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Abstract
A graphical invariant is a real number related to a graph which is fixed under the graph isomorphism. In chemical
graph theory, these invariants are also called topological indices and these are play a vital role to predict various
chemical and physical properties of different molecular structures. In this work, we generalized multiplicative
version Zagreb indices and compute it for probabilistic neural network. Also, we compute the general Zagreb
index or (a,b)-Zagreb index for the same network and compute some other degree based topological indices for
some particular values of a and b.
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1. Introduction
In graph theory, a graph G is defined as the order pair

of two sets namely V (G) and E(G) or simply denoted as
G = (V (G),E(G)), where V (G) and E(G) are the vertex set
and edge set of G. Let n and m represents the number of
vertices and edges of G respectively that is |V (G)| = n and
|E(G)|= m. The degree of a vertex k ∈V (G) is defined as the
number of adjacent vertices of k in G and denoted as dG(k).
In chemical graph theory, a molecular structure can be rep-
resented by vertices and edges where vertices denotes atoms
and edges denotes the bonds between atoms. A topological
index is a real number related to a chemical constitution for
correlation of a chemical structure with various physicochem-
ical properties. Different topological indices of a chemical
compound help us to predict the behaviour of chemical reac-

tivity or biological activity theoretically. In chemical graph
theory, there are various topological indices were introduced
by different researchers, among which the Zagreb indices are
oldest and extremely studied vertex degree-based topological
indices and were introduced by Gutman and Trinajestić in
1972 [1], to study the total π-electron energy (ε) of carbon
atoms and are defined as

M1(G) = ∑
k∈V (G)

dG(k)
2 = ∑

kt∈E(G)

[dG(k)+dG(t)]

and

M2(G) = ∑
kt∈E(G)

dG(k)dG(t).

See [2–5], for some recent study about this index. In 2011
[6], I. Gutman was first introduce the multiplicative version
of Zagreb indices and are defined as

∏1(G) = ∏
k∈V (G)

dG(k)
2

and

∏2(G) = ∏
kt∈E(G)

dG(k)dG(t).
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For further study about this index we encourage the reader
to [7–10]. Based on first Zagreb index M. Eliasi et al. first
investigate the multiplicative sum Zagreb index in 2012 [11]
and is defined as

∏
∗
1(G) = ∏

kt∈E(G)

[dG(k)+dG(t)].

We refer our reader to [12–15], for further study about this
index. The forgotten topological index was introduced in the
same paper where Zagreb indices were introduced [1], but that
time not much studied about this index in 2015, Furtula and
Gutman reinvestigate this index again in [16] and is defined
as

F(G) = ∑
kt∈E(G)

[dG(k)2 +dG(t)2].

The multiplicative version of forgotten topological index is
defined as

∏F(G) = ∏
kt∈E(G)

[dG(k)2 +dG(t)2].

Based on multiplicative sum Zagreb index in this paper, we
generalised this index as

∏
∗
α
(G) = ∏

kt∈E(G)

(dG(k)α +dG(t)α)

where, α 6= 0, 1 and α ∈ IR. Based on Randić index Gutman
and Lepović introduced the general Randić index in [17] and
is defined as

Ra = ∑
hk∈E(G)

{dG(h).dG(k)}a.

Where, a 6= 0, a ∈ IR. In this paper, we generalised second
multiplicative Zagreb index and is defined as

∏
α

2 (G) = ∏
kt∈E(G)

(dG(k)dG(t))α

where, α 6= 0, and α ∈ IR. Followed by first Zagreb index
and F-index Li and Zheng in [18], introduced the general first
Zagreb index and is defined as

Mα(G) = ∑
h∈V (G)

dG(h)α

where, α 6= 0, 1 and α ∈ IR. The Symmetric division deg
index is defined as

SDD(G) = ∑
hk∈E(G)

[
dG(h)
dG(k)

+
dG(k)
dG(h)

].

Based on symmetric division deg index in this paper, we
defined the multiplicative symmetric division deg index as

∏SDD(G) = ∏
kt∈E(G)

[
dG(k)
dG(t)

+
dG(t)
dG(k)

].

The redefined version of Zagreb index was introduced by
Ranjini et al. [19], In 2013 and is defined as

ReZM(G) = ∑
hk∈E(G)

dG(h)dG(k)[dG(h)+dG(k)].

For some recent study about this index we encourage our
reader to [20–22]. Followed by redefined Zagreb index in this
paper, we defined multiplicative redefined version of Zagreb
index as

∏ReZM(G) = ∏
kt∈E(G)

dG(k)dG(t)[dG(k)+dG(t)].

Azari et al.[23], in 2011 generalized the Zagreb indices as

Za,b(G) = ∑
hk∈E(G)

(dG(h)adG(k)b +dG(h)bdG(k)a)

and named as the general Zagreb index or (a,b)-Zagreb index.
We refer our reader to [24–26], for some recent study about
this index. Based on multiplicative version second Zagreb
index and multiplicative version sum Zagreb index in this
paper, we introduced the multiplicative version of general
Zagreb index as

∏Za,b(G) = ∏
kt∈E(G)

(dG(k)adG(t)b +dG(k)bdG(t)a).

