

Some inequalities for the q, k-Gamma and Beta functions

Kamel Brahim ${ }^{a, *}$ and Yosr sidomou ${ }^{b}$
${ }^{a, b}$ Institut Supérieur des Études Préparatoires en Biologie et Géologie de la Soukra, Tunisia.

Abstract

Using q-integral inequalities we establish some new inequalities for the q-k Gamma, Beta and Psi functions.

Keywords: q, k-Gamma, q, k-Beta, q-integral inequalities.

2010 MSC: 33D05, 33D60, 41A17.
(C) 2012 MJM. All rights reserved.

1 Introduction

The q-analogue Γ_{q} of the well known Gamma function was initially introduced by Thomae [11] and later deeply studied by Jackson [6]. The reader will find in the research literature more about this feature.
In [1], R. Diaz and C. Truel introduced a q, k-generalized Gamma and Beta functions and they proved integral representations for $\Gamma_{q, k}$ and $B_{q, k}$ functions.

This work is devoted to establish some inequalities for the generalized q, k-Gamma and Beta functions and this has been possible thanks to the inequalities that verify the q-Jackson's integral.

The paper is organized as follows: In section 2, we present some preliminaries and notations that will be useful in the sequel. In section 3 , we recall the q-Čebyšev's integral inequality for q-synchronous (q asynchronous) functions and in direct consequence, we deduce some inequalities involving q, k-Beta and q, k Gamma functions. In section 4, we establish some inequalities for these functions owing to the q-Holder's inequality. Finally section 5 is devoted to some applications of q-Grüss integral inequality.

2 Notations and preliminaries

To make this paper self containing, we provide in this section a summary of the mathematical notations and definitions useful. All of these results can be found in [4], [8] or [9].
Throughout this paper, we will fix $q \in] 0,1[, \quad k>0$ a real number.
For $a \in \mathbb{C}$, we write

$$
\begin{gathered}
{[a]_{q}=\frac{1-q^{a}}{1-q^{\prime}} \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad n=1,2 \ldots \infty,} \\
{[n]_{q}!=[1]_{q}[2]_{q} \ldots[n]_{q}, \quad n \in \mathbb{N} .}
\end{gathered}
$$

The q-derivative D_{q} of a function f is given by

$$
\begin{equation*}
\left(D_{q} f\right)(x)=\frac{f(x)-f(q x)}{(1-q) x}, \text { if } x \neq 0, \tag{2.1}
\end{equation*}
$$

[^0]and $\quad\left(D_{q} f\right)(0)=f^{\prime}(0)$ provided $f^{\prime}(0)$ exists.
The q-Jackson integrals from 0 to b and from 0 to ∞ are defined by (see [7])
\[

$$
\begin{equation*}
\int_{0}^{b} f(x) d_{q} x=(1-q) b \sum_{n=0}^{\infty} f\left(b q^{n}\right) q^{n} \tag{2.2}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\int_{0}^{\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} f\left(q^{n}\right) q^{n} \tag{2.3}
\end{equation*}
$$

provided the sums converge absolutely.
The q-Jackson integral in a generic interval $[a, b]$ is given by (see [7])

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d_{q} x-\int_{0}^{a} f(x) d_{q} x . \tag{2.4}
\end{equation*}
$$

We denote by I one of the following sets:

$$
\begin{gather*}
\mathbb{R}_{q,+}=\left\{q^{n}: n \in \mathbb{Z}\right\}, \tag{2.5}\\
{[0, b]_{q}=\left\{b q^{n}: n \in \mathbb{N}\right\}, \quad b>0,} \tag{2.6}\\
{[a, b]_{q}=\left\{b q^{r}: 0 \leq r \leq n\right\}, \quad b>0, \quad a=b q^{n}, n \in \mathbb{N}} \tag{2.7}
\end{gather*}
$$

and we note $\int_{I} f(x) d_{q} x$ the q-integral of f on the correspondent I.
Definition 2.1. let $x, y, s, t \in \mathbb{R}$ and $n \in \mathbb{N}$, we note by

1. $(x+y)_{q, k}^{n}:=\prod_{j=0}^{n-1}\left(x+q^{j k} y\right)$
2. $(1+x)_{q, k}^{\infty}:=\prod_{j=0}^{\infty}\left(1+q^{j k} x\right)$
3. $(1+x)_{q, k}^{t}:=\frac{(1+x)_{q, k}^{\infty}}{\left(1+q^{t} t\right)_{q, k}^{\infty}}$.

We have $(1+x)_{q, k}^{s+t}=(1+x)_{q, k}^{s}\left(1+q^{k s} x\right)_{q, k}^{t}$.
We recall the two q, k-analogues of the exponential function (see [1]) given by

$$
\begin{equation*}
E_{q, k}^{x}=\sum_{n=0}^{\infty} q^{\frac{k n(n-1)}{2}} \frac{x^{n}}{[n]_{q^{k}}!}=\left(1+\left(1-q^{k}\right) x\right)_{q, k}^{\infty} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{q, k}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{q^{k}}!}=\frac{1}{\left(1-\left(1-q^{k}\right) x\right)_{q, k}^{\infty}} . \tag{2.9}
\end{equation*}
$$

These q, k-exponential functions satisfy the following relations:
$D_{q^{k}} e_{q, k}^{x}=e_{q, k}^{x} \quad D_{q^{k}} E_{q, k}^{x}=E_{q, k}^{q^{k} x} \quad$ and $\quad E_{q, k}^{-x} e_{q, k}^{x}=e_{q, k}^{x} E_{q, k}^{-x}=1$.
The q, k-Gamma function is defined by [1]

$$
\begin{equation*}
\Gamma_{q, k}(x)=\frac{\left(1-q^{k}\right)_{q, k}^{\infty}}{\left(1-q^{x}\right)_{q, k}^{\infty}(1-q)^{\frac{x}{k}-1}} \quad x>0 \tag{2.10}
\end{equation*}
$$

When $k=1$ it reduces to the known q-Gamma function Γ_{q}.

