→ 0 as s → ∞

for all x ∈ X. Hence A is unique.
For i = −1, we can prove a similar stability result. This completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 4.4 concerning the Ulam-Hyers [13],
Ulam-Hyers-Rassias [21], Ulam-Gavruta-Rassias [20] and Ulam-JRassias [26] stabilities of (1.8).

Corollary 4.1. Let λ and q be nonnegative real numbers. Let a function f : X → Y satisfies the inequality∥∥∥∥∥ f

[
k

∑
j=1

jp xj

]
−

k

∑
j=1

[
jp f [xj]

]∥∥∥∥∥

≤



λ,

λ

{
k

∑
j=1

||xj||q
}

, q < 1 or q > 1;

λ
k

∏
j=1

||xj||q, q < 1
k or q > 1

k ;

λ

{
k

∏
j=1

||xj||q +

{
k

∑
j=1

||xj||kq

}}
, q < 1

k or q > 1
k ;

(4.13)

for all x1, x2, · · · , xk ∈ X. Then there exists a unique additive function A : X → Y such that

‖ f [x]− A[x]‖ ≤



λ

|℘− 1|
,

kλ||x||q

|℘− ℘q|
,

λ||x||kq

|℘− ℘kq|
(k + 1)λ||x||kq

|℘− ℘kq|

(4.14)

for all x ∈ X.

5 Stability results: Fixed point method

In this section, we apply a fixed point method for achieving stability of the additive functional equation
(1.8).

Now, we present the following theorem due to B. Margolis and J.B. Diaz [17] for fixed point theory.
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Theorem 5.5. [17] Suppose that for a complete generalized metric space (Ω, δ) and a strictly contractive mapping
T : Ω → Ω with Lipschitz constant L. Then, for each given x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ ∀ n ≥ 0,

or there exists a natural number n0 such that
(FP1) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(FP2) The sequence (Tnx) is convergent to a fixed to a fixed point y∗ of T
(FP3) y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω : d(Tn0 x, y) < ∞};
(FP4) d(y∗, y) ≤ 1

1−L d(y, Ty) for all y ∈ ∆.

Using the above theorem, we now obtain the generalized Ulam - Hyers stability of (1.8).

Theorem 5.6. Let f : X → Y be a mapping for which there exist a function α : Xk → [0, ∞) with the condition

∞

∑
t=0

α
[
µt

i x1, µt
i x2, · · · , µt

i xk
]

µt
i

converges in R (5.1)

where µi = ℘ if i = 0 and µ1 = 1
℘ if i = 1 such that the functional inequality∥∥∥∥∥ f

[
k

∑
j=1

jp xj

]
−

k

∑
j=1

[
jp f [xj]

]∥∥∥∥∥ ≤ α [x1, x2, x3 · · · , xk] (5.2)

for all x1, x2, x3 · · · , xk ∈ X. If there exists L = L(i) < 1 such that the function

x → γ[x] =
1
℘

α

[
x
℘

,
x
℘

, · · · ,
x
℘

]
,

has the property
γ[x] = L µi γ [µix] . (5.3)

Then there exists a unique additive mapping A : X → Y satisfying the functional equation (1.8) and

‖ f [x]− A[x]‖ ≤ L1−i

1− L
γ[x] (5.4)

for all x ∈ X.

Proof. Consider the set
Ω = {p/p : X → Y, p[0] = 0}

and introduce the generalized metric on Ω,

d(p, q) = inf{K ∈ (0, ∞) :‖ p[x]− q[x] ‖≤ Kγ[x], x ∈ X}.

It is easy to see that (Ω, d) is complete. Define T : Ω → Ω by

Tp[x] =
1
µi

p[µix],

for all x ∈ E. Now p, q ∈ Ω,

d(p, q) ≤ K ⇒ ‖ p[x]− q[x] ‖≤ Kγ[x], x ∈ X.

⇒
∥∥∥∥ 1

µi
p[µix]− 1

µi
q[µix]

∥∥∥∥ ≤ 1
µi

Kγ[µix], x ∈ X,

⇒
∥∥∥∥ 1

µi
p[µix]− 1

µi
q[µix]

∥∥∥∥ ≤ LKγ[x], x ∈ X,

⇒ ‖ Tp[x]− Tq[x] ‖≤ LKγ[x], x ∈ X,

⇒d(p, q) ≤ LK.
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This implies d(Tp, Tq) ≤ Ld(p, q), for all p, q ∈ Ω. i.e., T is a strictly contractive mapping on Ω with Lipschitz
constant L.
From (4.9), we arrive ∥∥∥∥ f [℘ x]

℘
− f [x]

∥∥∥∥ ≤ γ[x]
℘

(5.5)

for all x ∈ X. Using (5.3) for the case i = 0 it reduces to∥∥∥∥ f [℘x]
℘

− f [x]
∥∥∥∥ ≤ Lγ[x]

for all x ∈ X,
i.e., d( f , T f ) ≤ L ⇒ d( f , T f ) ≤ L = L1 < ∞.

