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Abstract

In this paper, we provide sufficient conditions for the existence of mild solutions for a class of fractional differential

equations with state-dependent delay. The results are obtained by using the nonlinear alternative of Leray-Schauder
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1 Introduction

In the last two decades, the theory of fractional calculus has gained importance and popularity, due to its
wide range of applications in varied fields of sciences and engineering. In [1, 3, 6, 7, 13, 19, 25, 27, 31, 32, 33]
applications are mentioned to fluid flow, rheology, dynamical processes in self-similar and porous structures,
electrical networks, control theory of dynamical systems and so on.

In this work, we establish the existence of mild solutions for a class of fractional abstract differential
equations with state-dependent delay described by

cDqx(t) = Ax(t) + f(t, xρ(t,xt)), t ∈ J = [0, a], 0 < q < 1, (1.1)

x(t) = ϕ(t) ∈ B, t ∈ (−∞, 0], (1.2)

where the unknown x(·) takes values in Banach space X with norm ‖·‖, cDq is the Caputo fractional derivative
of order 0 < q < 1, A is the infinitesimal generator of a compact analytic semigroup of uniformly bounded
linear operators {T (t), t ≥ 0} in X, f : J × B → X and ρ : J × B → (−∞, a] are appropriate given functions,
ϕ ∈ B, ϕ(0) = 0 and B is called a phase space that will be defined in preliminaries.

An important point to note here it that when the delay is infinite the right notion is phase space. This
concept was introduced by Hale and Kato [15] ( see also Kappel and Schappacher [26] and Schumacher [34])
which enables to deduce important information about qualitative properties of differential equations with
unbounded delay. For a detailed discussion on this topic, we refer the reader to the book by Hino et al. [24].

On the other hand, functional differential equations with state-dependent delay appears frequently in ap-
plications as models of equations. Investigations of these classes of delay equations essentially differ from
once of equations with constant or time-dependent delay. For these reasons the theory of differential equa-
tions with state-dependent delay has drawn the attention of researchers in the recent years, see for instance
[4, 5, 16, 17, 18, 20, 21, 22, 23, 28, 29] and the references therein. The investigation of the exitnece of mild
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solutions of fractional functional differential equations with state-dependent delay is very recent and limited,
see for instance [2, 8, 9, 10].

The results in the present work are, on one side, an extension of results in [10] and [35] and, one the
otherside, an interesting contribution to the study of qualitative properties for fractional differential equations
with state-dependent delay. The topological method that we have choosen to study existence of mild solutions
of the fractiona differential equations (1.1)-(1.2) is the theory of fixed points, which has been a very powerful
and important tool to study the nonlilnear phenomena.

Our approach and techniques here are based on the nonlinear alternative of Leray-Schauder type [14] and
probability density function given by EI-Borai [11] and was then developed by Zhou et al. [35, 36].

2 Preliminaries

In this section, we introduce notation, definitions and preliminary facts which are used throughtout this
paper.

By C(J,X) we denote the Banach space of continuous functions from J into X with the norm

‖x‖∞ := sup{|x(t)| : t ∈ J}.

Definition 2.1. The fractional integral of order α with the lower limit 0 for the function f : (0, a] → X is
defined by

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)
(t− s)1−α

ds, t > 0, α > 0,

provided the right hand side exists pointwise on (0, a], where Γ is the gamma function.

For instance, Iαf exists for all α > 0, where f ∈ C((0, a], X) ∪ L1((0, a], X); note also that when f ∈
C((0, a], X) then Iαf ∈ C((0, a], X) and moreover Iαf(0) = 0.

Definition 2.2. The Caputo derivative of order α with the lower limit zero for a function f : (0, a] → X can
be written as

cDαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α+1−n

ds = In−αf (n)(t), t > 0, n− 1 < α < n.

If f is an abstract function with values in X, then integrals which appear in Definition 2.1 and 2.2 are taken
in Bochner’s sence.

