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Some inequalities for the q, k-Gamma and Beta functions
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Abstract

Using q-integral inequalities we establish some new inequalities for the q-k Gamma, Beta and Psi func-
tions.
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1 Introduction

The q-analogue Γq of the well known Gamma function was initially introduced by Thomae [11] and later
deeply studied by Jackson [6]. The reader will find in the research literature more about this feature.
In [1], R. Diaz and C. Truel introduced a q, k-generalized Gamma and Beta functions and they proved integral
representations for Γq,k and Bq,k functions.

This work is devoted to establish some inequalities for the generalized q, k-Gamma and Beta functions and
this has been possible thanks to the inequalities that verify the q-Jackson’s integral.

The paper is organized as follows: In section 2, we present some preliminaries and notations that will
be useful in the sequel. In section 3, we recall the q-C̆ebys̆ev’s integral inequality for q-synchronous (q-
asynchronous) functions and in direct consequence, we deduce some inequalities involving q, k-Beta and q, k-
Gamma functions. In section 4, we establish some inequalities for these functions owing to the q-Holder’s
inequality. Finally section 5 is devoted to some applications of q-Grüss integral inequality.

2 Notations and preliminaries

To make this paper self containing, we provide in this section a summary of the mathematical notations
and definitions useful. All of these results can be found in [4], [8] or [9].
Throughout this paper, we will fix q ∈]0, 1[, k > 0 a real number.
For a ∈ C, we write

[a]q =
1− qa

1− q
, (a; q)n =

n−1

∏
k=0

(1− aqk), n = 1, 2...∞,

[n]q! = [1]q[2]q...[n]q, n ∈ N.

The q-derivative Dq of a function f is given by

(Dq f )(x) =
f (x)− f (qx)

(1− q)x
, if x 6= 0, (2.1)
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and (Dq f )(0) = f ′(0) provided f ′(0) exists.
The q-Jackson integrals from 0 to b and from 0 to ∞ are defined by (see [7])∫ b

0
f (x)dqx = (1− q)b

∞

∑
n=0

f (bqn)qn (2.2)

and ∫ ∞

0
f (x)dqx = (1− q)

∞

∑
n=−∞

f (qn)qn, (2.3)

provided the sums converge absolutely.
The q-Jackson integral in a generic interval [a, b] is given by (see [7])∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx −

∫ a

0
f (x)dqx. (2.4)

We denote by I one of the following sets:

Rq,+ = {qn : n ∈ Z}, (2.5)

[0, b]q = {bqn : n ∈ N}, b > 0, (2.6)

[a, b]q = {bqr : 0 ≤ r ≤ n}, b > 0, a = bqn, n ∈ N (2.7)

and we note
∫

I
f (x)dqx the q-integral of f on the correspondent I.

Definition 2.1. let x, y, s, t ∈ R and n ∈ N, we note by

1. (x + y)n
q,k := ∏n−1

j=0 (x + qjky)

2. (1 + x)∞
q,k := ∏∞

j=0(1 + qjkx)

3. (1 + x)t
q,k :=

(1+x)∞
q,k

(1+qktx)∞
q,k

.

We have (1 + x)s+t
q,k = (1 + x)s

q,k(1 + qksx)t
q,k.

We recall the two q, k-analogues of the exponential function (see [1]) given by

Ex
q,k =

∞

∑
n=0

q
kn(n−1)

2
xn

[n]qk !
= (1 + (1− qk)x)∞

q,k (2.8)

and

ex
q,k =

∞

∑
n=0

xn

[n]qk !
=

1
(1− (1− qk)x)∞

q,k
. (2.9)

These q, k-exponential functions satisfy the following relations:

Dqk ex
q,k = ex

q,k, Dqk Ex
q,k = Eqkx

q,k and E−x
q,k ex

q,k = ex
q,kE−x

q,k = 1.

