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Abstract

In this paper, we give an existence theorem for hybrid generalized multi-valued α-contractive type map-
pings which extends, improves and unifies the corresponding main result of Sintunavart and Kumam [W.
Sintunavart, P. Kumam, Common fixed point theorem for hybrid generalized multi-valued contraction map-
pings, Appl. Math. Lett. 25 (2012), 52-57] and some main results in the literature. As an application, we
give some existence and uniqueness results for solutions of a certain class of functional equations arising in
dynamic programming to illustrate the efficiency and usefulness of our main result.
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1 Introduction and preliminaries

Fixed point theory is one of the classical and most powerful tools which plays an essential role in nonlinear
analysis. Under the mathematical point of view, this is utilized in so many nonlinear problems arising from
the most applicable areas of sciences such as engineering, economics, dynamic system and physics (more
precisely in the theory of Phase Transitions), etc.
The idea of combining the multi-valued mappings, Lipschitz mapping and fixed point theorems was initiated
by Nadler [14]. He was the first one that gave a famous generalization of the Banach contraction principle for
multi-valued mappings from metric space X into CB(X) using the Hausdorff metric which is defined by

H(A, B) := max

{
sup
x∈B

d(x, A), sup
y∈A

d(y, B)

}
, A, B ∈ CB(X),

where d(x, A) = infy∈A d(x, y) and CB(X) is a collection of nonempty closed bounded subsets of X.

Definition 1.1 ([9]). Let H be the Hausdorff metric on CB(X), f : X → X be a single-valued mapping and T : X →
CB(X) be multi-valued mapping. We say an element x ∈ X is a fixed point of f (resp. T) if f x = x (resp. x ∈ Tx). We
denote the set of all fixed points of f (resp. T) by Fix( f ) (resp. Fix(T)). A point x ∈ X is a coincidence point of f and T
if f x ∈ Tx and is a common fixed point of f and T if x = f x ∈ Tx.

Let (X, d) be a metric space, f : X → X be a single-valued mapping and T : X → CB(X) be a multi-valued
mapping. T is said to be a f -weakly Picard mapping if and only if for each x ∈ X and f y ∈ Tx (y ∈ X), there exists a
sequence {xn} in X such that

(i) x0 = x, x1 = y;
(ii) f xn+1 ∈ Txn for all n = 0, 1, 2,...;
(iii) the sequence { f xn} converges to f u, where u is the coincidence point of f and T.
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Theorem 1.1 (Nadler[14]). Let (X, d) be a complete metric space and let T : X → CB(X) be a multi-valued mapping
such that for a fixed constant h ∈ (0, 1) and for each x, y ∈ X,

H(Tx, Ty) ≤ hd(x, y).

Then Fix(T) 6= ∅.

Afterward, several authors have focused on generalization of Nadler’s fixed point theorem in various
types. For example, in 2007, M. Berinde and V. Berinde [2] presented a nice fixed point result based on so-
called MT -functions which recently have been characterized by Du [6].

Definition 1.2 ([4,5,7]). A function φ : [0, ∞) → [0, 1) is said to be an MT -function if it satisfies Mizoguchi-
Takahashi’s condition, i.e. lim sups→t+ φ(s) < 1 for all t ∈ [0, ∞).

Theorem 1.2 ([2]). Let (X, d) be a complete metric space and T : X → CB(X) be a multi-valued mapping. If there
exist an MT -function φ : [0, ∞) → [0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ φ(d(x, y))d(x, y) + Ld(y, Tx) for all x, y ∈ X,

then Fix(T) 6= ∅.

We remark that letting L = 0 in Theorem 1.2 we can easily obtain the following result as Mizoguchi-
Takahashi’s fixed point theorem [13] which is considered as a partial answer of Problem 9 in Reich [17]. Also,
Yu-Qing [21] gave an affirmative answer to a fixed point problem of Reich which was raised in [16].