In this paper, we will employ an axiomatic definition, for the phase space B which is similar to those
introduced in [24]. More precisely, B will be a linear space of all functions from (−∞, 0] to X endowed with a
seminorm ‖ · ‖B satisfying the following axioms:

(A1) If x : (−∞, a] → X, a > 0 is continuous on J and x0 ∈ B, then for every t ∈ J the following conditions
hold:

(i) xt is in B,

(ii) ‖ x(t) ‖≤ H ‖ xt ‖B,

(iii) ‖ xt ‖B≤ K(t) sup{‖ x(s) ‖: 0 ≤ s ≤ t}+M(t) ‖ x0 ‖B, where H > 0 is a constant, K : [0,∞) → [1,∞)
is continuous, M : [0,∞) → [1,∞) is locally bounded and H, K, M are independent of x(·).

(A2) For the function x(·) in (A1), xt is a B-valued continuous function on J .

(A3) The space B is complete.

The next lemma is a consequence of the phase space axioms and is proved in [20].

Lemma 2.1. Let ϕ ∈ B and I = (γ, 0] be such that ϕt ∈ B for every t ∈ I. Assume that there exists a locally
bounded function Jϕ : I → [0,∞) such that ‖ϕt‖B ≤ Jϕ(t)‖ϕ‖B for every t ∈ I. If x : (∞, a] → R is continuous
on J and x0 = ϕ, then

‖xt‖B ≤ (Ma + Jϕ(max{γ,−|s|})‖ϕ‖B +Ka sup{|x(θ)| : θ ∈ [0,max{0, s}]},

for s ∈ (γ, a], where we denoted Ka = sup
t∈J

K(t) and Ma = sup
t∈J

M(t).
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3 Existence results for functional fractional differential equations with state-

dependent delay

In this section, we discuss the existence of mild solutions for the fractional differential equations with state-
dependent delay of the form (1.1)-(1.2). Following [11, 12, 35], we will introduce now the definition of mild
solution to (1.1)-(1.2).

Definition 3.1. A function x : (−∞, a] → X is said to be a mild solution of (1.1)-(1.2) if x0 = ϕ, xρ(s,xs) ∈ B
for each s ∈ J and

x(t) = Sq(t)ϕ(0) +
∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds, t ∈ J,

where

Sq(t) =
∫ ∞

0

ξq(θ)T (tqθ)dθ,

Tq(t) = q

∫ ∞

0

θξq(θ)T (tqθ)dθ,

ξq(θ) =
1
q
θ−1− 1

qwq(θ−
1
q ) ≥ 0,

wq(θ) =
1
π

∞∑
k=1

(−1)n−1θ−nq−1 Γ(nq + 1)
n!

sin(nπq), θ ∈ (0,∞),

ξq is a probability density function on (0,∞), that is

ξq(θ) ≥ 0, θ ∈ (0,∞) and
∫ ∞

0

ξq(θ)dθ = 1.

Remark 3.1. It is not difficult to verify that for v ∈ [0, 1]∫ ∞

0

θvξq(θ)dθ =
∫ ∞

0

θ−qvwq(θ)dθ =
Γ(1 + v)
Γ(1 + qv)

.

Lemma 3.1. [35] For any t ≥ 0, The operators Sq(t) and Tq(t) have the following properties:

(a) For any fixed t ≥ 0, Sq and Tq are linear and bounded operators, ie., for any x ∈ X,

‖Sq(t)x‖ ≤M‖x‖, ‖Tq(t)x‖ ≤
qM

Γ(1 + q)
‖x‖.

(b) {Sq(t), t ≥ 0} and {Tq(t), t ≥ 0} are strongly continuous.

(c) For every t > 0, Sq(t) and Tq(t) are also compact operators.

To prove our results, we always assume that ρ : J × B → (−∞, a] is continuous. In addition, we introduce
the following conditions.

(H1) The semigroup T (t) is compact for t > 0.

(H2) For each t ∈ J , the function f(t, ·) : B → X is continuous and for each ψ ∈ B, the function f(·, ψ) : J → X

is strongly measurable.

(H3) There exist p : J → [0,∞] and a continuous non-decreasing function Ω : [0,∞) → (0,∞) such that

‖f(t, ψ)‖ ≤ p(t)Ω(‖ψ‖B) for t ∈ J, and each ψ ∈ B.

(H4) The function t→ ϕt is well defined and continuous from the set

R(ρ−) = {ρ(s, ψ) : (s, ψ) ∈ J × B, ρ(s, ψ) ≤ 0}

into B and there exists a continuous and bounded function Jϕ : R(ρ−) → (0,∞) such that ‖ϕt‖B ≤
Jϕ(t)‖ϕ‖B for every t ∈ R(ρ−).