The Table 1 and Table 3, shows the relation between general
Zagreb index also known as (a,b)-Zagreb index and the multi-
plicative version of general Zagreb index to some other vertex
degree based topological indices which are mentioned in this
work, earlier for some particular values of a and b. Recently,
artificial neural networks have been successfully used to many
divers field for pattern classification, system modelling and
identification for signal processing, image processing, control
systems and stock market predictions. An artificial neural
network is a computational model which work like the work-
ing of a human nervous system. There are various types of
artificial neural networks. These kinds of networks are imple-
mented depending on mathematical operations and a set of
parameters required to investigate the output. A feed forward
neural network is one of the simplest form of artificial neural
network, where the data passes through the input nodes and
exit on the output nodes in one way. A probabilistic neural
network is one type of feed forward neural network, which
is widely used in classification and pattern recognition prob-
lems. Probabilistic neural networks are more accurate and
faster than any multilayer perceptron networks. Probabilistic
neural network-based sensor configuration management in a
wireless ad hoc network and is also used to modelling struc-
tural deterioration of storm water pipes, class prediction of
Leukemia and Embryonal Tumor of central nervous system,
remote sensing image classification and so fourth. Recently,
M. Javaid and J. Cao compute some degree based topolog-
ical indices of probabilistic neural network in [27] and J.B.
Liu et al. studied the topological properties of certain neural
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networks in [28]. In this paper, we first defined the multi-
plication version general Zagreb index, the general Zagreb
index or (a,b)-Zagreb index and compute these indices for
Probabilistic neural network PNN[x,y,z] and derived some
other topological indices for some particular values of a and
b. A example of a probabilistic neural network PNN[4,2,3]
is shown in Figure 1.

2. Main Results
In this section, we compute the multiplicative version

general Zagreb index and the general Zagreb index of prob-
abilistic neural network PNN[x,y,z]. First we compute mul-
tiplicative version of general Zagreb index. The edge sets of
PNN[x,y,z] are divided into two sets and the degree of all the
vertex are shown in Table 2.

Theorem 2.1. The multiplicative version general Zagreb in-
dex of PNN[x,y,z] is given by

∏Za,b(PNN[x,y,z])

= {(yz)a.(x+1)b +(yz)b.(x+1)a}xyz

×{(x+1)a.zb +(x+1)b.za}yz. (2.1)

Proof. From definition of multiplicative version general
Zagreb index, we get

∏Za,b(PNN[x,y,z])

= ∏
kt∈E(PNN[x,y,z])

(dG(k)adG(t)b +dG(k)bdG(t)a)

= ∏
kt∈E1(PNN[x,y,z])

{(yz)a.(x+1)b +(yz)b.(x+1)a}

× ∏
kt∈E2(PNN[x,y,z])

{(x+1)a.(z)b +(z)a.(x+1)b}

= {(yz)a.(x+1)b +(yz)b.(x+1)a}|E1(PNN[x,y,z])|

×{(x+1)a.(z)b +(z)a.(x+1)b}|E2(PNN[x,y,z])|

= {(yz)a.(x+1)b +(yz)b.(x+1)a}xyz

×{(x+1)a.(z)b +(z)a.(x+1)b}yz.

Hence, the theorem.

Corollary 2.2. Using Equation 2.1, computing some other
multiplicative version topological indices for some particular
values of a and b in the following:

(i) ∏
∗
1(PNN[x,y,z])

= ∏Z1,0(PNN[x,y,z]) = (x+ yz+1)xyz× (x+ z+1)yz,

(ii) ∏2(PNN[x,y,z])

=
1

2yz(x+1) Z1,1(PNN[x,y,z]) = {yz(1+ x)}xyz

×{z(x+1)}yz,

(iii) ∏F(PNN[x,y,z])

= ∏Z2,0(PNN[x,y,z]) = {(yz)2 +(x+1)2}xyz

×{(x+1)2 + z2}yz,

(iv) ∏ReZM(PNN[x,y,z])

= ∏Z2,1(PNN[x,y,z]) = {yz(x+1)(yz+ x+1)}xyz

×{z(x+1)(x+ z+1)}yz,

(v) ∏
∗
α(PNN[x,y,z])

= ∏Zα,0(PNN[x,y,z]) = {(yz)α +(x+1)α}xyz

×{(x+1)α + zα}yz,

(vi) ∏
α
2 (PNN[x,y,z])

=
1

2yz(x+1)∏Zα,α(PNN[x,y,z]) = {yz(x+1)}αxyz

×{z(x+1)}αyz,

(vii) ∏SDD(PNN[x,y,z])

= ∏Z1,−1(PNN[x,y,z]) = { yz
x+1

+
x+1

yz
}xyz

×{x+1
z

+
z

x+1
}yz.