Again replacing x =
x
℘

in (5.5), we get,

∥∥∥∥ f [x]− ℘ f
[

x
℘

]∥∥∥∥ ≤ γ

[
x
℘

]
(5.6)

for all x ∈ X. Using (5.3) for the case i = 1 it reduces to∥∥∥∥ f [x]− ℘ f
(

x
℘

)∥∥∥∥ ≤ γ[x]

for all x ∈ X,
i.e., d( f , T f ) ≤ 1 ⇒ d( f , T f ) ≤ 1 = L0 < ∞.

In above cases, we arrive
d( f , T f ) ≤ L1−i.

Therefore (FP1) holds.
By (FP2), it follows that there exists a fixed point A of T in Ω such that

A[x] = lim
t→∞

f [µt
i x]

µt
i

∀ x ∈ X. (5.7)

To order to prove A : X → Y is additive, replacing [x1, · · · , xk] by
[
µt

i x1, · · · , µt
i xk
]

and dividing by µt
i in

(5.2) and using the definition of A(x) , and then letting t → ∞, we see that A satisfies (1.8) for all x1, · · · , xk ∈ X.
By (FP3), A is the unique fixed point of T in the set ∆ = {A ∈ Ω : d( f , A) < ∞}, A is the unique function

such that
‖ f [x]− A[x]‖ ≤ Kγ[x]

for all x ∈ X and K > 0. Finally by (FP4), we obtain

d( f , A) ≤ 1
1− L

d( f , T f )

this implies

d( f , A) ≤ L1−i

1− L

which yields

‖ f [x]− A[x]‖ ≤ L1−i

1− L
γ[x]

this completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 5.6 concerning the Ulam-Hyers [13],
Ulam-Hyers-Rassias [21], Ulam-Gavruta-Rassias [20] and Ulam-JRassias [26] stabilities of (1.8).
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Corollary 5.2. Let f : X → Y be a mapping and there exits real numbers λ and q such that∥∥∥∥∥ f

[
k

∑
j=1

jp xj

]
−

k

∑
j=1

[
jp f [xj]

]∥∥∥∥∥

≤



(i) λ,

(ii) λ

{
k

∑
j=1

||xj||q
}

, q < 1 or q > 1;

(iii) λ
k

∏
j=1

||xj||q, q < 1
k or q > 1

k ;

(iv) λ

{
k

∏
j=1

||xj||q +

{
k

∑
j=1

||xj||kq

}}
, q < 1

k or q > 1
k ;

(5.8)

for all x1, x2, · · · , xk ∈ X. Then there exists a unique additive function A : X → Y such that

‖ f [x]− A[x]‖ ≤



(i)
λ

|℘− 1|
,

(ii)
kλ||x||q

|℘− ℘q|
,

(iii)
λ||x||kq

|℘− ℘kq|

(iv)
(k + 1)λ||x||kq

|℘− ℘kq|

(5.9)

for all x ∈ X.

Proof. Setting

α[x1, x2, · · · , xk] =



λ,

λ

{
k

∑
j=1

||xj||q
}

,

λ
k

∏
j=1

||xj||q,

λ

{
k

∏
j=1

||xj||q +

{
k

∑
j=1

||xj||kq

}}
,

for allx1, x2, · · · , xk ∈ X.. Now,

1
µt

i
α[µt

i x1, µt
i x2, · · · , µt

i xk] =



λ
µt

i
,

λ
µt

i

{
k

∑
j=1

||µt
i xj||q

}
,

λ
µt

i

k

∏
j=1

||µt
i xj||q,

λ
µt

i

{
k

∏
j=1

||µt
i xj||q +

{
k

∑
j=1

||µt
i xj||kq

}}
,

=


→ 0 as t → ∞,
→ 0 as t → ∞,
→ 0 as t → ∞,
→ 0 as t → ∞.