Velusamy Kavitha et al. / Existence results for ... 53

Remark 3.2. We point out here that the condition (H4) is usually satisfied by functions that are continuous
and bounded. For complementary details related this matter the reader can see [20].

Theorem 3.1. Let conditions (H1)− (H4) hold with ρ(t, x) ≤ t for every (t, x) ∈ J × B and

‖ξ‖∞
(Ma + J

ϕ
)‖ϕ‖B +MKaΩ(‖ξ‖∞)‖Iqp‖∞

> 1

then there exists a mild solution of (1.1)-(1.2) on (−∞, a].

Proof. Let Y = {u ∈ C(J,X) : u(0) = ϕ(0) = 0} endowed with the uniform operator topology and Φ : Y → Y

be the operator defined by

Φ(x)(t) =
∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,x(s)))ds, t ∈ J,

where x : (−∞, a] → X is such that x0 = ϕ and x = x on J . From axiom (A1) and our assumption on ϕ, we
infer that Φ(x)(·) is well defined and continuous.

Let ϕ : (−∞, a] → X be the extension of ϕ to (−∞, a] such that ϕ(θ) = φ(0) = 0 on J and J
ϕ

= sup{Jϕ :
s ∈ R(ρ−)}.

We will prove that Φ(·) is completely continuous from Br(ϕ|J , Y ) to Br(ϕ|J , Y ).
We break the proof into several steps.

Step 1: Φ is continuous on Br(ϕ|J , Y ).
Let {xn} ⊂ Br(ϕ|J , Y ) and x ∈ Br(ϕ|J , Y ) with xn → x (n → ∞). From axiom A1, it is easy to see that

(xn)s → xs uniformly for s ∈ (−∞, a] as n→∞. By (H3), we have

‖f(s, xn
ρ(s,(xn)s))− f(s, xρ(s,(x)s

)‖

≤ ‖f(s, xn
ρ(s,(xn)s))− f(s, xρ(s,(xn)s

)‖+ ‖f(s, xρ(s,(xn)s))− f(s, xρ(s,(x)s
)‖

which implies that f(s, xn
ρ(s,(xn)s)) → f(s, xρ(s,(x)s

) as n → ∞ for each s ∈ J . By axiom A1(ii), Lemma(2.1)
and the dominated convergence theorem, we obtain

‖Φ(xn)− Φ(x)‖ ≤
∥∥∥∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds
∥∥∥

→ 0 as n→∞

Therefore, Φ is continuous.
Step 2: Φ maps bounded sets into bounded sets. If x ∈ Br(φ|J , Y ), from Lemma(2.1), it follows that

‖xρ(t,xt)‖B ≤ r∗ := (Ma + J
φ
)‖φ‖B +Kar

and so

|Φ(x)(t)| ≤ qM

Γ(1 + q)

∫ t

0

(t− s)q−1f(s, xρ(s,xs))ds

≤ qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω(‖xρ(s,xs)‖B)ds

≤ qM

Γ(1 + q)
‖p‖∞Ω(r∗)

∫ t

0

(t− s)q−1ds

≤ Maq

Γ(1 + q)
‖p‖∞Ω(r∗).

Thus,

‖Φ(x)‖∞ ≤ Maq

Γ(1 + q)
‖p‖∞Ω(r∗) := l.

Step 3: Φ maps bounded sets into equicontinuous sets.
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Let τ1, τ2 ∈ J with τ2 > τ1 and Br be a bounded set as in step 2. Let ε > 0 be given. For each t ∈ J , we
have

‖Φ(x)(τ2)− Φ(x)(τ1)‖

≤
∫ τ1−ε

0

∥∥∥[
(τ2 − s)q−1Tq(τ2 − s)− (τ1 − s)q−1Tq(τ1 − s)

]
f(s, xρ(s,xs))

∥∥∥ds
+

∫ τ1

τ1−ε

∥∥∥[
(τ2 − s)q−1Tq(τ2 − s)− (τ1 − s)q−1Tq(τ1 − s)

]
f(s, xρ(s,xs))