Theorem 1.3 ([13]). Let (X, d) be a complete metric space, T : X → CB(X) be a multi-valued mapping and φ :
[0, ∞) → [0, 1) be an MT -function. Assume that

H(Tx, Ty) ≤ φ(d(x, y))d(x, y) for all x, y ∈ X.

Then Fix(T) 6= ∅.

Definition 1.3 ([9]). Let (X, d) be a metric space, f : X → X be a single-valued mapping and T : X → CB(X) be
multi-valued mapping. If the sequence {xn} in X satisfying conditions (i) and (ii) in Definition 1.1, then the sequence
O f (x0) = { f xn : n = 1, 2, ...} is said to be an f -orbit of T at x0.

Recently, Sintunavart and Kumam [20] presented a generalization of main result of Kamran [8, 9] and then
unified and complemented the result by introducing the notion of hybrid generalized multi-valued contrac-
tion mapping in [19] as follows.

Definition 1.4 ([19]). Let (X, d) be a metric space, f : X → X be a single-valued mapping and T : X → CB(X) be a
multi-valued mapping. T is said to be a hybrid generalized multi-valued contraction mapping if and only if there exist
two functions φ : [0, ∞) → [0, 1) satisfying lim supr→t+ φ(r) < 1 for every t ∈ [0, ∞) and ϕ : [0, ∞) → [0, ∞), such
that

H(Tx, Ty) ≤ φ(M(x, y))M(x, y) + ϕ(N(x, y))N(x, y),

for all x, y ∈ X, where

M(x, y) := max{d( f x, f y), d( f y, Tx)}

and

N(x, y) := min{d( f x, f y), d( f x, Tx), d( f y, Ty), d( f x, Ty), d( f y, Tx)}.

Theorem 1.4 ([19]). Let (X, d) be a metric space, f : X → X be a single-valued mapping and T : X → CB(X) be a
multi-valued mapping. Suppose that f X is a complete subspace of X and TX ⊂ f X. Then f and T have a coincidence
point z ∈ X. Moreover, if ff z = f z, then f and T have a common fixed point.

The following lemmas are crucial for the proof of our main result.
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Lemma 1.1 ([9]). Let (X, d) be a metric space, {Ak} be a sequence in CB(X) and {xk} be a sequence in X such that
{xk} ∈ Ak−1. Let h : [0, ∞) → [0, 1) be a function satisfying lim supr→t+ h(r) < 1 for every t ∈ [0, ∞). Suppose
d(xk−1, xk) to be a nonincreasing sequence such that

H(Ak−1, Ak) ≤ h(d(xk−1, xk))d(xk−1, xk),

d(xk, xk+1) ≤ H(Ak−1, Ak) + hnk (d(xk−1, xk)),
(1.1)

where n1 < n2 < · · · which k, nk ∈ N. Then {xk} is a Cauchy sequence in X.

Lemma 1.2 ([14]). If A, B ∈ CB(X) and a ∈ A, then for each ε > 0, there exists b ∈ B such that d(a, b) ≤
H(A, B) + ε.

Throughout this work, we introduce the notions of a hybrid generalized multi-valued α-contractive type
mapping based on Definition 1.4 and an α-admissible multi-valued mapping to obtain some fixed point the-
orems which either generalize or improve the corresponding recent fixed point results of Sintunavart and
Kumam [19] (Theorem 1.4 of the present paper) and some ones in the literature. As an application, to show
the applicability of our results, we give an existence theorem for certain class of functional equations arising
in dynamic programming.

2 Main results

Denote with Ψ the family of functions ψ : [0, ∞) → [0, ∞) which satisfy

(i) ψ is non-decreasing,
(ii) lim

n→∞
ψ(tn) = 0 if and only if lim

n→∞
tn = 0 for tn ∈ [0, ∞),

(iii) ψ is subadditive, i.e., ψ(t + s) ≤ ψ(t) + ψ(s) for all t, s ∈ [0, ∞),
(iv) for any t > 0 there exists an s > 0 such that ψ(s) ≤ t,
(v) if t < s then t < ψ(s).

