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Abstract

Using g-integral inequalities we establish some new inequalities for the g-k Gamma, Beta and Psi func-
tions.
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1 Introduction

The g-analogue I'; of the well known Gamma function was initially introduced by Thomae [11] and later
deeply studied by Jackson [6]. The reader will find in the research literature more about this feature.
In [1], R. Diaz and C. Truel introduced a g, k-generalized Gamma and Beta functions and they proved integral
representations for I'y ; and B, ; functions.

This work is devoted to establish some inequalities for the generalized g, k-Gamma and Beta functions and
this has been possible thanks to the inequalities that verify the g-Jackson’s integral.

The paper is organized as follows: In section 2, we present some preliminaries and notations that will
be useful in the sequel. In section 3, we recall the g-Cebysev’s integral inequality for g-synchronous (g-
asynchronous) functions and in direct consequence, we deduce some inequalities involving g, k-Beta and g, k-
Gamma functions. In section 4, we establish some inequalities for these functions owing to the g-Holder’s
inequality. Finally section 5 is devoted to some applications of g-Griiss integral inequality.

2 Notations and preliminaries

To make this paper self containing, we provide in this section a summary of the mathematical notations
and definitions useful. All of these results can be found in [4], [8] or [9].
Throughout this paper, we will fix g €]0,1[, k > 0 a real number.
For a € C, we write

1— qa n—1 ‘
[a]g = 1-4" (@:9)n =] —ag"), n=1,2...c0,
q k=0

(gt = [1)y[2)g[n)g,  n€N.

The g-derivative D, of a function f is given by

_ flx) = flgx) .
(Dgf)(x) = Td—gpx if x#0, (2.1)
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and (D,;f)(0) = f'(0) provided f'(0) exists.
The g-Jackson integrals from 0 to b and from 0 to co are defined by (see [7])

[0}

b
/0 f@)dgx = (1— )b Y £(bg")q"

n=0

and

/ Tfodx=1-q) Y fla",

n=—oo

provided the sums converge absolutely.
The g-Jackson integral in a generic interval [a, D] is given by (see [7])

/a bf(x)dqx = /O hf(X)dqxf /0 ’ f(x)dgx.

We denote by I one of the following sets:

]Rq,_t,. = {E]n ne Z},

[0,b]; ={bq" :n € N}, b>0,

la,bl;={bg": 0<r<mn}, b>0, a=bg",neN

and we note / f(x)d,x the g-integral of f on the correspondent I.
I

Definition 2.1. let x,y,s,t € Rand n € N, we note by
L (x+y)p =TT (x+'y)

2. (1+ x);‘fk =TTl + 7% x)

(1+x);‘,’k

o

We have (1 + x)f]j(t = (1+x)5,(1+ qksx);,k.

We recall the two g, k-analogues of the exponential function (see [1]) given by

n

had kn(n-1) x
L=y g = (1 (-
n=0 [n]qk'

and
1

oo X
ef = = .
= LTl T T 0

These g, k-exponential functions satisfy the following relations:
k
_ _ i - _ -X _
Dyeg =g DyEg=Ej, and  E fey=eEp=1
The g, k-Gamma function is defined by [1]
(1—q%5%
(1-g)5 (-t

When k = 1 it reduces to the known g-Gamma function I';.

Lyx(x) = x> 0.

2.2)

(2.3)

2.4)

(2.5)

(2.6)

2.7)

2.8)

(2.9)

(2.10)
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It satisfies the following functional equation:
Fq/k(x +k) = [x]ql“q,k(x), Fq,k(k) =1 (2.11)

and having the following integral representation (see [1]])

kg |1 gkik

Bk
(1-45) _ 3
Tyx(x) = /O BT, Mg, x> o, (2.12)

The previous integral representation, give that Iy x is an infinitely differentiable function on ]0, + oo[and

kg 1 gkek

‘ (—F )k .-
e = [ e, T x>0, i 213

The g, k-Beta function is defined by (see [1]])

1
By (t,s) = [k]ﬁ /O[k][;( 11— qk[;cc]:)i/kldqx, s>0,t>0. (2.14)
By using the following change of variable u = i%, the last equation becomes
[Klq

1 s
By(t,s) = /0 11— qkuk);;ldqu, s>0,t>0. (2.15)

It satisfies (T (s)
Byk(t,s) = % s>0,t>0. (2.16)

3 g-Cebysev’s integral inequality and applications

We begin this section by recalling the g-Cebysev’s integral inequality for g-synchronous (g-asynchronous)
mappings [3] and as applications we give some inequalities for the g, k-Beta and the g, k-Gamma functions.