∥∥∥ds
+

∫ τ2

τ1

∥∥∥(τ2 − s)q−1Tq(τ2 − s)f(s, xρ(s,xs))
∥∥∥ds

≤ ‖p‖∞Ω(r∗)
[ ∫ τ1−ε

0

[
|(τ2 − s)q−1 − (τ1 − s)q−1|‖Tq(τ2 − s)‖

+ |(τ1 − s)q−1|‖Tq(τ2 − s)− Tq(τ1 − s)‖
]
ds

+
∫ τ1

τ1−ε

[
|(τ2 − s)q−1 − (τ1 − s)q−1|‖Tq(τ2 − s)‖

+ |(τ1 − s)q−1|‖Tq(τ2 − s)− Tq(τ1 − s)‖
]
ds+

M

Γ(1 + q)
(τ2 − τ1)q

]
.

The right hand side tends to zero as τ2 − τ1 → 0, since Tq(t), t ≥ 0 is a strongly continuous semigroup
and Tq(t) is compact for t > 0 (so Tq(t) is continuous in the uniform operator topology for t > 0). The
equicontinuous for the other cases τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 ≤ a are very simple.
Step 4: Φ is precompact.

Let 0 < t ≤ s ≤ a be fixed and let ε be a real number satisfying 0 < ε < t, and δ > 0. For x ∈ Br, we define,

Φε,δ(x)(t) = q

∫ t−ε

0

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds

= T (εqδ)q
∫ t−ε

0

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ − εqδ)f(s, xρ(s,xs))dθds,

Since T (εqδ) is a compact operator for εqδ > 0, the set Yε,δ(t) = {Φε,δ(x)(t) : x ∈ Br} is precompact in X

for every ε, 0 < ε < t. Moreover

‖Φ(x)(t)− Φε,δ(x)(t)‖

= q
[∥∥∥ ∫ t−ε

0

∫ δ

0

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds
∥∥∥

+
∥∥∥∫ t

t−ε

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds
∥∥∥]

≤ ‖p‖∞Ω(r∗)
qM

Γ(1 + q)

[ ∫ t−ε

0

(t− s)q−1ds

∫ δ

0

θξq(θ)dθ +
∫ t

t−ε

(t− s)q−1ds

∫ ∞

δ

θξq(θ)dθ
]
.

Therefore, there are precompact sets arbitrarly close to the set Y (t) = {Φε,δ(x)(t) : x ∈ Br} is precompact.
Hence the set Y (t) = {Φε,δ(x)(t) : x ∈ Br} is precompact in X.

As a consequence of the Step 1 to Step 4 and the Arzela-Ascoli theorem, we can conclude that the operator
Φ is completely continuous.
Step 5: We now show there exists an open set U ⊂ Y with x 6= λΦ(x) for λ ∈ (0, 1) and x ∈ ∂U . Let x ∈ Y
and x = λΦ(x) for some 0 < λ < 1. Then for each t ∈ J we have,

x(t) = λ

∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds.

This implies by (H3) and Lemma(2.1) that

|x(t)| ≤
∫ t

0

(t− s)q−1‖Tq(t− s)‖‖f(s, xρ(s,x(s)))‖ds

≤ qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω
(
(Ma + J

φ
)‖φ‖B +Ka sup{|x(s)| : s ∈ [0, t]}

)
ds,
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since ρ(s, xs) ≤ s for every s ∈ J . Here J
φ

= sup{Jφ(s) : s ∈ R(ρ−)}.
Set µ(t) = sup{|x(s)| : 0 ≤ s ≤ t}, t ∈ J . Then we have

µ(t) ≤ qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω
(
(Ma + J

φ
)‖φ‖B +Kaµ(s)

)
ds.

If ξ(t) = (Ma + J
φ
)‖φ‖B +Kaµ(t) then we have,

ξ(t) ≤ (Ma + J
φ
)‖φ‖B +

qMKa

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω(ξ(s))ds

≤ (Ma + J
φ
)‖φ‖B +MKaΩ(‖ξ‖∞)

1
Γ(q)

∫ t

0

(t− s)q−1p(s)ds

≤ (Ma + J
φ
)‖φ‖B +MKaΩ(‖ξ‖∞)‖Iqp‖∞.

Then

‖ξ‖∞
(Ma + J

φ
)‖φ‖B +MKaΩ(‖ξ‖∞)‖Iqp‖∞

≤ 1.