For example, function ψ(t) = at, where a ≥ 1 is in Ψ.
In order to proceed with developing our work and obtain our results we need the following definition

inspired by Definition 1.4 as follows.

Definition 2.5. Let (X, d) be a metric space, f : X → X be a single-valued mapping and T : X → CB(X) be a
multi-valued mapping. The mapping T is said to be a hybrid generalized multi-valued α-contractive type mapping if and
only if there exist an MT -function φ : [0, ∞) → [0, 1) and function ϕ : [0, ∞) → [0, ∞), such that

α(x, y)ψ(H(Tx, Ty)) ≤ φ(M(x, y))M(x, y) + ϕ(N(x, y))N(x, y),

for all x, y ∈ X, where ψ ∈ Ψ, α : X × X → [0, ∞) is a given function and

M(x, y) := max{d( f x, f y), d( f y, Tx)}

and

N(x, y) := min{d( f x, f y), d( f x, Tx), d( f y, Ty), d( f x, Ty), d( f y, Tx)}.

Definition 2.6. Let T : X → CB(X) be a multi-valued mapping, f : X → X be a single-valued mapping and
α : X × X → [0, ∞). We say T is α-admissible if

x, y ∈ X, α(x, y) ≥ 1 =⇒ Λ f (Tx, Ty) ≥ 1

where Λ f : CB(X)× CB(X) → [0, ∞) is given by Λ f (A, B) = infa,b∈X{α(a, b)| f a ∈ A, f b ∈ B}.

Example 2.1. Let α : X × X → [r, ∞) where r ≥ 1. Then any arbitrary multi-valued mapping T : X → CB(X) is an
α-admissible.

We first present the following simple lemma which is significant to prove our main result.
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Lemma 2.3. Let (X, d) be a metric space, f : X → X be a single-valued mapping and T : X → CB(X) be an α-
admissible multi-valued mapping. Suppose that Λ f ({ f x0}, Tx0) ≥ 1 for some x0 ∈ X and { f xk} is an f -orbit of T at
x0. Then for all n ∈ N, α(xn, xn+1) ≥ 1.

Proof. According to the hypotheses let x0 ∈ X such that Λ f ({ f x0}, Tx0) ≥ 1 and { f xk} be an f -orbit of T at x0
so that f xn ∈ Txn−1. Since T is α-admissible, we get the following implication

α(x0, x1) ≥ Λ f ({ f x0}, Tx0) ≥ 1 =⇒ α(x1, x2) ≥ Λ f (Tx0, Tx1) ≥ 1.

By the induction and using the α-admissibility of T, we obtain

α(xn, xn+1) ≥ 1, for all n ∈ N

which completes the proof.

Now we give an immediate consequence of Lemma 1.2 as follows.

Lemma 2.4. Let A, B ∈ CB(X), a ∈ A and ψ ∈ Ψ. Then for each ε > 0, there exists b ∈ B such that ψ(d(a, b)) ≤
ψ(H(A, B)) + ε.

Proof. Suppose, to the contrary, that there exist a ∈ A, ε > 0 and ψ ∈ Ψ such that

ψ(d(a, b)) > ψ(H(A, B)) + ε for all b ∈ B.

Following property (iv) of ψ we can choose an s > 0 such that ψ(s) ≤ ε. So for all b ∈ B we get

ψ(d(a, b)) > ψ(H(A, B)) + ε

≥ ψ(H(A, B)) + ψ(s)

≥ ψ(H(A, B) + s),

(2.2)

which implies

d(a, b) > H(A, B) + s for all b ∈ B.

On the other hand, it follows from Lemma 1.2 that there is an element b′ ∈ B such that

d(a, b′) ≤ H(A, B) + s,

which shows an obvious contradiction and completes the proof.

By the virtue of the proof of Lemma 1.1 and using properties (ii) and (iii) of function ψ ∈ Ψ we can prove
the lemma given below.