Definition 3.2. Let f and g be two functions defined on 1. The functions f and g are said q-synchronous (g-asynchronous)
on I if
(f(x) = f()(8(x) = g(y)) = ()0 Vx,y € L. (3.17)

Note that if f and g are both g-increasing or g-decreasing on I then they are g-synchronous on I.
Proposition 3.1. Let f, g and h be three functions defined on I such that:
1. h(x) >0, xe€l,
2. f and g are q-synchronous (g-asynchronous) on I.
Then
/Ih(x)dqx /Ih(x)f(x)g(x)dqx > () /Ih(x)f(x)dqx /Ih(x)g(x)dqx. (3.18)

Proof. We have

/Ih(x)dqx/h(x)f(x)g(x)dqx— /h(x)f(x)dqx/h(x)g(x)dqx =

I I

1
1/2 / / REORW) [f(x) - F)) [8(x) — ()] dgxdgy.
1JI

So, the result follows from the conditions (1) and (2). O

The following theorem is a direct consequence of the previous proposition.
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Theorem 3.1. Let m, n, p and p’ be some positive reals such that

(p—m)(p' —n) < (>)0.
Then
By i(p, p')By(m,n) > (<)Bg x(p, 1) By (m, p')

and
Coi(p+m)Toi(p’ +m) > ()Tox(p + p")Tox(m+n).

(3.19)

(3.20)

Proof. Fix m, n, p and p’ in ]0, + oo, satisfying the condition of the theorem and the functions f, g and h

defined on [0, 1] by

p'—n n_q

fluy=ul™", g(u) = (1—q"u"), F and h(u) =u"""(1-g"u")}

From the relations
qu(”) =[p- m]q”pimil
and /
Dyg(u) = [n— pllg g w11 — g ) F
one can see that f and g are g-synchronous (g-asynchronous) on I = [0, 1],.

So, by using the relation (2.15) and Proposition

we obtain
L N L k kyF-l n, ke
/Ou (1—qu)q,k dqu/o uf (1—qu)q,k (1—qu)q,k dou >
1 n 1 n P
_ n_q _ n_q pn
(<) /O w1 (1= gtk dgu /0 W= g ) (- g dgu,

which implies that
By (m,n)Byx(p,p') > (<)Byi(p, 1) Byi(m, p').
Now, according to the relations (2.16) and (3.19), we obtain

Ly (m)Ty (1) Ty i (p)T gk (p") Lak(P)Tgi(n) Ly (m)Tq(p')
Top(m+mn) To(p+p) — 77 Toxlp+n) Toxm+p)

Therefore
Coi(p+m)Toi(p’ +m) > ()T x(p + p")Tgx(m+n).

Corollary 3.1. For all p,m > 0, we have

1/2
Bq,k(p/ m) > [Bq,k(pi p)Bq,k(ml m)}

and
1/2
Tor(p+m) < [Tqx(2p)Ty(2m)]

Proof. A direct application of Theorem with p’ = p and n = m, gives the results.

Corollary 3.2. Forall u,v > 0, we have

u+o
Top(757) <\ Tgr()Tgx(o

~

Proof. The inequality follows from (3.27), by taking p = 4 and m = 5.

qk °

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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Theorem 3.2. Let m, p and r be real numbers satisfying m, p > 0 and
p > r > —m and let n be a nonnegative integer.

If
r(p—m—r)=>(<)0 (3.29)
then ) , . i
T3 () m) > (TG (p— )T (m 4 7). (3.30)

Proof. Let f, g and h be the functions defined on I = [0, (

flx)=xP"""", o(x)=x" and h(x) = xm_lquk W’(lnx)zn.