Then there exists M∗ such that ‖x‖∞ 6= M∗. Set U = {x ∈ Y : ‖x‖∞ < M∗ + 1}.
Then Φ : U → Y is continuous and completely continuous. From the choice of U , there is no x ∈ ∂U such

that x = λΦ(x) for λ ∈ (0, 1). As a consequence of the nonlinear aiternative of Leray- Schauder type [14], we
deduce that Φ has a fixed point x in U , which is a solution of (1.1)-(1.2).

4 Existence results for netural functional fractional differential equations with

state-dependent delay

In this section, we study existence results for netural fractional differential equations with state-dependent
delay of the form

cDq[x(t)− g(t, xt)] = A[x(t)− g(t, xt)] + f(t, xρ(t,xt)), t ∈ J = [0, a], 0 < q < 1, (4.1)

x(t) = φ(t) ∈ B, t ∈ (−∞, 0], (4.2)

where A, f, ρ, and φ are same as defined in (1.1)-(1.2) and g : J × B → X is appropriate given function.

Definition 4.1. A function x : (−∞, a] → X is said to be a mild solution of (4.1)-(4.2) if x0 = φ, xρ(s,xs) ∈ B
for each s ∈ J and

x(t) = Sq(t)[φ(0)− g(0, φ)] + g(t, xt) +
∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds, t ∈ J,

where

Sq(t) =
∫ ∞

0

ξq(θ)T (tqθ)dθ,

Tq(t) = q

∫ ∞

0

θξq(θ)T (tqθ)dθ,

ξq(θ) =
1
q
θ−1− 1

qwq(θ−
1
q ) ≥ 0,

wq(θ) =
1
π

∞∑
k=1

(−1)n−1θ−nq−1 Γ(nq + 1)
n!

sin(nπq), θ ∈ (0,∞),

ξq is a probability density function on (0,∞), that is

ξq(θ) ≥ 0, θ ∈ (0,∞) and
∫ ∞

0

ξq(θ)dθ = 1.

To prove the next theorems, in addition, we need the following hypotheses:
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(H5) The function g : J × B → X is completely continuous and there exist positive constants c1 and c2 such
that

‖g(t, ψ)‖ ≤ c1‖ψ‖B + c2, t ∈ J, ψ ∈ B.

(H5)∗ The function g : J × B → X is continuous and there exists Lf > 0 such that

‖g(t, ψ1)− g(t, ψ2)‖ ≤ Lf‖ψ1 − ψ2‖B, t ∈ J, ψi ∈ B, i = 1, 2.

Theorem 4.1. Assume that the hypotheses (H1)− (H5) are fulfilled. If

Ka

[
Lf +

qM

Γ(1 + q)
lim

ξ→∞
inf

Ω(ξ)
ξ

∫ a

0

(t− s)q−1p(s)ds
]
< 1

then there exist a mild solution of (4.1)-(4.2) on J .

Proof. Let φ : (−∞, a] → X be the extension of φ to (−∞, a] such that φ(θ) = φ(0) on J = [0, a]. Consider
the space S(a) = {u ∈ C(J ;X) : u(0) = φ(0)} endowed with the uniform operator topology and define the
operator Υ : S(a) → S(a) by

Υx(t) = Sq(t)[φ(0)− g(0, φ(0)) + g(t, xt) +
∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds, t ∈ J,

where x : (−∞, a] → X is such that x0 = φ and x = x on J . From our assumptions, it is easy to see that
ΥS(a) ⊂ S(a).

We shall prove that there exists a r > 0 such that Υ(Br(φ|J , S(a))) ⊂ Br(φ|J , S(a)). If this property is
false, then for every r > 0 there exist xr ∈ Br(φ|J , S(a)) and tr ∈ J such that r < ‖Υxr(tr) − φ(0)‖. Then
from Lemma (2.1), we find,

r ≤ ‖Υxr(tr)− φ(0)‖
≤ ‖Sq(tr)φ(0)− φ(0)‖+ ‖Sq(tr)g(0, φ)− g(0, φ)‖+ ‖g(t, (xr)tr − g(0, φ)‖