Lemma 2.5. Let (X, d) be a metric space and h : [0, ∞) → [0, 1) be an MT -function. Suppose d(xk−1, xk) to be a
nonincreasing sequence such that

ψ(d(xk, xk+1)) ≤ h(d(xk−1, xk))ψ(d(xk−1, xk)) + hnk (d(xk−1, xk)),

where ψ ∈ Ψ and n1 < n2 < · · · which k, nk ∈ N. Then {xk} is a Cauchy sequence in X.

The following is our main result and can be considered as a generalization of Theorem 1.4 and a series of
results in the literature.

Theorem 2.5. Let (X, d) be a metric space, f : X → X be a single-valued mapping and T : X → CB(X) be a hybrid
generalized multi-valued α-contractive type mapping such that f X is a complete subspace of X and TX ⊂ f X. Suppose
that all the following conditions hold:

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that Λ f ({ f x0}, Tx0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → ∞, then there exists an n0
such that α(xn, x) ≥ 1 for all n ≥ n0.
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Then f and T have a coincidence point u ∈ X. Moreover, if f u ∈ Fix( f ) and α(u, f u) ≥ 1, then f u is a common fixed
point of f and T.

Proof. Let x0 be an arbitrary element in X and y0 = f x0. We define the sequence {xn} and {yn} recursively
as follows. Since TX ⊂ f X, we can choose an x1 ∈ X such that y1 = f x1 ∈ Tx0. Since 0 ≤ φ(t) < 1 for all
t ∈ [0, ∞) we can choose a positive integer n1 such that

φn1(d(y0, y1)) ≤ [1− φ(M(x0, x1))]M(x0, x1). (2.3)

Following Lemma 2.4, we may select y2 = f x2 ∈ Tx1 such that

ψ(d(y1, y2)) ≤ ψ(H(Tx0, Tx1)) + φn1(d(y0, y1)).

Using (2.3), (ii) and the notion of a hybrid generalized multi-valued α-contractive type mapping, we get

ψ(d(y1, y2)) ≤ ψ(H(Tx0, Tx1)) + φn1(d(y0, y1))

≤ α(x0, x1)ψ(H(Tx0, Tx1)) + [1− φ(M(x0, x1))]M(x0, x1)

≤ φ(M(x0, x1))M(x0, x1) + ϕ(N(x0, x1))N(x0, x1) + [1− φ(M(x0, x1))]M(x0, x1)

= M(x0, x1)

= max{d( f x0, f x1), d( f x1, Tx0)}
= d(y0, y1).

Now, we take a positive integer n2 which is greater than n1 such that

φn2(d(y1, y2)) ≤ [1− φ(M(x1, x2))]M(x1, x2).

Again following Lemma 2.4 since TX ⊂ f X, we may select y3 = f x3 ∈ Tx2 such that

ψ(d(y2, y3)) ≤ ψ(H(Tx1, Tx2)) + φn2(d(y1, y2)).

Similar to the previous case and using the α-admissibility of T and Lemma 2.3 we obtain the following

ψ(d(y2, y3)) ≤ ψ(H(Tx1, Tx2)) + φn2(d(y1, y2))

≤ α(x1, x2)ψ(H(Tx1, Tx2)) + [1− φ(M(x1, x2))]M(x1, x2)

≤ φ(M(x1, x2))M(x1, x2) + ϕ(N(x1, x2))N(x1, x2) + [1− φ(M(x1, x2))]M(x1, x2)

= M(x1, x2)

= max{d( f x1, f x2), d( f x2, Tx1)}
= d(y1, y2).

Continuing the procedure as above and applying Lemma 2.3, for all k ∈ N, we can find a positive integer nk
such that

φnk (d(yk−1, yk)) ≤ [1− φ(M(xk−1, xk))]M(xk−1, xk).