We have

p—m—r—1 r—1

Dyf(x) = [p—m—r]yx and Dgg(x) = [r]gx

If the condition (3.29) holds, one can show that the functions f and g are g-synchronous (g-asynchronous) on
I and Proposition 3.1 gives

k <k k 1k
gk gk
/IxmilEq,k [Klq (lnx)anqx/prfmfrxrxmflEq,k [Klq (lnx)anqx

k 2 k 2k
gk gk
> (<) /pr—m—rxm—lEq,k [Klq (lnx)anqx/lxrxm—lEq,k [klg (lnx)anqx’

which is equivalent to
'y 0
-1 2 -1 2
/Ixm E . ' (Inx) ”dqx/lx” Ex T(Inx)™dgx
- -1
—r—1 2 +m—1 2

> (S)/pr ’ E x " (Inx) "dqx/lx’ " E k T (Inx)“"dyx.

Hence, the relation

Ktk

I (x) = /tx’l(lnt)’Eqk “d.t, x>0, ieN,
: . :

gives

&m0 (p) > (T (p— TG m +1). (3:31)

Taking n = 0 in the previous theorem, we obtain the following result.

Corollary 3.3. Let m, p and r be some real numbers under the conditions of Theorer3.2] we have

Lo (p)Cy(m) = (S)qx(p —1)lqx(m +7) (3.32)

and
Byk(p,m) = (<)Byi(p —r,m+7). (3.33)

Corollary 3.4. Let n be a nonnegative integer, p > 0 and p’ € R such that | p' |< p. Then
2 2 2 2
[F;f)(l’)} < Féf)(p - P’)Féf)(r’ +7). (3.34)
Proof. By choosing m = p and r = p’, we obtain
r(p—m—r)=—(p)? <0

and the result turns out from Theorem [3.21 O
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Taking in the previous result p = “J2 and p’ = %52, we obtain the following result:

Corollary 3.5. Let u,v be two positive real numbers and n be a nonnegative integer. Then

(2n) U+ [r(2n) 0\ (2n)

Corollary 3.6. Let p > 0and p' € R such that | p’ |< p.
Then

T2 (p) < Tyk(p = pTor(p+p')
and
Boi(p.p) < Byrlp—p',p+p).

Proof. For n = 0, the inequality (3.34) becomes
T2 1(p) < To(p = P )Ta(p +p).-

The inequality (3.37) follows from (2.16)).

Theorem 3.3. Let a and b be two positive real numbers such
(@ —k)(b—k) = ()0
and n a nonnegative integer. Then
r2 @ri3 a+b) > (TE (a + RT3 (b+ k).
Proof. In Theorem[3.2} set m = 2k, p = a+band r = b — k. The condition becomes
r(p—m—r)=(a—k)(b—k) > (<)0.

So,

20 @0r® (@ + ) > (T2 @+ %) (o + k).

Corollary 3.7. Ifa,b > Osuch (a —k)(b—k) > (<)0. Then

and

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

Proof. The inequality (3.41) follows from the previous theorem by taking n = 0 and using the facts that

Ty x(2k) = [k]g, Ty x(a+k) = [a]qT; x(a) and

Ty (b+k) = [b]gTo k(D). together with give (3.42).

Corollary 3.8. The function InT y is superadditive for x > k and k > 1, in the sense that
In Fq’k(ﬂl + b) > In quk(a) +In Fq,k(b)-
Proof. Forall a,b > k, we have

[a]4[b]q
[klq
In Fq,k (a) +1In Fq,k(b),

v

In

In I“q,k(a + b) + In I“q,k (61) + In l"q,k(b)

Y

which completes the proof.

O
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Corollary 3.9. Fora > kandn =1,2,..., we have

- [ — 1)ga![al2"Y)

q,k(na) >

Proof. We proceed by induction on n.
It is clear that the inequality is true for n = 1.
Suppose that (3.43) holds for an integer n > 1 and let us prove it for n + 1.