It satisfies the following functional equation:

$$
\begin{equation*}
\Gamma_{q, k}(x+k)=[x]_{q} \Gamma_{q, k}(x), \quad \Gamma_{q, k}(k)=1 \tag{2.11}
\end{equation*}
$$

and having the following integral representation (see [1])

$$
\begin{equation*}
\Gamma_{q, k}(x)=\int_{0}^{\left(\frac{[k] q}{\left(1-q^{k}\right)}\right)^{\frac{1}{k}}} t^{x-1} E_{q, k}^{-\frac{q^{k} t^{k}}{[k]}} d_{q} t, x>0 \tag{2.12}
\end{equation*}
$$

The previous integral representation, give that $\Gamma_{q, k}$ is an infinitely differentiable function on $] 0,+\infty[$ and

$$
\begin{equation*}
\Gamma_{q, k}^{(i)}(x)=\int_{0}^{\left(\frac{[k] q}{\left(1-q^{k}\right)}\right)^{\frac{1}{k}}} t^{x-1}(\ln t)^{i} E_{q, k}^{-\frac{q^{k} k^{k}}{[k] q}} d_{q} t, \quad x>0, \quad i \in \mathbb{N} . \tag{2.13}
\end{equation*}
$$

The q, k-Beta function is defined by (see [1])

$$
\begin{equation*}
B_{q, k}(t, s)=[k]_{q}^{-\frac{t}{k}} \int_{0}^{[k]_{q}^{\frac{1}{k}}} x^{t-1}\left(1-q^{k} \frac{x^{k}}{[k]_{q}}\right)_{q, k}^{\frac{s}{k}-1} d_{q} x, \quad s>0, t>0 \tag{2.14}
\end{equation*}
$$

By using the following change of variable $u=\frac{x}{[k]_{q}^{\frac{1}{k}}}$, the last equation becomes

$$
\begin{equation*}
B_{q, k}(t, s)=\int_{0}^{1} u^{t-1}\left(1-q^{k} u^{k}\right)_{q, k}^{\frac{s}{k}-1} d_{q} u, \quad s>0, t>0 . \tag{2.15}
\end{equation*}
$$

It satisfies

$$
\begin{equation*}
B_{q, k}(t, s)=\frac{\Gamma_{q, k}(t) \Gamma_{q, k}(s)}{\Gamma_{q, k}(t+s)}, \quad s>0, t>0 \tag{2.16}
\end{equation*}
$$

$3 q$-Čebys̆ev's integral inequality and applications

We begin this section by recalling the q-C̆ebys̆ev's integral inequality for q-synchronous (q-asynchronous) mappings [3] and as applications we give some inequalities for the q, k-Beta and the q, k-Gamma functions.

Definition 3.2. Let f and g be two functions defined on I. The functions f and g are said q-synchronous (q-asynchronous) on I if

$$
\begin{equation*}
(f(x)-f(y))(g(x)-g(y)) \geq(\leq) 0 \quad \forall x, y \in I \tag{3.17}
\end{equation*}
$$

Note that if f and g are both q-increasing or q-decreasing on I then they are q-synchronous on I.
Proposition 3.1. Let f, g and h be three functions defined on I such that:

1. $h(x) \geq 0, \quad x \in I$,
2. f and g are q-synchronous (q-asynchronous) on I.

Then

$$
\begin{equation*}
\int_{I} h(x) d_{q} x \int_{I} h(x) f(x) g(x) d_{q} x \geq(\leq) \int_{I} h(x) f(x) d_{q} x \int_{I} h(x) g(x) d_{q} x \tag{3.18}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& \int_{I} h(x) d_{q} x \int_{I} h(x) f(x) g(x) d_{q} x-\int_{I} h(x) f(x) d_{q} x \int_{I} h(x) g(x) d_{q} x= \\
& 1 / 2 \int_{I} \int_{I} h(x) h(y)[f(x)-f(y)][g(x)-g(y)] d_{q} x d_{q} y
\end{aligned}
$$

So, the result follows from the conditions (1) and (2).
The following theorem is a direct consequence of the previous proposition.

Theorem 3.1. Let m, n, p and p^{\prime} be some positive reals such that

$$
(p-m)\left(p^{\prime}-n\right) \leq(\geq) 0
$$

Then

$$
\begin{equation*}
B_{q, k}\left(p, p^{\prime}\right) B_{q, k}(m, n) \geq(\leq) B_{q, k}(p, n) B_{q, k}\left(m, p^{\prime}\right) \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{q, k}(p+n) \Gamma_{q, k}\left(p^{\prime}+m\right) \geq(\leq) \Gamma_{q, k}\left(p+p^{\prime}\right) \Gamma_{q, k}(m+n) \tag{3.20}
\end{equation*}
$$