The q, k-Gamma function is defined by [1]

Γq,k(x) =
(1− qk)∞

q,k

(1− qx)∞
q,k(1− q)

x
k −1

x > 0. (2.10)

When k = 1 it reduces to the known q-Gamma function Γq.
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It satisfies the following functional equation:

Γq,k(x + k) = [x]qΓq,k(x), Γq,k(k) = 1 (2.11)

and having the following integral representation (see [1])

Γq,k(x) =
∫ (

[k]q
(1−qk)

)
1
k

0
tx−1E

− qktk
[k]q

q,k dqt, x > 0. (2.12)

The previous integral representation, give that Γq,k is an infinitely differentiable function on ]0, + ∞[ and

Γ(i)
q,k(x) =

∫ (
[k]q

(1−qk)
)

1
k

0
tx−1(lnt)iE

− qktk
[k]q

q,k dqt, x > 0, i ∈ N. (2.13)

The q, k-Beta function is defined by (see [1])

Bq,k(t, s) = [k]
− t

k
q

∫ [k]
1
k
q

0
xt−1(1− qk xk

[k]q
)

s
k−1
q,k dqx, s > 0, t > 0. (2.14)

By using the following change of variable u = x

[k]
1
k
q

, the last equation becomes

Bq,k(t, s) =
∫ 1

0
ut−1(1− qkuk)

s
k−1
q,k dqu, s > 0, t > 0. (2.15)

It satisfies

Bq,k(t, s) =
Γq,k(t)Γq,k(s)

Γq,k(t + s)
, s > 0, t > 0. (2.16)

3 q-C̆ebys̆ev’s integral inequality and applications

We begin this section by recalling the q-C̆ebys̆ev’s integral inequality for q-synchronous (q-asynchronous)
mappings [3] and as applications we give some inequalities for the q, k-Beta and the q, k-Gamma functions.

Definition 3.2. Let f and g be two functions defined on I. The functions f and g are said q-synchronous (q-asynchronous)
on I if

( f (x)− f (y))(g(x)− g(y)) ≥ (≤)0 ∀x, y ∈ I. (3.17)

Note that if f and g are both q-increasing or q-decreasing on I then they are q-synchronous on I.

Proposition 3.1. Let f , g and h be three functions defined on I such that:

1. h(x) ≥ 0, x ∈ I,

2. f and g are q-synchronous (q-asynchronous) on I.

Then ∫
I

h(x)dqx
∫

I
h(x) f (x)g(x)dqx ≥ (≤)

∫
I

h(x) f (x)dqx
∫

I
h(x)g(x)dqx. (3.18)

Proof. We have ∫
I

h(x)dqx
∫

I
h(x) f (x)g(x)dqx −

∫
I

h(x) f (x)dqx
∫

I
h(x)g(x)dqx =

1/2
∫

I

∫
I

h(x)h(y) [ f (x)− f (y)] [g(x)− g(y)] dqxdqy.

So, the result follows from the conditions (1) and (2).

The following theorem is a direct consequence of the previous proposition.
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Theorem 3.1. Let m, n, p and p′ be some positive reals such that

(p−m)(p′ − n) ≤ (≥)0.

Then
Bq,k(p, p′)Bq,k(m, n) ≥ (≤)Bq,k(p, n)Bq,k(m, p′) (3.19)

and
Γq,k(p + n)Γq,k(p′ + m) ≥ (≤)Γq,k(p + p′)Γq,k(m + n). (3.20)

Proof. Fix m, n, p and p′ in ]0, + ∞[, satisfying the condition of the theorem and the functions f , g and h
defined on [0, 1]q by

f (u) = up−m, g(u) = (1− qnuk)
p′−n

k
q,k and h(u) = um−1(1− qkuk)

n
k −1
q,k .

From the relations
Dq f (u) = [p−m]qup−m−1 (3.21)

and

Dqg(u) = [n− p′]q qp′ uk−1(1− qn+kuk)
p′−n

k −1
q,k , (3.22)

one can see that f and g are q-synchronous (q-asynchronous) on I = [0, 1]q.
So, by using the relation (2.15) and Proposition 3.1,

we obtain ∫ 1

0
um−1(1− qkuk)

n
k −1
q,k dqu

∫ 1

0
up−1(1− qkuk)

n
k −1
q,k (1− qnuk)

p′−n
k

q,k dqu ≥

(≤)
∫ 1

0
up−1(1− qkuk)

n
k −1
q,k dqu

∫ 1

0
um−1(1− qkuk)

n
k −1
q,k (1− qnuk)

p′−n
k

q,k dqu,

which implies that
Bq,k(m, n)Bq,k(p, p′) ≥ (≤)Bq,k(p, n)Bq,k(m, p′). (3.23)

Now, according to the relations (2.16) and (3.19), we obtain

Γq,k(m)Γq,k(n)
Γq,k(m + n)

Γq,k(p)Γq,k(p′)
Γq,k(p + p′)

≥ (≤)
Γq,k(p)Γq,k(n)

Γq,k(p + n)
Γq,k(m)Γq,k(p′)

Γq,k(m + p′)
. (3.24)

Therefore
Γq,k(p + n)Γq,k(p′ + m) ≥ (≤)Γq,k(p + p′)Γq,k(m + n). (3.25)

Corollary 3.1. For all p, m > 0, we have

Bq,k(p, m) ≥
[

Bq,k(p, p)Bq,k(m, m)
]1/2

(3.26)

and

Γq,k(p + m) ≤
[
Γq,k(2p)Γq,k(2m)

]1/2
. (3.27)

Proof. A direct application of Theorem 3.1, with p′ = p and n = m, gives the results.