By (3.41), we have

[nalg[a]

rq,k((i’l + 1)11) = Fqlk(na + {1) > [k ] l"q k(na)l"q,k(a)
and by hypothesis, we have
[n—1]g![a 5(;171) "
Lyx(na) > — [T x(a)]
[K]g

V

Toe((n+1)a) > 07 [Tox(a)]"Tyx(a)
>

The inequality (3.43) is then true for n 4 1.
For a given real m > 0 and a nonnegative integer 1, consider the mapping
2
2 (x4 m)

r;?,f>(m)

Iﬂq,k,m,n (x) =

We have the following result.
Corollary 3.10. The mapping Uy i m,.(.) is suppermultiplicative on [0, o), in the sense
Lo kmn (X +Y) = Ty komn ()T g mn ()-
Proof. Fix x,yin [0,00) and put p = x +y +m and r = y. We have
yx+y+m—-—m—y)=xy>0.
So, the theorem [3.2]1eads to
T 3 (e y+m) > T2 (x4 m) T (y +m),

which is equivalent to
rq,k,m,n (x =+ y) > rq,k,m,n (x)rq,k,m,n (y) .
This achieves the proof.

4 Inequalities via the g- Hélder’s one

We begin this section by recalling the g-analogue of the Holder’s integral inequality [3].

67

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

1 1
Lemma 4.1. Let p and p’ be two positive reals satisfying » + I =1, f and g be two functions defined on 1. Then

]

< </If(x) |qux)’l’ (/I|g<x> " dqx)” :

/1 F(2)g(x)dgx

(4.48)
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Owing this lemma, one can establish some new inequalities involving the g, k-Gamma and g, k-Beta func-
tions.

Theorem 4.4. Let n be a nonnegative integer, x,y be two positive real numbers and a, b be two nonnegative real numbers

such that a+b = 1. Then ,

Fé?;?) (ax +by) < [rﬁ” (X)} [Ff,?)(y)} , (4.49)

)

that is, the mapping 1"5]2,? is logarithmically convex on (0, 0).

Proof. Consider the following functions defined on I = [0, (

Kk tk

e a Y
f(i’) = ta(xil) (qu g (lnt)2”> and g(t) — tb(yfl) (qu [Klg (lnt)Zn) ]

By application of the g-Holder’s integral inequality, with p = %, we get

gk gk ¢
/ta(xfl)tb(yfl)EqZ Gr (Int)dgt < [/ta(xl).(l/a)EqZ Gn (lnt)z”dqtl y
i . I '

b

gkt
l/ltb(yn.(ub)Eq; gr (lnt)zndqt] ,

which is equivalent to

Ktk kK a Ktk
thy—1p T Mg 2 1 T 2 —1 Ty 2
/Itax Y Ex (Int)™'dyt < Vftx Ex (Int) ”dqt] l/lty E x (Int) "dqtl

b

Then, (4.49) is a direct consequence of (2.13). O
Corollary 4.11. Let (p,p’), (m,m’) € (0,00)? such that p + p' = m +m’ and a,b > O with a + b = 1. Then, we have

a

Bys(a(p, /) + b(m,m)) < [Bostp, )" [Bystm, ] (450)

Proof. On the one hand, we have

Ty k(ap +bm)T, i (ap’ +bm')

/ ! o ! N o
Byy(alp,p/) + b)) = Byalap+bmyap'+b') = g7 S

Ty x(ap +bm)T, i (ap’ +bm') ‘
Lo(a(p+p') +b(m+m'))

Since p+p' =m+m’ and a+b = 1, we have

Toi(a(p+p)+b(m+m')) =Tg(p+p') = Tgp(m+m). (4.51)
On the other hand, from Theorem 4.4} with n = 0, we obtain
a b
Tor(ap +bm) < |Tyu(p)]” [Tg(m)] (4.52)
and
!/ !/ !/ a !/ b
Tar(ap’ +bm') < [Tox(p)| [Tqutm)] . (4.53)
Thus
a b
Tgr(ap + bm)Tax(ap’ + bm') < [To(p)Tau(p)] [Tglm)Tae(m)] . (4.54)

From (4.51), we deduce that

Lorlap +bm)Tqrlap’ +bm’) | Tar(p)lyx(p')
Tye(a(p+p)+b(m+m')) = | Ty(p+p)

which completes the proof. O

! [rq,k(m)rq,k(m’)] b (4.55)

Lyx(m+m')




Kamel Brahim et al. / Some inequalities for... 69

Now, we recall that the logarithmic derivative of the g, k-Gamma function is defined on (0, o), by

The following result gives some properties of the function ¥ &
Theorem 4.5. Y,  is monotonic non-decreasing and concave on (0, ).