+
∫ tr

0

∥∥(t− s)q−1Tq(tr − s)f(s, xr
ρ(s,(xr)s

)
∥∥ds

≤ (M + 1)H‖φ‖B + ‖Sq(tr)g(0, φ)− g(0, φ)‖+ Lf

(
Kar + (Ma +HKa + 1)‖φ‖B

)
+

qM

Γ(1 + q)
Ω

((
Ma + J

φ)
‖φ‖B +Ka

(
r + ‖φ(0)‖

)) ∫ a

0

(t− s)q−1p(s)ds

and hence

1 ≤ Ka

[
Lf +

qM

Γ(1 + q)
lim

ξ→∞
inf

Ω(ξ)
ξ

∫ a

0

(t− s)q−1p(s)ds
]

which contradicts our assumption.
Let r > 0 be such that Υ(Br(φ|J , S(a))) ⊂ Br(φ|J , S(a)), in what follows, r∗ is the number defined by

r∗ := (Ma+J
φ)
‖φ‖B+Ka

(
r+‖φ(0)‖

)
. To prove that Υ is condensing operator, we introduce the decomposition

Υ = Υ1 + Υ2, where

Υ1x(t) = Sq(t)[φ(0)− g(0, φ) + g(t, xt),

Υ2x(t) =
∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds, t ∈ J.

Step 1: Υ1(·) is contraction on Br(φ|J , S(a)).
If x, y ∈ Br(φ|J , S(a)) and t ∈ J , then we have

‖Υ1x(t)−Υ1y(t)‖ ≤ ‖g(t, xt)− g(t, yt)‖
≤ LfKa‖x− y‖a,

which proves that Υ1(·) is a contraction on Br(φ|J , S(a)).
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Next we prove that Υ2(·) is completely continuous from Br(φ|J , S(a)) into Br(φ|J , S(a)).
Step 2: Υ2 is continuous on Br(φ|J , S(a)).

Let {xn} ⊂ Br(φ|J , S(a)) and x ∈ Br(φ|J , S(a)) with xn → x (n → ∞). From axiom A1, it is easy to see
that (xn)s → xs uniformly for s ∈ (−∞, a] as n→∞. By (H3), we have

‖f(s, xn
ρ(s,(xn)s))− f(s, xρ(s,(x)s

)‖

≤ ‖f(s, xn
ρ(s,(xn)s))− f(s, xρ(s,(xn)s

)‖+ ‖f(s, xρ(s,(xn)s))− f(s, xρ(s,(x)s
)‖

which implies that f(s, xn
ρ(s,(xn)s)) → f(s, xρ(s,(x)s

) as n → ∞ for each s ∈ J . By axiom A1(ii), Lemma(2.1)
and the dominated convergence theorem we obtain

‖Υ2x
n −Υ2x‖ ≤

∥∥∥∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds
∥∥∥

→ 0 as n→∞

Therefore, Υ2 is continuous.
Step 3: Υ2(·) is equicontinuous on J .

Let τ1, τ2 ∈ J with τ2 > τ1 and Br be a bounded set as in step 2. Let ε > 0 be given. For each t ∈ J , we
have

‖Υ2(x)(τ2)−Υ2(x)(τ1)‖

≤
∫ τ1−ε

0

∥∥∥[
(τ2 − s)q−1Tq(τ2 − s)− (τ1 − s)q−1Tq(τ1 − s)

]
f(s, xρ(s,xs))

∥∥∥ds
+

∫ τ1

τ1−ε

∥∥∥[
(τ2 − s)q−1Tq(τ2 − s)− (τ1 − s)q−1Tq(τ1 − s)

]
f(s, xρ(s,xs))

∥∥∥ds
+

∫ τ2

τ1

∥∥∥(τ2 − s)q−1Tq(τ2 − s)f(s, xρ(s,xs))
∥∥∥ds

≤ Ω(r∗)
[ ∫ τ1−ε

0

[
|(τ2 − s)q−1 − (τ1 − s)q−1|‖Tq(τ2 − s)‖

+ |(τ1 − s)q−1|‖Tq(τ2 − s)− Tq(τ1 − s)‖
]
p(s)ds

+
∫ τ1

τ1−ε

[
|(τ2 − s)q−1 − (τ1 − s)q−1|‖Tq(τ2 − s)‖

+ |(τ1 − s)q−1|‖Tq(τ2 − s)− Tq(τ1 − s)‖
]
p(s)ds+

qM

Γ(1 + q)

∫ τ2

τ1

|(τ2 − s)q−1|p(s)ds
]
.