Proof. Fix m, n, p and p^{\prime} in $] 0, \quad+\infty[$, satisfying the condition of the theorem and the functions f, g and h defined on $[0,1]_{q}$ by

$$
f(u)=u^{p-m}, \quad g(u)=\left(1-q^{n} u^{k}\right)_{q, k}^{\frac{p^{\prime}-n}{k}} \quad \text { and } \quad h(u)=u^{m-1}\left(1-q^{k} u^{k}\right)_{q, k}^{\frac{n}{k}-1}
$$

From the relations

$$
\begin{equation*}
D_{q} f(u)=[p-m]_{q} u^{p-m-1} \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{q} g(u)=\left[n-p^{\prime}\right]_{q} q^{p^{\prime}} u^{k-1}\left(1-q^{n+k} u^{k}\right)_{q, k}^{\frac{p^{\prime}-n}{k}-1} \tag{3.22}
\end{equation*}
$$

one can see that f and g are q-synchronous (q-asynchronous) on $I=[0,1]_{q}$.
So, by using the relation 2.15 and Proposition 3.1.
we obtain

$$
\begin{aligned}
& \int_{0}^{1} u^{m-1}\left(1-q^{k} u^{k}\right)_{q, k}^{\frac{n}{k}-1} d_{q} u \int_{0}^{1} u^{p-1}\left(1-q^{k} u^{k}\right)_{q, k}^{\frac{n}{k}-1}\left(1-q^{n} u^{k}\right)_{q, k}^{\frac{p^{\prime}-n}{k}} d_{q} u \geq \\
(\leq) & \int_{0}^{1} u^{p-1}\left(1-q^{k} u^{k}\right)_{q, k}^{\frac{n}{k}-1} d_{q} u \int_{0}^{1} u^{m-1}\left(1-q^{k} u^{k}\right)_{q, k}^{\frac{n}{k}-1}\left(1-q^{n} u^{k}\right)_{q, k}^{\frac{p^{\prime}-n}{k}} d_{q} u
\end{aligned}
$$

which implies that

$$
\begin{equation*}
B_{q, k}(m, n) B_{q, k}\left(p, p^{\prime}\right) \geq(\leq) B_{q, k}(p, n) B_{q, k}\left(m, p^{\prime}\right) \tag{3.23}
\end{equation*}
$$

Now, according to the relations (2.16) and (3.19, we obtain

$$
\begin{equation*}
\frac{\Gamma_{q, k}(m) \Gamma_{q, k}(n)}{\Gamma_{q, k}(m+n)} \frac{\Gamma_{q, k}(p) \Gamma_{q, k}\left(p^{\prime}\right)}{\Gamma_{q, k}\left(p+p^{\prime}\right)} \geq(\leq) \frac{\Gamma_{q, k}(p) \Gamma_{q, k}(n)}{\Gamma_{q, k}(p+n)} \frac{\Gamma_{q, k}(m) \Gamma_{q, k}\left(p^{\prime}\right)}{\Gamma_{q, k}\left(m+p^{\prime}\right)} \tag{3.24}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\Gamma_{q, k}(p+n) \Gamma_{q, k}\left(p^{\prime}+m\right) \geq(\leq) \Gamma_{q, k}\left(p+p^{\prime}\right) \Gamma_{q, k}(m+n) \tag{3.25}
\end{equation*}
$$

Corollary 3.1. For all $p, m>0$, we have

$$
\begin{equation*}
B_{q, k}(p, m) \geq\left[B_{q, k}(p, p) B_{q, k}(m, m)\right]^{1 / 2} \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{q, k}(p+m) \leq\left[\Gamma_{q, k}(2 p) \Gamma_{q, k}(2 m)\right]^{1 / 2} \tag{3.27}
\end{equation*}
$$

Proof. A direct application of Theorem 3.1, with $p^{\prime}=p$ and $n=m$, gives the results.
Corollary 3.2. For all $u, v>0$, we have

$$
\begin{equation*}
\Gamma_{q, k}\left(\frac{u+v}{2}\right) \leq \sqrt{\Gamma_{q, k}(u) \Gamma_{q, k}(v)} \tag{3.28}
\end{equation*}
$$

Proof. The inequality follows from 3.27, by taking $p=\frac{u}{2}$ and $m=\frac{v}{2}$.

Theorem 3.2. Let m, p and r be real numbers satisfying $m, p>0$ and $p>r>-m$ and let n be a nonnegative integer. If

$$
\begin{equation*}
r(p-m-r) \geq(\leq) 0 \tag{3.29}
\end{equation*}
$$

then

$$
\begin{equation*}
\Gamma_{q, k}^{(2 n)}(p) \Gamma_{q, k}^{(2 n)}(m) \geq(\leq) \Gamma_{q, k}^{(2 n)}(p-r) \Gamma_{q, k}^{(2 n)}(m+r) \tag{3.30}
\end{equation*}
$$

Proof. Let f, g and h be the functions defined on $I=\left[0,\left(\frac{[k]_{q}}{\left(1-q^{k}\right)}\right)^{\frac{1}{k}}\right]_{q}$ by

$$
f(x)=x^{p-m-r}, \quad g(x)=x^{r} \quad \text { and } \quad h(x)=x^{m-1} E_{q, k}^{-q^{k} \frac{x^{k}}{[k] q}}(\ln x)^{2 n}
$$

We have

$$
D_{q} f(x)=[p-m-r]_{q} x^{p-m-r-1} \quad \text { and } \quad D_{q} g(x)=[r]_{q} x^{r-1}
$$