Corollary 3.2. For all u, v > 0, we have

Γq,k(
u + v

2
) ≤

√
Γq,k(u)Γq,k(v). (3.28)

Proof. The inequality follows from (3.27), by taking p = u
2 and m = v

2 .
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Theorem 3.2. Let m, p and r be real numbers satisfying m, p > 0 and
p > r > −m and let n be a nonnegative integer.
If

r(p−m− r) ≥ (≤)0 (3.29)

then
Γ(2n)

q,k (p)Γ(2n)
q,k (m) ≥ (≤)Γ(2n)

q,k (p− r)Γ(2n)
q,k (m + r). (3.30)

Proof. Let f , g and h be the functions defined on I = [0, ( [k]q
(1−qk)

)
1
k ]q by

f (x) = xp−m−r, g(x) = xr and h(x) = xm−1E
−qk xk

[k]q
q,k (lnx)2n.

We have
Dq f (x) = [p−m− r]qxp−m−r−1 and Dqg(x) = [r]qxr−1.

If the condition (3.29) holds, one can show that the functions f and g are q-synchronous (q-asynchronous) on
I and Proposition 3.1 gives

∫
I

xm−1E
−qk xk

[k]q
q,k (lnx)2ndqx

∫
I

xp−m−rxrxm−1E
−qk xk

[k]q
q,k (lnx)2ndqx

≥ (≤)
∫

I
xp−m−rxm−1E

−qk xk
[k]q

q,k (lnx)2ndqx
∫

I
xrxm−1E

−qk xk
[k]q

q,k (lnx)2ndqx,

which is equivalent to

∫
I

xm−1E
−qk xk

[k]q
q,k (lnx)2ndqx

∫
I

xp−1E
−qk xk

[k]q
q,k (lnx)2ndqx

≥ (≤)
∫

I
xp−r−1E

−qk xk
[k]q

q,k (lnx)2ndqx
∫

I
xr+m−1E

−qk xk
[k]q

q,k (lnx)2ndqx.

Hence, the relation

Γ(i)
q,k(x) =

∫
I

tx−1(lnt)iE
−qk tk

[k]q
q,k dqt, x > 0, i ∈ N,

gives
Γ(2n)

q,k (m)Γ(2n)
q,k (p) ≥ (≤)Γ(2n)

q,k (p− r)Γ(2n)
q,k (m + r). (3.31)

Taking n = 0 in the previous theorem, we obtain the following result.

Corollary 3.3. Let m, p and r be some real numbers under the conditions of Theorem3.2, we have

Γq,k(p)Γq,k(m) ≥ (≤)Γq,k(p− r)Γq,k(m + r) (3.32)

and
Bq,k(p, m) ≥ (≤)Bq,k(p− r, m + r). (3.33)

Corollary 3.4. Let n be a nonnegative integer, p > 0 and p′ ∈ R such that | p′ |< p. Then[
Γ(2n)

q,k (p)
]2
≤ Γ(2n)

q,k (p− p′)Γ(2n)
q,k (p + p′). (3.34)

Proof. By choosing m = p and r = p′, we obtain

r(p−m− r) = −(p′)2 ≤ 0

and the result turns out from Theorem 3.2.
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Taking in the previous result p = u+v
2 and p′ = u−v

2 , we obtain the following result:

Corollary 3.5. Let u, v be two positive real numbers and n be a nonnegative integer. Then

Γ(2n)
q,k (

u + v
2

) ≤
√

Γ(2n)
q,k (u)Γ(2n)

q,k (v). (3.35)

Corollary 3.6. Let p > 0 and p′ ∈ R such that | p′ |< p.
Then

Γ2
q,k(p) ≤ Γq,k(p− p′)Γq,k(p + p′) (3.36)

and
Bq,k(p, p) ≤ Bq,k(p− p′, p + p′). (3.37)

Proof. For n = 0, the inequality (3.34) becomes

Γ2
q,k(p) ≤ Γq,k(p− p′)Γq,k(p + p′).