The right hand side tends to zero as τ2 − τ1 → 0, since Tq(t), t ≥ 0 is a strongly continuous semigroup
and Tq(t) is compact for t > 0 (so Tq(t) is continuous in the uniform operator topology for t > 0). The
equicontinuous for the other cases τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 ≤ a are very simple.
Step 4: Υ2 is precompact.

Let 0 < t ≤ s ≤ a be fixed and let ε be a real number satisfying 0 < ε < t, and δ > 0. For x ∈ Br, we define,

Υ2ε,δ
(x)(t) = q

∫ t−ε

0

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds

= T (εqδ)q
∫ t−ε

0

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ − εqδ)f(s, xρ(s,xs))dθds,

Since T (εqδ) is a compact operator for εqδ > 0, the set Vε,δ(t) = {Υ2ε,δ
(x)(t) : x ∈ Br} is precompact in X

for every ε, 0 < ε < t. Moreover

‖Υ2(x)(t)−Υ2ε,δ
(x)(t)‖

= q
[∥∥∥ ∫ t−ε

0

∫ δ

0

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds
∥∥∥

+
∥∥∥∫ t

t−ε

∫ ∞

δ

θ(t− s)q−1ξq(θ)T ((t− s)qθ)f(s, xρ(s,xs))dθds
∥∥∥]
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≤ Ω(r∗)
qM

Γ(1 + q)

[ ∫ t−ε

0

(t− s)q−1p(s)ds
∫ δ

0

θξq(θ)dθ +
∫ t

t−ε

(t− s)q−1p(s)ds
∫ ∞

δ

θξq(θ)dθ
]
.

Therefore, there are precompact sets arbitrarly close to the set V (t) = {Υ2ε,δ
(x)(t) : x ∈ Br} is precompact.

Hence the set V (t) = {Υ2ε,δ
(x)(t) : x ∈ Br} is precompact in X.

As a consequence of the Step 2 to Step 4 and the Arzela-Ascoli theorem, we can conclude that the operator
Υ2 is completely continuous.

These arguments enable us to conclude that Υ = Υ1 + Υ2 is a condensing mapping on Br(φ|J , S(a)) and
the existence of a mild solution for (4.1)-(4.2) is now a consequence of [[30], Theorem 4.3.2]. This completes
the proof.

Theorem 4.2. Assume that the hypotheses (H1) − (H5) and (H5)∗ are fulfilled with ρ(t, ψ) ≤ t for every
t ∈ J, ψ ∈ B. If

‖ξ‖∞
(Ma + J

φ
)‖φ‖B + Ka

1−c1

[
M(H + c1)‖φ‖B + c2(1 +M) +MΩ(‖ξ‖∞)‖Iqp‖∞

] > 1

then there exists a mild solution of (4.1)-(4.2) on J .

Proof. Let Υ be a function given in the proof of Theorem 4.1.
We show that there exists an open set U1 ⊂ S(a) with x 6= λΥ(x) for λ ∈ (0, 1) and x ∈ ∂U1. Let x ∈ S(a)

and x = λΥ(x) for some 0 < λ < 1. Then

x(t) = λ
[
Sq(t)[φ(0)− g(0, φ) + g(t, xt) +

∫ t

0

(t− s)q−1Tq(t− s)f(s, xρ(s,xs))ds
]
, t ∈ J,

and

|x(t)| ≤MH‖φ‖B +M [c1‖φ‖B + c2] + c1‖xt‖B + c2

+
qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω(‖xρ(s,(x))‖B)ds

≤M [H + c1]‖φ‖B + c2[1 +M ] + c1‖xt‖B

+
qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω
((
Ma + J

φ)
‖φ‖B +Ka‖x‖

)
ds.

If µ(t) = sup{|x(s)| : s ∈ [0, t]} then

µ(t) ≤M [H + c1]‖φ‖B + c2[1 +M ] + c1µ(t)

+
qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω
((
Ma + J

φ)
‖φ‖B +Kaµ(s)

)
ds.

Since 0 < c1 < 1, we have

µ(t) ≤ 1
1− c1

[
M [H + c1]‖φ‖B + c2[1 +M ]

+
qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω
((
Ma + J

φ)
‖φ‖B +Kaµ(s)

)
ds

]
, t ∈ J.