If the condition 3.29 holds, one can show that the functions f and g are q-synchronous (q-asynchronous) on I and Proposition 3.1 gives

$$
\begin{aligned}
& \int_{I} x^{m-1} E_{q, k}^{-q^{k} \frac{x^{k}}{k]]_{q}}}(\ln x)^{2 n} d_{q} x \int_{I} x^{p-m-r} x^{r} x^{m-1} E_{q, k}^{-q^{k} \frac{x^{k}}{[k] q}}(\ln x)^{2 n} d_{q} x \\
& \geq(\leq) \int_{I} x^{p-m-r} x^{m-1} E_{q, k}^{-q^{k} \frac{x^{k}}{k k_{q}}}(\ln x)^{2 n} d_{q} x \int_{I} x^{r} x^{m-1} E_{q, k}^{-q^{k} \frac{x^{k}}{[k]_{q}}}(\ln x)^{2 n} d_{q} x
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \int_{I} x^{m-1} E_{q, k}^{-q^{k} \frac{x^{k}}{[k] q}}(\ln x)^{2 n} d_{q} x \int_{I} x^{p-1} E_{q, k}^{-q^{k} \frac{x^{k}}{[k] q}}(\ln x)^{2 n} d_{q} x \\
& \geq(\leq) \int_{I} x^{p-r-1} E_{q, k}^{-q^{k} \frac{x^{k}}{[k] q}}(\ln x)^{2 n} d_{q} x \int_{I} x^{r+m-1} E_{q, k}^{-q^{k} \frac{x^{k}}{k l q}}(\ln x)^{2 n} d_{q} x .
\end{aligned}
$$

Hence, the relation

$$
\Gamma_{q, k}^{(i)}(x)=\int_{I} t^{x-1}(\ln t)^{i} E_{q, k}^{-q^{k} \frac{t^{k}}{[k] q}} d_{q} t, \quad x>0, \quad i \in \mathbb{N},
$$

gives

$$
\begin{equation*}
\Gamma_{q, k}^{(2 n)}(m) \Gamma_{q, k}^{(2 n)}(p) \geq(\leq) \Gamma_{q, k}^{(2 n)}(p-r) \Gamma_{q, k}^{(2 n)}(m+r) \tag{3.31}
\end{equation*}
$$

Taking $n=0$ in the previous theorem, we obtain the following result.
Corollary 3.3. Let m, p and r be some real numbers under the conditions of Theorem 3.2 we have

$$
\begin{equation*}
\Gamma_{q, k}(p) \Gamma_{q, k}(m) \geq(\leq) \Gamma_{q, k}(p-r) \Gamma_{q, k}(m+r) \tag{3.32}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{q, k}(p, m) \geq(\leq) B_{q, k}(p-r, m+r) \tag{3.33}
\end{equation*}
$$

Corollary 3.4. Let n be a nonnegative integer, $p>0$ and $p^{\prime} \in \mathbb{R}$ such that $\left|p^{\prime}\right|<p$. Then

$$
\begin{equation*}
\left[\Gamma_{q, k}^{(2 n)}(p)\right]^{2} \leq \Gamma_{q, k}^{(2 n)}\left(p-p^{\prime}\right) \Gamma_{q, k}^{(2 n)}\left(p+p^{\prime}\right) \tag{3.34}
\end{equation*}
$$

Proof. By choosing $m=p$ and $r=p^{\prime}$, we obtain

$$
r(p-m-r)=-\left(p^{\prime}\right)^{2} \leq 0
$$

and the result turns out from Theorem 3.2

Taking in the previous result $p=\frac{u+v}{2}$ and $p^{\prime}=\frac{u-v}{2}$, we obtain the following result:
Corollary 3.5. Let u, v be two positive real numbers and n be a nonnegative integer. Then

$$
\begin{equation*}
\Gamma_{q, k}^{(2 n)}\left(\frac{u+v}{2}\right) \leq \sqrt{\Gamma_{q, k}^{(2 n)}(u) \Gamma_{q, k}^{(2 n)}(v)} . \tag{3.35}
\end{equation*}
$$

Corollary 3.6. Let $p>0$ and $p^{\prime} \in \mathbb{R}$ such that $\left|p^{\prime}\right|<p$.
Then

$$
\begin{equation*}
\Gamma_{q, k}^{2}(p) \leq \Gamma_{q, k}\left(p-p^{\prime}\right) \Gamma_{q, k}\left(p+p^{\prime}\right) \tag{3.36}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{q, k}(p, p) \leq B_{q, k}\left(p-p^{\prime}, p+p^{\prime}\right) \tag{3.37}
\end{equation*}
$$

Proof. For $n=0$, the inequality 3.34 becomes

$$
\Gamma_{q, k}^{2}(p) \leq \Gamma_{q, k}\left(p-p^{\prime}\right) \Gamma_{q, k}\left(p+p^{\prime}\right)
$$

The inequality 3.37 follows from (2.16).
Theorem 3.3. Let a and b be two positive real numbers such

$$
(a-k)(b-k) \geq(\leq) 0
$$

and n a nonnegative integer. Then

$$
\begin{equation*}
\Gamma_{q, k}^{(2 n)}(2 k) \Gamma_{q, k}^{(2 n)}(a+b) \geq(\leq) \Gamma_{q, k}^{(2 n)}(a+k) \Gamma_{q, k}^{(2 n)}(b+k) \tag{3.38}
\end{equation*}
$$

Proof. In Theorem 3.2, set $m=2 k, p=a+b$ and $r=b-k$. The condition 3.29) becomes

$$
\begin{equation*}
r(p-m-r)=(a-k)(b-k) \geq(\leq) 0 \tag{3.39}
\end{equation*}
$$