The inequality (3.37) follows from (2.16).

Theorem 3.3. Let a and b be two positive real numbers such

(a− k)(b− k) ≥ (≤)0

and n a nonnegative integer. Then

Γ(2n)
q,k (2k)Γ(2n)

q,k (a + b) ≥ (≤)Γ(2n)
q,k (a + k)Γ(2n)

q,k (b + k). (3.38)

Proof. In Theorem 3.2, set m = 2k, p = a + b and r = b− k. The condition (3.29) becomes

r(p−m− r) = (a− k)(b− k) ≥ (≤)0. (3.39)

So,
Γ(2n)

q,k (2k)Γ(2n)
q,k (a + b) ≥ (≤)Γ(2n)

q,k (a + k)Γ(2n)
q,k (b + k). (3.40)

Corollary 3.7. If a, b > 0 such (a− k)(b− k) ≥ (≤)0. Then

Γq,k(a + b) ≥ (≤)
[a]q[b]q

[k]q
Γq,k(a)Γq,k(b) (3.41)

and

Bq,k(a, b) ≤ (≥)
[k]q

[a]q[b]q
. (3.42)

Proof. The inequality (3.41) follows from the previous theorem by taking n = 0 and using the facts that
Γq,k(2k) = [k]q, Γq,k(a + k) = [a]qΓq,k(a) and
Γq,k(b + k) = [b]qΓq,k(b). (2.16) together with (3.41) give (3.42).

Corollary 3.8. The function ln Γq,k is superadditive for x ≥ k and k ≥ 1, in the sense that

ln Γq,k(a + b) ≥ ln Γq,k(a) + ln Γq,k(b).

Proof. For all a, b ≥ k, we have

ln Γq,k(a + b) ≥ ln
[a]q[b]q

[k]q
+ ln Γq,k(a) + ln Γq,k(b)

≥ ln Γq,k(a) + ln Γq,k(b),

which completes the proof.
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Corollary 3.9. For a ≥ k and n = 1, 2, . . . , we have

Γq,k(na) ≥
[n− 1]qa ![a]2(n−1)

q

[k]n−1
q

[Γq,k(a)]n. (3.43)

Proof. We proceed by induction on n.
It is clear that the inequality is true for n = 1.
Suppose that (3.43) holds for an integer n ≥ 1 and let us prove it for n + 1.
By (3.41), we have

Γq,k((n + 1)a) = Γq,k(na + a) ≥
[na]q[a]q

[k]q
Γq,k(na)Γq,k(a) (3.44)

and by hypothesis, we have

Γq,k(na) ≥
[n− 1]qa ![a]2(n−1)

q

[k]n−1
q

[Γq,k(a)]n. (3.45)

The use of the fact that [na]q = [n]qa [a]q, gives

Γq,k((n + 1)a) ≥
[na]q[a]q[n− 1]qa ![a]2(n−1)

q

[k]nq
[Γq,k(a)]nΓq,k(a)

≥
[n]qa ![a]2n

q

[k]nq

[
Γq,k(a)

]n+1
.

The inequality (3.43) is then true for n + 1.

For a given real m > 0 and a nonnegative integer n, consider the mapping

Γq,k,m,n(x) =
Γ(2n)

q,k (x + m)

Γ(2n)
q,k (m)

.

We have the following result.

Corollary 3.10. The mapping Γq,k,m,n(.) is suppermultiplicative on [0, ∞), in the sense

Γq,k,m,n(x + y) ≥ Γq,k,m,n(x)Γq,k,m,n(y).

Proof. Fix x, y in [0, ∞) and put p = x + y + m and r = y. We have

y(x + y + m−m− y) = xy ≥ 0.

So, the theorem 3.2 leads to

Γ(2n)
q,k (m)Γ(2n)

q,k (x + y + m) ≥ Γ(2n)
q,k (x + m)Γ(2n)

q,k (y + m), (3.46)

which is equivalent to
Γq,k,m,n(x + y) ≥ Γq,k,m,n(x)Γq,k,m,n(y). (3.47)

This achieves the proof.

4 Inequalities via the q- Hölder’s one

We begin this section by recalling the q-analogue of the Hölder’s integral inequality [3].