If ξ(t) = (Ma + J
φ
)‖φ‖B +Kaµ(s) then we have

ξ(t) = (Ma + J
φ
)‖φ‖B +

Ka

1− c1

[
M [H + c1]‖φ‖B + c2[1 +M ]

+
qM

Γ(1 + q)

∫ t

0

(t− s)q−1p(s)Ω(ξ(s))ds
]

≤ (Ma + J
φ
)‖φ‖B +

Ka

1− c1

[
M [H + c1]‖φ‖B + c2[1 +M ] +MΩ(‖ξ‖∞)‖Iqp‖∞

]
.

Consequently,

‖ξ‖∞
(Ma + J

φ
)‖φ‖B + Ka

1−c1

[
M(H + c1)‖φ‖B + c2(1 +M) +MΩ(‖ξ‖∞)‖Iqp‖∞

] ≤ 1.
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Now, there exist L∗ such that ‖x‖∞ 6= L∗. set

U1 = {x ∈ Y : ‖x‖∞ < L∗ + 1}.

From the choice of U1 there is no x ∈ ∂U1 such that x = λΥ(x) for λ ∈ (0, 1).
To prove that Υ is completely continuous on S(a), we introduce the decomposition Υ = Υ1 +Υ2 introduced

in the proof of the Theorem 4.1. From the proof of Theorem 4.1, we obtain that Υ2 is completely continuous
on S(a) and from the condition (H5) it follows that Υ1 is completely continuous on S(a). As a consequence
of the nonlinear alternative of Leray-Schauder type [14], we deduce that Υ has a fixed point x in U1. Then Υ
has a fixed poinf, whixh is a solution of (4.1)-(4.2).

5 Example

In this section, we consider an applications of our abstract results. At first we introduce the required
technical framework. In the rest of this secion, X = L2([0, π]) and A : D(A) ⊂ X → X be the operator
Aw = w′′ with domain D(A) := {w ∈ X : w′′ ∈ X, w(0) = w(π) = 0}. It is well known that A is the
infinitesimal generator of an analytic semigroup on X.

Then

Aw = −
∞∑

n=1

n2 < w, en > en, w ∈ D(A),

where en(ξ) :=
(

2
π

)1/2 sin(nξ), 0 ≤ ξ ≤ π, n = 1, 2, . . . . Clearly A generates a compact semigroup T (t), t > 0
in X and it is given by

T (t)w =
∞∑

n=1

e−n2t < w, en > en, for everyw ∈ X.

Clearly the assumption (H1) is satisfied. Consider the fractional differential system

∂α

∂tα
u(t, ξ) =

∂2

∂ξ2
u(t, ξ) +

∫ t

−∞
a2(s− t)u(s− ρ1(t)ρ2(‖u(t)‖), ξ)ds, t ∈ J, ξ ∈ [0, π], (5.1)

submitted to the conditions

u(t, 0) = u(t, π) = 0, t ≥ 0, (5.2)

u(θ, ξ) = ϕ(θ, ξ), θ ≤ 0, 0 ≤ ξ ≤ π, (5.3)

where ∂α

∂tα is a Caputo fractional partial derivative of order 0 < α < 1. In the sequel, B = C0 ×L2(g,X) is the
space introduced in [20]; ϕ ∈ B with the identification ϕ(s)(θ) = ϕ(s, θ).

To treat this system, we assume that ρi : [0,∞) → [0,∞), i = 1, 2, are continuous functions and the
following condition.

(a) The functions a1 : R → R, are continuous and L1 =
(∫ 0

−∞
(a1(s))

2

g(s) ds
)1/2

<∞.

Under these conditions, we can define the operators f : J × B → X, and ρ : J × B → R by

f(t, ϕ)(ξ) =
∫ 0

−∞
a1(s)ϕ(s, ξ)ds, (5.4)

ρ(s, ϕ) = s− ρ1(s)ρ2(‖ ϕ(0) ‖), (5.5)

which permit to transform system (5.1)-(5.3) into the abstract Cauchy problem (1.1)-(1.2). Moreover, the maps
f is bounded linear operators with ‖ f ‖L(B,X)≤ L1. The following result is a direct consequence of Theorem
3.1.

Proposition 5.1. Let ϕ ∈ B be such that condition (H4) holds. Then there exists a mild solution of (5.1)-(5.3).
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