So,

$$
\begin{equation*}
\Gamma_{q, k}^{(2 n)}(2 k) \Gamma_{q, k}^{(2 n)}(a+b) \geq(\leq) \Gamma_{q, k}^{(2 n)}(a+k) \Gamma_{q, k}^{(2 n)}(b+k) \tag{3.40}
\end{equation*}
$$

Corollary 3.7. If $a, b>0$ such $(a-k)(b-k) \geq(\leq) 0$. Then

$$
\begin{equation*}
\Gamma_{q, k}(a+b) \geq(\leq) \frac{[a]_{q}[b]_{q}}{[k]_{q}} \Gamma_{q, k}(a) \Gamma_{q, k}(b) \tag{3.41}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{q, k}(a, b) \leq(\geq) \frac{[k]_{q}}{[a]_{q}[b]_{q}} \tag{3.42}
\end{equation*}
$$

Proof. The inequality (3.41) follows from the previous theorem by taking $n=0$ and using the facts that $\Gamma_{q, k}(2 k)=[k]_{q}, \Gamma_{q, k}(a+k)=[a]_{q} \Gamma_{q, k}(a)$ and $\Gamma_{q, k}(b+k)=[b]_{q} \Gamma_{q, k}(b)$. 2.16, together with 3.41) give 3.42.

Corollary 3.8. The function $\ln \Gamma_{q, k}$ is superadditive for $x \geq k$ and $k \geq 1$, in the sense that

$$
\ln \Gamma_{q, k}(a+b) \geq \ln \Gamma_{q, k}(a)+\ln \Gamma_{q, k}(b)
$$

Proof. For all $a, b \geq k$, we have

$$
\begin{aligned}
\ln \Gamma_{q, k}(a+b) & \geq \ln \frac{[a]_{q}[b]_{q}}{[k]_{q}}+\ln \Gamma_{q, k}(a)+\ln \Gamma_{q, k}(b) \\
& \geq \ln \Gamma_{q, k}(a)+\ln \Gamma_{q, k}(b)
\end{aligned}
$$

which completes the proof.

Corollary 3.9. For $a \geq k$ and $n=1,2, \ldots$, we have

$$
\begin{equation*}
\Gamma_{q, k}(n a) \geq \frac{[n-1]_{q^{a}}![a]_{q}^{2(n-1)}}{[k]_{q}^{n-1}}\left[\Gamma_{q, k}(a)\right]^{n} \tag{3.43}
\end{equation*}
$$

Proof. We proceed by induction on n.
It is clear that the inequality is true for $n=1$.
Suppose that 3.43 holds for an integer $n \geq 1$ and let us prove it for $n+1$.
By (3.41), we have

$$
\begin{equation*}
\Gamma_{q, k}((n+1) a)=\Gamma_{q, k}(n a+a) \geq \frac{[n a]_{q}[a]_{q}}{[k]_{q}} \Gamma_{q, k}(n a) \Gamma_{q, k}(a) \tag{3.44}
\end{equation*}
$$

and by hypothesis, we have

$$
\begin{equation*}
\Gamma_{q, k}(n a) \geq \frac{[n-1]_{q^{a}}![a]_{q}^{2(n-1)}}{[k]_{q}^{n-1}}\left[\Gamma_{q, k}(a)\right]^{n} \tag{3.45}
\end{equation*}
$$

The use of the fact that $[n a]_{q}=[n]_{q^{a}}[a]_{q}$, gives

$$
\begin{aligned}
\Gamma_{q, k}((n+1) a) & \geq \frac{[n a]_{q}[a]_{q}[n-1]_{q^{a}}![a]_{q}^{2(n-1)}}{[k]_{q}^{n}}\left[\Gamma_{q, k}(a)\right]^{n} \Gamma_{q, k}(a) \\
& \geq \frac{[n]_{q^{a}}![a]_{q}^{2 n}}{[k]_{q}^{n}}\left[\Gamma_{q, k}(a)\right]^{n+1}
\end{aligned}
$$

The inequality 3.43 is then true for $n+1$.
For a given real $m>0$ and a nonnegative integer n, consider the mapping

$$
\Gamma_{q, k, m, n}(x)=\frac{\Gamma_{q, k}^{(2 n)}(x+m)}{\Gamma_{q, k}^{(2 n)}(m)}
$$

We have the following result.
Corollary 3.10. The mapping $\Gamma_{q, k, m, n}($.$) is suppermultiplicative on [0, \infty)$, in the sense

$$
\Gamma_{q, k, m, n}(x+y) \geq \Gamma_{q, k, m, n}(x) \Gamma_{q, k, m, n}(y)
$$

Proof. Fix x, y in $[0, \infty)$ and put $p=x+y+m$ and $r=y$. We have

$$
y(x+y+m-m-y)=x y \geq 0
$$

So, the theorem 3.2 leads to

$$
\begin{equation*}
\Gamma_{q, k}^{(2 n)}(m) \Gamma_{q, k}^{(2 n)}(x+y+m) \geq \Gamma_{q, k}^{(2 n)}(x+m) \Gamma_{q, k}^{(2 n)}(y+m) \tag{3.46}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\Gamma_{q, k, m, n}(x+y) \geq \Gamma_{q, k, m, n}(x) \Gamma_{q, k, m, n}(y) \tag{3.47}
\end{equation*}
$$

This achieves the proof.