Lemma 4.1. Let p and p′ be two positive reals satisfying
1
p

+
1
p′

= 1, f and g be two functions defined on I. Then

∣∣∣∣∫
I

f (x)g(x)dqx
∣∣∣∣ ≤ (∫

I
| f (x) |p dqx

) 1
p
(∫

I
| g(x) |p

′
dqx
) 1

p′
. (4.48)
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Owing this lemma, one can establish some new inequalities involving the q, k-Gamma and q, k-Beta func-
tions.

Theorem 4.4. Let n be a nonnegative integer, x, y be two positive real numbers and a, b be two nonnegative real numbers
such that a + b = 1. Then

Γ(2n)
q,k (ax + by) ≤

[
Γ(2n)

q,k (x)
]a [

Γ(2n)
q,k (y)

]b
, (4.49)

that is, the mapping Γ(2n)
q,k is logarithmically convex on (0, ∞).

Proof. Consider the following functions defined on I = [0, ( [k]q
(1−qk)

)
1
k ]q,

f (t) = ta(x−1)

(
E
−qk tk

[k]q
q,k (lnt)2n

)a

and g(t) = tb(y−1)

(
E
−qk tk

[k]q
q,k (lnt)2n

)b

.

By application of the q-Hölder’s integral inequality, with p =
1
a

, we get

∫
I

ta(x−1)tb(y−1)E
−qk tk

[k]q
q,k (lnt)2ndqt ≤

[∫
I

ta(x−1).(1/a)E
−qk tk

[k]q
q,k (lnt)2ndqt

]a

×

[∫
I

tb(y−1).(1/b)E
−qk tk

[k]q
q,k (lnt)2ndqt

]b

,

which is equivalent to∫
I

tax+by−1E
−qk tk

[k]q
q,k (lnt)2ndqt ≤

[∫
I

tx−1E
−qk tk

[k]q
q,k (lnt)2ndqt

]a [∫
I

ty−1E
−qk tk

[k]q
q,k (lnt)2ndqt

]b

.

Then, (4.49) is a direct consequence of (2.13).

Corollary 4.11. Let (p, p′), (m, m′) ∈ (0, ∞)2 such that p + p′ = m + m′ and a, b ≥ 0 with a + b = 1. Then, we have

Bq,k(a(p, p′) + b(m, m′)) ≤
[

Bq,k(p, p′)
]a [

Bq,k(m, m′)
]b

. (4.50)

Proof. On the one hand, we have

Bq,k (a(p, p′) + b(m, m′)) = Bq,k(ap + bm, ap′ + bm′) =
Γq,k(ap + bm)Γq,k(ap′ + bm′)

Γq,k(ap + bm + ap′ + bm′)

=
Γq,k(ap + bm)Γq,k(ap′ + bm′)
Γq,k(a(p + p′) + b(m + m′))

.

Since p + p′ = m + m′ and a + b = 1, we have

Γq,k(a(p + p′) + b(m + m′)) = Γq,k(p + p′) = Γq,k(m + m′). (4.51)

On the other hand, from Theorem 4.4, with n = 0, we obtain

Γq,k(ap + bm) ≤
[
Γq,k(p)

]a [
Γq,k(m)

]b
(4.52)

and
Γq,k(ap′ + bm′) ≤

[
Γq,k(p′)

]a [
Γq,k(m′)

]b
. (4.53)

Thus
Γq,k(ap + bm)Γq,k(ap′ + bm′) ≤

[
Γq,k(p)Γq,k(p′)

]a [
Γq,k(m)Γq,k(m′)

]b
. (4.54)

From (4.51), we deduce that

Γq,k(ap + bm)Γq,k(ap′ + bm′)
Γq,k(a(p + p′) + b(m + m′))

≤

[
Γq,k(p)Γq,k(p′)

Γq,k(p + p′)

]a [
Γq,k(m)Γq,k(m′)

Γq,k(m + m′)

]b

, (4.55)

which completes the proof.
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Now, we recall that the logarithmic derivative of the q, k-Gamma function is defined on (0, ∞), by

Ψq,k(x) =
Γ′q,k(x)

Γq,k(x)
.

The following result gives some properties of the function Ψq,k.

Theorem 4.5. Ψq,k is monotonic non-decreasing and concave on (0, ∞).