Thus, (5.1) is holds.
But we have γ[x] = 1

℘ γ [x] has the property γ[x] = L · µi γ [µix] for all x ∈ X. Hence

γ[x] =
1
℘

α[x, x, · · · , x] =



λ

℘
kλ

℘
||x||q,

λ

℘
||x||kq,

(k + 1)λ

℘
||x||kq.
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Now,

1
µi

γ[µix] =



λ

℘µi
kλ

℘µi
||µix||q,

λ

℘µi
||µix||kqs,

(k + 1)λ

℘µi
||µix||kq.

=



µ−1
i

λ

℘
,

µ
q−1
i

kλ

℘
||x||q,

µ
kq−1
i

λ

℘
||x||kq,

µ
kq−1
i

(k + 1)λ

℘
||x||kq.

=


µ−1

i γ[x],
µ

q−1
i γ[x],

µ
kq−1
i γ[x],

µ
kq−1
i γ[x].

Hence the inequality (5.3) holds either, L = ℘−1 for q = 0 if i = 0 and L = 1
℘−1 for q = 0 if i = 1.

Now from (5.4), we prove the following cases for condition (ii).
Case:1 L = ℘−1 for q = 0 if i = 0

‖ f [x]− A[x]‖ ≤

(
℘(−1)(0−1)

)1−0

1− ℘(−1)(0−1)
λ

℘
=

℘

1− ℘

λ

℘
=

λ

1− ℘

Case:2 L = 1
℘−1 for q = 0 if i = 1

‖ f [x]− A[x]‖ ≤

(
1

℘(−1)(0−1)

)1−1

1− 1
℘(−1)(0−1)

λ

℘
=

℘

℘− 1
λ

℘
=

λ

℘− 1

Also the inequality (5.3) holds either, L = ℘q−1 for q < 1 if i = 0 and L = 1
℘q−1 for q > 1 if i = 1.

Now from (5.4), we prove the following cases for condition (ii).
Case:1 L = ℘q−1 for q < 1 if i = 0

‖ f [x]− A[x]‖ ≤

(
℘(q−1)

)1−0

1− ℘(q−1)
kλ

℘
||x||q =

℘(q−1) · ℘
℘− ℘s

kλ

℘
||x||q =

℘(q−1)kλ||x||q

℘− ℘q

Case:2 L = 1
2s−1 for s > 1 if i = 1

‖ f [x]− A[x]‖ ≤

(
1

℘(q−1)

)1−1

1− 1
℘(q−1)

kλ

℘
||x||q =

℘(q−1) · ℘
℘s − ℘

kλ

℘
||x||q =

℘(q−1)kλ||x||q

℘s − ℘

Again, the inequality (5.3) holds either, L = ℘kq−1 for q < 1
k if i = 0 and L = 1

℘kq−1 for q > 1
k if i = 1.

Now from (5.4), we prove the following cases for condition (iii).
Case:1 L = ℘kq−1 for q < 1

k if i = 0

‖ f [x]− A[x]‖ ≤

(
℘(kq−1)

)1−0

1− ℘(kq−1)
λ

℘
||x||kq =

℘(kq−1) · ℘
℘− ℘kq

λ

℘
||x||kq =

℘(kq−1)λ||x||kq

℘− ℘kq
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Case:2 L = 1
℘kq−1 for q > 1

k if i = 1

‖ f [x]− A[x]‖ ≤

(
1

℘(kq−1)

)1−1

1− 1
℘(kq−1)

λ

℘
||x||kq =

℘(kq−1) · ℘
℘kq − ℘

λ

℘
||x||kq =

℘(kq−1)λ||x||kq

℘kq − ℘

Finally the inequality (5.3) holds either, L = ℘kq−1 for q < 1
k if i = 0 and L = 1

℘kq−1 for q > 1
k if i = 1. The

proof of condition (iv) is similar lines to that of condition (iii). Hence the proof is complete.

6 Application of the functional equation (1.8)

We know that the following sums of powers arithmetic progression

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2

12 + 22 + 32 + · · ·+ k2 =
k(k + 1)(2k− 1)

2

In general, using Stirling numbers of second kind, one can arrive

1p + 2p + 3p + · · ·+ kp =
p

∑
r=1

Sp
r
[k + 1](r+1)

[r + 1]
.

With the help of the above discussion, the authors transform the sum of pth power of first k natural num-
bers as a functional equation

f

(
k

∑
j=1

jp xj

)
=

k

∑
j=1

(
jp f (xj)

)
, k, p ≥ 1

having additive solution.
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