4 Inequalities via the q-Hölder's one

We begin this section by recalling the q-analogue of the Hölder's integral inequality [3].
Lemma 4.1. Let p and p^{\prime} be two positive reals satisfying $\frac{1}{p}+\frac{1}{p^{\prime}}=1, f$ and g be two functions defined on I. Then

$$
\begin{equation*}
\left|\int_{I} f(x) g(x) d_{q} x\right| \leq\left(\int_{I}|f(x)|^{p} d_{q} x\right)^{\frac{1}{p}}\left(\int_{I}|g(x)|^{p^{\prime}} d_{q} x\right)^{\frac{1}{p^{\prime}}} \tag{4.48}
\end{equation*}
$$

Owing this lemma, one can establish some new inequalities involving the q, k-Gamma and q, k-Beta functions.

Theorem 4.4. Let n be a nonnegative integer, x, y be two positive real numbers and a, b be two nonnegative real numbers such that $a+b=1$. Then

$$
\begin{equation*}
\Gamma_{q, k}^{(2 n)}(a x+b y) \leq\left[\Gamma_{q, k}^{(2 n)}(x)\right]^{a}\left[\Gamma_{q, k}^{(2 n)}(y)\right]^{b} \tag{4.49}
\end{equation*}
$$

that is, the mapping $\Gamma_{q, k}^{(2 n)}$ is logarithmically convex on $(0, \infty)$.
Proof. Consider the following functions defined on $I=\left[0,\left(\frac{[k]_{q}}{\left(1-q^{k}\right)}\right)^{\frac{1}{k}}\right]_{q}$,

$$
f(t)=t^{a(x-1)}\left(E_{q, k}^{-q^{k} \frac{\left.\frac{t}{k}^{k}\right]_{q}}{}}(\ln t)^{2 n}\right)^{a} \quad \text { and } \quad g(t)=t^{b(y-1)}\left(E_{q, k}^{-q^{k} \frac{t^{k}}{[k] q}}(\ln t)^{2 n}\right)^{b} .
$$

By application of the q-Hölder's integral inequality, with $p=\frac{1}{a}$, we get

$$
\begin{aligned}
\int_{I} t^{a(x-1)} t^{b(y-1)} E_{q, k}^{-q^{k}\left[\frac{t}{k}^{[k] q}\right.}(\ln t)^{2 n} d_{q} t \leq & {\left[\int_{I} t^{a(x-1) \cdot(1 / a)} E_{q, k}^{-q^{k} \frac{t^{k}}{k[]_{q}}}(\ln t)^{2 n} d_{q} t\right]^{a} \times } \\
& {\left[\int_{I} t^{b(y-1) \cdot(1 / b)} E_{q, k}^{-q^{k} \frac{t^{k}}{[k] q}}(\ln t)^{2 n} d_{q} t\right]^{b}, }
\end{aligned}
$$

which is equivalent to

$$
\int_{I} t^{a x+b y-1} E_{q, k}^{-q^{k} \frac{t^{k}}{\left[k k_{q}\right.}}(\ln t)^{2 n} d_{q} t \leq\left[\int_{I} t^{x-1} E_{q, k}^{-q^{k} \frac{t^{k}}{\left[k_{q}\right.}}(\ln t)^{2 n} d_{q} t\right]^{a}\left[\int_{I} t^{y-1} E_{q, k}^{-q^{k} \frac{t^{k}}{\left[k k_{q}\right.}}(\ln t)^{2 n} d_{q} t\right]^{b}
$$

Then, 4.49 is a direct consequence of 2.13 .
Corollary 4.11. Let $\left(p, p^{\prime}\right),\left(m, m^{\prime}\right) \in(0, \infty)^{2}$ such that $p+p^{\prime}=m+m^{\prime}$ and $a, b \geq 0$ with $a+b=1$. Then, we have

$$
\begin{equation*}
B_{q, k}\left(a\left(p, p^{\prime}\right)+b\left(m, m^{\prime}\right)\right) \leq\left[B_{q, k}\left(p, p^{\prime}\right)\right]^{a}\left[B_{q, k}\left(m, m^{\prime}\right)\right]^{b} . \tag{4.50}
\end{equation*}
$$

Proof. On the one hand, we have

$$
\begin{aligned}
B_{q_{, k}}\left(a\left(p, p^{\prime}\right)+b\left(m, m^{\prime}\right)\right) & =B_{q, k}\left(a p+b m, a p^{\prime}+b m^{\prime}\right)=\frac{\Gamma_{q, k}(a p+b m) \Gamma_{q, k}\left(a p^{\prime}+b m^{\prime}\right)}{\Gamma_{q, k}\left(a p+b m+a p^{\prime}+b m^{\prime}\right)} \\
& =\frac{\Gamma_{q, k}(a p+b m) \Gamma_{q, k}\left(a p^{\prime}+b m^{\prime}\right)}{\Gamma_{q, k}\left(a\left(p+p^{\prime}\right)+b\left(m+m^{\prime}\right)\right)}
\end{aligned}
$$

Since $p+p^{\prime}=m+m^{\prime}$ and $a+b=1$, we have

$$
\begin{equation*}
\Gamma_{q, k}\left(a\left(p+p^{\prime}\right)+b\left(m+m^{\prime}\right)\right)=\Gamma_{q, k}\left(p+p^{\prime}\right)=\Gamma_{q, k}\left(m+m^{\prime}\right) \tag{4.51}
\end{equation*}
$$