Proof. By taking n = 0 in Theorem 4.4, we obtain

Γq,k(ax + by) ≤
[
Γq,k(x)

]a [
Γq,k(y)

]b
,

for x, y > 0 and a, b ≥ 0 such that a + b = 1.
So the function lnΓq,k is convex. Then the monotonicity of Ψq,k follows from the relation

d
dx

[lnΓq,k(x)] =
Γ′q,k(x)

Γq,k(x)
= Ψq,k(x), x > 0.

On the other hand, since

Γq,k(x) =
(1− qk)∞

q,k

(1− qx)∞
q,k(1− q)

x
k −1

, (4.56)

we obtain, for x > 0,

Ψq,k(x) =
d

dx
[lnΓq,k(x)] = −1

k
ln(1− q) + lnq

∞

∑
j=0

qx+jk

1− qx+jk

= −1
k

ln(1− q) + lnq
∞

∑
j=0

qx+jk
∞

∑
n=0

q(x+jk)n = −1
k

ln(1− q) + lnq
∞

∑
n=0

q(n+1)x

1− q(n+1)k

= −1
k

ln(1− q) +
lnq

(1− q)

∫ q

0

tx−1

1− tk dqt.

Now, let x, y > 0 and a, b ≥ 0 such that a + b = 1. Then

Ψq,k(ax + by) +
1
k

ln(1− q) =
lnq

(1− q)

∫ q

0

tax+by−1

1− tk dqt =
lnq

(1− q)

∫ q

0

ta(x−1)+b(y−1)

1− tk dqt. (4.57)

Since the mapping x 7→ tx is convex on R for t ∈ (0, 1), we have

ta(x−1)+b(y−1) ≤ atx−1 + bty−1, f or t ∈ [0, q]q, x, y > 0.

Thus,

lnq
(1− q)

∫ q

0

tax+by−1

1− tk dqt ≥ a
(

lnq
(1− q)

∫ q

0

tx−1

1− tk dqt
)

+ b
(

lnq
(1− q)

∫ q

0

ty−1

1− tk dqt
)

. (4.58)

According to the relations (4.57) and (4.58), we have

Ψq,k(ax + by) +
1
k

ln(1− q) ≥ a(Ψq,k(x) +
1
k

ln(1− q)) + b(Ψq,k(y) +
1
k

ln(1− q))

≥ aΨ q,k(x) + bΨq,k(y) +
1
k

ln(1− q).

This proves the concavity of the function Ψq,k.
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5 Inequalities via the q-Grüss’s one

In [5] H. Gauchman gave a q-analogue of the Grüss’ integral inequality namely.

Lemma 5.2. Assume that m ≤ f (x) ≤ M, ϕ ≤ g(x) ≤ Φ, for each x ∈ [a, b], where m, M, ϕ, Φ are given real
constants. Then∣∣∣∣∣ 1

b− a

∫ b

a
f (x)g(x)dqx − 1

(b− a)2

∫ b

a
f (x)dqx

∫ b

a
g(x)dqx

∣∣∣∣∣ ≤ 1
4
(M −m)(Φ− ϕ). (5.59)

As application of the previous inequality we state the following result

Theorem 5.6. Let m, n > 0, we have∣∣∣∣Bq,k(m + k, n + k)− 1
[m + 1]q[n + k]q

∣∣∣∣ ≤ 1
4

. (5.60)

Remark that from the relations (2.16) and (2.11), the inequality (5.60) is equivalent to

| Γq,k(m + n + 2k)− Γq,k(n + 2k)Γq,k(m + k)[m + 1]q |≤
1
4
[m + 1]q[n + k]qΓq,k(m + n + 2k). (5.61)

Proof. Consider the functions

f (u) = um, g(u) = uk−1(1− qkuk)
n
k
q,k, u ∈ [0, 1]q, m, n > 0.

We have
0 ≤ f (u) ≤ 1 and 0 ≤ g(u) ≤ 1 ∀ u ∈ [0, 1]q.

Then, using the q-Grüss’ integral inequality, we obtain∣∣∣∣∣
∫ 1

0
um+k−1(1− qkuk)

n
k
q,k dqu−

∫ 1

0
um dqu

∫ 1

0
uk−1(1− qkuk)

n
k
q,k dqu

∣∣∣∣∣ ≤ 1
4

. (5.62)

The inequality (5.60) follows from the definition of the q, k-Beta function (2.15) and the following facts:∫ 1

0
umdqu =

1
[m + 1]q

and∫ 1

0
uk−1(1− qkuk)

n
k
q,k dqu = Bq,k(k, n + k) =

1
[n + k]q

.
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