By applying Lemma 2.4 we may choose yk+1 = f xk+1 ∈ Txk such that

ψ(d(yk, yk+1)) ≤ ψ(H(Txk−1, Txk)) + φnk (d(yk−1, yk)) (2.4)

for each k = 1, 2, .... The recent inequalities together with the notion of a hybrid generalized multi-valued
α-contractive type mapping imply

ψ(d(yk, yk+1)) ≤ ψ(H(Txk−1, Txk)) + φnk (d(yk−1, yk))

≤ α(xk−1, xk)ψ(H(Txk−1, Txk)) + [1− φ(M(xk−1, xk))]M(xk−1, xk)

≤ φ(M(xk−1, xk))M(xk−1, xk) + ϕ(N(xk−1, xk))N(xk−1, xk)

+ [1− φ(M(xk−1, xk))]M(xk−1, xk)

= M(xk−1, xk)

= max{d( f xk−1, f xk), d( f xk, Txk−1)}
= d(yk−1, yk)

(2.5)
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for all k ∈ N. If for some k ∈ N, yk−1 = yk then there is nothing to prove. Otherwise, we claim that d(yk−1, yk)
is a nonincreasing sequence of nonnegative numbers. Suppose the opposite is true. It follows from (2.5) and
property (v) of ψ that d(yk−1, yk) is a nonincreasing sequence of nonnegative numbers. On the other hand

ψ(H(Txk−1, Txk)) ≤ α(xk−1, xk)ψ(H(Txk−1, Txk))

≤ φ(M(xk−1, xk))M(xk−1, xk) + ϕ(N(xk−1, xk))N(xk−1, xk)

≤ φ(M(xk−1, xk))M(xk−1, xk)

= φ(d(yk−1, yk))d(yk−1, yk).

This together with (2.4) imply

ψ(d(yk, yk+1)) ≤ φ(d(yk−1, yk))d(yk−1, yk) + φnk (d(yk−1, yk)),

which shows that {yk} = { f xk} is a Cauchy sequence in f X followed by Lemma 2.5. Hence, the sequence
{ f xk} is convergent to f u for some u ∈ X. Now following condition (iii) of assumptions and Lemma 2.3, since
α(xk, xk+1) ≥ 1 we easily conclude that there exists a positive integer k0 such that

ψ(d( f u, Tu)) ≤ ψ(d( f u, f xk)) + ψ(d( f xk, Tu))

≤ ψ(d( f u, f xk)) + ψ(H(Txk−1, Tu))

≤ ψ(d( f u, f xk)) + α(xk−1, u)ψ(H(Txk−1, Tu))

≤ ψ(d( f u, f xk)) + φ(M(xk−1, u))M(xk−1, u) + ϕ(N(xk−1, u))N(xk−1, u)

(2.6)

for all k ≥ k0. On the other hand, since f xk → f u as k → ∞ and f xk ∈ Txk−1 so d( f u, Txk−1) → 0 as k → ∞.
Therefore, the following equalities

M(xk−1, u) = max{d( f xk−1, f u), d( f u, Txk−1)},

N(xk−1, u) = min{d( f xk−1, f u), d( f xk−1, Txk−1), d( f u, Tu), d( f xk−1, Tu), d( f u, Txk−1)}

together with (2.6) and property (ii) of ψ imply d( f u, Tu) = 0, that is, f u ∈ Tu since Tu ∈ CB(X). This shows
that u is a coincidence point of f and T. To prove that f u is a common fixed point of f and T, using the fact
that f u ∈ Fix( f ) and taking v := f u ∈ Tu we have f v = f f u = f u = v and hence

ψ(H(Tu, Tv)) ≤ α(u, v)ψ(H(Tu, Tv))

≤ φ(M(u, v))M(u, v) + ϕ(N(u, v))N(u, v)

= φ(max{d( f u, f v), d( f v, Tu)}) max{d( f u, f v), d( f v, Tu)}
+ ϕ(min{d( f u, f v), d( f u, Tu), d( f v, Tu), d( f u, Tv), d( f v, Tu)})
×min{d( f u, f v), d( f u, Tu), d( f v, Tv), d( f u, Tv), d( f v, Tu)}

= 0.