On the other hand, from Theorem 4.4 with $n=0$, we obtain

$$
\begin{equation*}
\Gamma_{q, k}(a p+b m) \leq\left[\Gamma_{q, k}(p)\right]^{a}\left[\Gamma_{q, k}(m)\right]^{b} \tag{4.52}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{q, k}\left(a p^{\prime}+b m^{\prime}\right) \leq\left[\Gamma_{q, k}\left(p^{\prime}\right)\right]^{a}\left[\Gamma_{q, k}\left(m^{\prime}\right)\right]^{b} \tag{4.53}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\Gamma_{q, k}(a p+b m) \Gamma_{q, k}\left(a p^{\prime}+b m^{\prime}\right) \leq\left[\Gamma_{q, k}(p) \Gamma_{q, k}\left(p^{\prime}\right)\right]^{a}\left[\Gamma_{q, k}(m) \Gamma_{q, k}\left(m^{\prime}\right)\right]^{b} \tag{4.54}
\end{equation*}
$$

From (4.51, we deduce that

$$
\begin{equation*}
\frac{\Gamma_{q, k}(a p+b m) \Gamma_{q, k}\left(a p^{\prime}+b m^{\prime}\right)}{\Gamma_{q, k}\left(a\left(p+p^{\prime}\right)+b\left(m+m^{\prime}\right)\right)} \leq\left[\frac{\Gamma_{q, k}(p) \Gamma_{q, k}\left(p^{\prime}\right)}{\Gamma_{q, k}\left(p+p^{\prime}\right)}\right]^{a}\left[\frac{\Gamma_{q, k}(m) \Gamma_{q, k}\left(m^{\prime}\right)}{\Gamma_{q, k}\left(m+m^{\prime}\right)}\right]^{b} \tag{4.55}
\end{equation*}
$$

which completes the proof.

Now, we recall that the logarithmic derivative of the q, k-Gamma function is defined on $(0, \infty)$, by

$$
\Psi_{q, k}(x)=\frac{\Gamma_{q, k}^{\prime}(x)}{\Gamma_{q, k}(x)}
$$

The following result gives some properties of the function $\Psi_{q, k}$.
Theorem 4.5. $\Psi_{q, k}$ is monotonic non-decreasing and concave on $(0, \infty)$.
Proof. By taking $n=0$ in Theorem 4.4. we obtain

$$
\Gamma_{q, k}(a x+b y) \leq\left[\Gamma_{q, k}(x)\right]^{a}\left[\Gamma_{q, k}(y)\right]^{b}
$$

for $x, y>0$ and $a, b \geq 0$ such that $a+b=1$.
So the function $\ln \Gamma_{q, k}$ is convex. Then the monotonicity of $\Psi_{q, k}$ follows from the relation

$$
\frac{d}{d x}\left[\ln \Gamma_{q, k}(x)\right]=\frac{\Gamma_{q, k}^{\prime}(x)}{\Gamma_{q, k}(x)}=\Psi_{q, k}(x), x>0
$$

On the other hand, since

$$
\begin{equation*}
\Gamma_{q, k}(x)=\frac{\left(1-q^{k}\right)_{q, k}^{\infty}}{\left(1-q^{x}\right)_{q, k}^{\infty}(1-q)^{\frac{x}{k}-1}} \tag{4.56}
\end{equation*}
$$

we obtain, for $x>0$,

$$
\begin{aligned}
\Psi_{q, k}(x) & =\frac{d}{d x}\left[\ln \Gamma_{q, k}(x)\right]=-\frac{1}{k} \ln (1-q)+\ln q \sum_{j=0}^{\infty} \frac{q^{x+j k}}{1-q^{x+j k}} \\
& =-\frac{1}{k} \ln (1-q)+\ln q \sum_{j=0}^{\infty} q^{x+j k} \sum_{n=0}^{\infty} q^{(x+j k) n}=-\frac{1}{k} \ln (1-q)+\ln q \sum_{n=0}^{\infty} \frac{q^{(n+1) x}}{1-q^{(n+1) k}} \\
& =-\frac{1}{k} \ln (1-q)+\frac{\ln q}{(1-q)} \int_{0}^{q} \frac{t^{x-1}}{1-t^{k}} d_{q} t .
\end{aligned}
$$

Now, let $x, y>0$ and $a, b \geq 0$ such that $a+b=1$. Then

$$
\begin{equation*}
\Psi_{q, k}(a x+b y)+\frac{1}{k} \ln (1-q)=\frac{\ln q}{(1-q)} \int_{0}^{q} \frac{t^{a x+b y-1}}{1-t^{k}} d_{q} t=\frac{\ln q}{(1-q)} \int_{0}^{q} \frac{t^{a(x-1)+b(y-1)}}{1-t^{k}} d_{q} t \tag{4.57}
\end{equation*}
$$

Since the mapping $x \mapsto t^{x}$ is convex on \mathbb{R} for $t \in(0,1)$, we have

$$
t^{a(x-1)+b(y-1)} \leq a t^{x-1}+b t^{y-1}, \text { for } t \in[0, q]_{q}, x, y>0
$$

Thus,

$$
\begin{equation*}
\frac{\ln q}{(1-q)} \int_{0}^{q} \frac{t^{a x+b y-1}}{1-t^{k}} d_{q} t \geq a\left(\frac{\ln q}{(1-q)} \int_{0}^{q} \frac{t^{x-1}}{1-t^{k}} d_{q} t\right)+b\left(\frac{\ln q}{(1-q)} \int_{0}^{q} \frac{t^{y-1}}{1-t^{k}} d_{q} t\right) \tag{4.58}
\end{equation*}
$$

According to the relations 4.57 and 4.58 , we have

$$
\begin{aligned}
\Psi_{q, k}(a x+b y)+\frac{1}{k} \ln (1-q) & \geq a\left(\Psi_{q, k}(x)+\frac{1}{k} \ln (1-q)\right)+b\left(\Psi_{q, k}(y)+\frac{1}{k} \ln (1-q)\right) \\
& \geq a \Psi_{q, k}(x)+b \Psi_{q, k}(y)+\frac{1}{k} \ln (1-q)
\end{aligned}
$$

This proves the concavity of the function $\Psi_{q, k}$.