Proof. By taking n = 0 in Theorem 4.4} we obtain

Fylax +by) < [Tpe)] [Tga)]

forx, y > 0anda, b > Osuchthata+b = 1.
So the function Inl';; is convex. Then the monotonicity of ¥, ; follows from the relation

d r;/k(x)
a[lnrq,k(x)} — m — ‘Yq,k(x), X > 0
On the other hand, since
1— k
ey - (4.56)
(1 =991 —q)
we obtain, for x > 0,
d 00 qx+jk
Yor(x) = %[lnl“qu(x)] == ln(l - —|—1an W
1 ) ) 1 o0 (n+1)x
= —pIn(l—q)+Ing gqx”knzoq“‘ﬂk’” =z In(l—q)+Ing Z e PRy
j= -
1 Ing 9 -1
= ——In(1- dgt.
gid-at (1—q)/0 1—
Now, let x,y > 0 and a,b > 0 such thata + b = 1. Then
Ing q pax+by—1 Ing q pa(x=1)+b(y-1)
Y,k (ax +by) + ln(l—q)—(l_q)/0 T dqt_(l—q)/o T dgt. (4.57)

Since the mapping x — t* is convex on R for t € (0,1), we have

=1 +b(y-1) < gpr=1 4 ppy-1 for t€10,q], x,y > 0.

Ing [Tttt Ing (7 ! Ing (7 &1
dgt > a dgt ) +b dgt ). 4.58
(1—‘7)/0 1—tk 7= ((1—q>/ol—tk‘7>+ <(1—q)/01—tk q) (4.58)

According to the relations (4.57) and (#.58), we have

Thus,

plax+by) + 7 In(1—q) > a(¥ye(x) + ¢ In(l— ) + b(¥yely) + ¢ In(1 —q))

1
> a¥ g p(x) + 0¥k (y) + % In(1-q).

This proves the concavity of the function ¥ . O
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5 Inequalities via the ¢-Griiss’s one

In [5] H. Gauchman gave a g-analogue of the Griiss” integral inequality namely.

Lemma 5.2. Assume that m < f(x) < M, ¢ < g(x) < &, for each x € [a,b], where m, M, @, ® are given real
constants. Then

< (M-m)(E—g) (5.59)

b b b
|b 1 P /,1 f(x)g(x)dgx — (b—1a)2 /,1 f(x)dqx/a g(x)dgx

As application of the previous inequality we state the following result

Theorem 5.6. Let m,n > 0, we have

1

1
1,0t K| = 4 (5:60)

Byx(m+k,n+k)—

Remark that from the relations (2.16) and (2.11), the inequality (5.60) is equivalent to
1
| l"qlk(m +n+2k)— Fq/k(n + 2k)1"q,k(m +k)m+1] < Z[m +1g[n + k]ql"q,k(m +n+2k). (5.61)
Proof. Consider the functions
fy =", gw) =1 —gddE, we0), mn>o.

We have
0<f(u)<1 and 0<g(u)<1 Vucl01l].

Then, using the g-Griiss” integral inequality, we obtain

1 1 1
n z 1
/ um+k71(1 _ qkuk) kk dqu _ / u™ dqu/ uk*1(1 — qkuk) kk dqu < -. (5.62)
0 q, 0 0 q 4

The inequality (5.60) follows from the definition of the g, k-Beta function (2.15) and the following facts:
1
1

u"d,u = ——— and
/0 i [m+1]q

1 n 1
/0 W1 = g ) Ey dgu = Byr(k,n+ k) =

[n+kl;
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