Now, we compute the general Zagreb index of probabilis-
tic neural network PNN[x,y,z] and computing some other
vertex degree based topological indices for some particular
values of a and b. The following Table 3 shows the relations
between the general Zagreb index or (a,b)−Zagreb index
with some other topological indices.

Theorem 2.3. The general Zagreb index of PNN[x,y,z] is
given by

Za,b(PNN[x,y,z])

= xyz{(yz)a.(x+1)b +(yz)b.(x+1)a}
+yz{(x+1)a.zb +(x+1)b.za}. (2.2)

Proof. From definition of general Zagreb index, we get

Za,b(PNN[x,y,z])
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Table 1. Relations between multiple general Zagreb index with some other multiplicative version topological indices:
Topological index Corresponding multiple general Zagreb index

Multiplicative sum Zagreb index ∏
∗
1(G) ∏Z1,0(G)

Second multiplicative Zagreb index ∏2(G) 1
2m ∏Z1,1(G)

Multiplicative version of forgotten topological index ∏F(G) ∏Z2,0(G)
Multiplicative redefined Zagreb index ∏ReZM(G) ∏Z2,1(G)
General multiplicative sum Zagreb index ∏

∗
α(G) ∏Zα,0(G)

General second multiplicative Zagreb index ∏
α
2 (G) 1

2m ∏Zα,α(G)
Multiplicative symmetric division deg index ∏SDD(G) ∏Z1,−1(G)

Figure 1. The example of a probabilistic neural network PNN[4,2,3]

Table 2. Edge partition of PNN[x,y,z] network
(d(k),d(t)) : kt ∈ E(PNN[x,y,z]) Total number of edges

(yz,x+1) xyz
(x+1,z) yz

Table 3. Relations between generalized Zagreb indices with
some other vertex degree based topological indices:

Topological index Corresponding general Zagreb index
First Zagreb index M1(G) Z1,0(G)

Second Zagreb index M2(G) 1
2 Z1,1(G)

Forgotten topological index F(G) Z2,0(G)
Redefined Zagreb index ReZM(G) Z2,1(G)
General first Zagreb index Ma(G) Za−1,0(G)

General Randić index Ra(G) 1
2 Za,a

Symmetric division deg index SDD(G) Z1,−1(G)

= ∑
kt∈E(PNN[x,y,z])

(dG(k)adG(t)b +dG(k)bdG(t)a)

= ∑
kt∈E1(PNN[x,y,z])

{(yz)a.(x+1)b +(yz)b.(x+1)a}

+ ∑
kt∈E2(PNN[x,y,z])

{(x+1)a.(z)b +(z)a.(x+1)b}

= |E1(PNN[x,y,z])|{(yz)a.(x+1)b +(yz)b.(x+1)a}
+|E2(PNN[x,y,z])|{(x+1)a.(z)b +(z)a.(x+1)b}

= xyz{(yz)a.(x+1)b +(yz)b.(x+1)a}
+yz{(x+1)a.(z)b +(z)a.(x+1)b}.

Hence, the result follows as in Theorem 2.3.

Corollary 2.4. Using Equation 2.2, computing some other

degree based topological indices for some particular values
of a and b in the following:

(i) M1(PNN[x,y,z])

= Z1,0(PNN[x,y,z]) = xyz(x+ yz+1)+ yz(x+ z+1),

(ii) M2(PNN[x,y,z])

=
1
2

Z1,1(PNN[x,y,z]) = xyz{yz(1+ x)}+ yz{z(x+1)},

(iii) F(PNN[x,y,z])

= Z2,0(PNN[x,y,z]) = xyz{(yz)2 +(x+1)2}
+yz{(x+1)2 + z2},

(iv) ReZM(PNN[x,y,z])

= Z2,1(PNN[x,y,z]) = xyz{yz(x+1)(yz+ x+1)}
+yz{z(x+1)(x+ z+1)},

(v) Ma(PNN[x,y,z])

= Za−1,0(PNN[x,y,z]) = xyz{(yz)a−1 +(x+1)a−1}
+yz{(x+1)a−1 + za−1},

(vi) Ra(PNN[x,y,z])
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Figure 2. Comparative graphical representations of M1, M2, F− index, ReZM and SSD with
∏
∗
1, ∏2, ∏F ,∏ReZM and ∏SSD of probabilistic neural network based on line graphs and their corresponding surface graphs.

Here we consider z = 2 is fixed.

=
1
2

Za,a(PNN[x,y,z]) = xyz{yz(x+1)}a + yz{z(x+1)}a,

(vii) SDD(PNN[x,y,z])

= Z1,−1(PNN[x,y,z]) = xyz{ yz
x+1

+
x+1

yz
}

+yz{x+1
z

+
z

x+1
}.

3. Conclusion
In this paper, we compute the general Zagreb index and

a new multiplicative version general Zagreb index of proba-
bilistic neural network. Also, we compute some other degree
based topological indices for some particular values of a and
b. For future study, some other networks can be considered
for studying this multiplicative version general Zagreb index.
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