5 Inequalities via the q-Grüss's one

In [5] H. Gauchman gave a q-analogue of the Grüss' integral inequality namely.
Lemma 5.2. Assume that $m \leq f(x) \leq M, \varphi \leq g(x) \leq \Phi$, for each $x \in[a, b]$, where m, M, φ, Φ are given real constants. Then

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d_{q} x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d_{q} x \int_{a}^{b} g(x) d_{q} x\right| \leq \frac{1}{4}(M-m)(\Phi-\varphi) \tag{5.59}
\end{equation*}
$$

As application of the previous inequality we state the following result
Theorem 5.6. Let $m, n>0$, we have

$$
\begin{equation*}
\left|B_{q, k}(m+k, n+k)-\frac{1}{[m+1]_{q}[n+k]_{q}}\right| \leq \frac{1}{4} \tag{5.60}
\end{equation*}
$$

Remark that from the relations 2.16 and 2.11 , the inequality 5.60 is equivalent to

$$
\begin{equation*}
\left|\Gamma_{q, k}(m+n+2 k)-\Gamma_{q, k}(n+2 k) \Gamma_{q, k}(m+k)[m+1]_{q}\right| \leq \frac{1}{4}[m+1]_{q}[n+k]_{q} \Gamma_{q, k}(m+n+2 k) \tag{5.61}
\end{equation*}
$$

Proof. Consider the functions

$$
f(u)=u^{m}, \quad g(u)=u^{k-1}\left(1-q^{k} u^{k}\right)_{q, k^{\prime}}^{\frac{n}{k}} \quad u \in[0,1]_{q}, \quad m, n>0
$$

We have

$$
0 \leq f(u) \leq 1 \quad \text { and } \quad 0 \leq g(u) \leq 1 \quad \forall u \in[0,1]_{q} .
$$

Then, using the q-Grüss' integral inequality, we obtain

$$
\begin{equation*}
\left|\int_{0}^{1} u^{m+k-1}\left(1-q^{k} u^{k}\right)_{q, k}^{\frac{n}{k}} d_{q} u-\int_{0}^{1} u^{m} d_{q} u \int_{0}^{1} u^{k-1}\left(1-q^{k} u^{k}\right)_{q, k}^{\frac{n}{k}} d_{q} u\right| \leq \frac{1}{4} \tag{5.62}
\end{equation*}
$$

The inequality 5.60 follows from the definition of the q, k-Beta function 2.15 and the following facts:
$\int_{0}^{1} u^{m} d_{q} u=\frac{1}{[m+1]_{q}}$ and
$\int_{0}^{1} u^{k-1}\left(1-q^{k} u^{k}\right)_{q, k}^{\frac{n}{k}} d_{q} u=B_{q, k}(k, n+k)=\frac{1}{[n+k]_{q}}$.

References

[1] R. Diaz, C. Teruel, q, k-Generalized Gamma and Beta Functions, Journal of Nonlinear Mathematical Physics, Volume 12, Number 1 (2005), 118-134.
[2] S. S. Dragomir, R. P. Agarwal, and N. S. Barnett, Inequality for Beta and Gamma functions via some classical and new integral inequalities, J. Inequal., 5(2)(2000), 103-165.
[3] A. Fitouhi, K. Brahim, Some inequalities for the q-Beta and the q-Gamma functions via some q-integral inequalities, Applied Mathematics and computation, 204(2008), 385-394.
[4] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Application, Vol 35 Cambridge Univ. Press, Cambridge, UK, 1990.
[5] H. Gauchman, Integral Inequalities in q-Calculus, Computers and Mathematics with Applications, 47(2004), 281-300.
[6] F. H. Jackson, A generalization of the function Γ (n) and x^{n}, Proc. Roy. Soc. London, (74)(1904), 64-72.
[7] F. H. Jackson, On a q-Definite Integrals, Quarterly Journal of Pure and Applied Mathematics, 41(1910), 193203.
[8] V. G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
[9] T. H. Koornwinder, q-Special Functions, a Tutorial, in Deformation theory and quantum groups with applications to mathematical physics, M. Gerstenhaber and J. Stasheff (eds), Contemp. Math. 134, Amer. Math. Soc., (1992).
[10] T. H. Koornwinder, Special Functions and q-Commuting Variables, in Special Functions, q-Series and related Topics, M. E. H. Ismail, D. R. Masson and M. Rahman (eds), Fields Institute Communications 14, American Mathematical Society, (1997), pp. 131-166; arXiv:q-alg/9608008.
[11] J. Thomae, Beitrage zur Theorie der durch die Heinesche Reihe, J. reine angew. Math., (70)(1869), 258-281.

Received: April 3, 2013; Accepted: November 25, 2013

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

[^0]: *Corresponding author.
 E-mail addresses: kamel710@yahoo.fr (Kamel Brahim), sidomouyosr@yahoo.fr (Yosr sidomou).