Now it follows from ψ(d( f v, Tv)) = ψ(d( f u, Tv)) ≤ ψ(H(Tu, Tv)) = 0 that v = f v ∈ Tv. Therefore, v = f u is
a common fixed point of f and T.

Now we have the following immediate consequence.

Corollary 2.1. Let (X, d) be a metric space and f , T : X → X be single-valued mappings. Suppose that T satisfies

α(x, y)ψ(d(Tx, Ty)) ≤ φ(M(x, y))M(x, y) + ϕ(N(x, y))N(x, y),

where M(x, y), N(x, y), φ, ϕ and ψ are given as in Definition 2.5, f X is a complete subspace of X and TX ⊂ f X.
Suppose also that

(i) T is α-admissible, that is,

if x, y ∈ X, α(x, y) ≥ 1 =⇒ Λ f (Tx, Ty) ≥ 1

where Λ f : X × X → [0, ∞) is given by Λ f (x, y) = infa,b∈X{α(a, b)| f a = x, f b = y};
(ii) there exists x0 ∈ X such that Λ f ( f x0, Tx0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → ∞, then there exists an n0
such that α(xn, x) ≥ 1 for all n ≥ n0.
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Then f and T have a coincidence point u ∈ X. Moreover, if f u ∈ Fix( f ) and α(u, f u) ≥ 1, then f u is a common fixed
point of f and T.

To prove this, considering T as a single-valued mapping in Theorem 2.5 one can easily utilize the proof of
Theorem 2.5, step by step, to conclude the result.

3 Functional equations in dynamic programming

Throughout this section, to verify the practicability of our main result we prove an existence theorem for
a certain class of functional equations arising in dynamic programming which has been studied by utilizing
various fixed point theorems in several papers (see [3,10-12,15,18] and the references therein).

From now on, we suppose that U and V are Banach spaces, W ⊂ U and D ⊂ V. Also let B(W) denote the
set of all bounded real valued functions on W which is a metric space under the usual metric

dB(h, k) = sup
x∈W

|h(x)− k(x)|, h, k ∈ B(W).

Bellman and Lee [1] pointed out that the basic form of the functional equation of dynamic programming is as
follows:

p(x) = sup
y∈D

H(x, y, p(τ(x, y))), x ∈ W

where x and y stand for the state and decision vectors, respectively, τ : W × D → W represents the transfor-
mation of the process and p(x) denotes the optimal return function with initial state x. Viewing W and D as
the state and decision spaces, respectively, the problem of dynamic programming reduces to the problem of
solving the functional equation

p(x) = sup
y∈D

{g(x, y) + G(x, y, p(τ(x, y)))}, x ∈ W (3.7)

where g : W × D → R and G : W × D × R → R are bounded functions. We investigate the existence and
uniqueness of solutions for functional equation (3.7). Suppose that the functions φ, ϕ and ψ are given as in
Definition 2.5 and the mapping F is defined by

F(h(x)) = sup
y∈D

{g(x, y) + G(x, y, h(τ(x, y)))}, h ∈ B(W), x ∈ W. (3.8)

Suppose that following conditions hold:

(i) that there exists a mapping Ω : B(W)× B(W) → R such that

Ω(h, k) ≥ 0 =⇒ Ω(sup
y∈D

{g(x, y) + G(x, y, h(τ(x, y)))}, sup
y∈D

{g(x, y) + G(x, y, k(τ(x, y)))}) ≥ 0, x ∈ W

where h, k ∈ B(W);
(ii) there is an h0 ∈ B(W) such that

Ω(h0(x), sup
y∈D

{g(x, y) + G(x, y, h0(τ(x, y)))}) ≥ 0 for x ∈ W;

(iii) if {hn} is a sequence of functions in B(W) such that Ω(hn, hn+1) ≥ 0 for all n and {hn} is pointwise
convergent to h ∈ B(W), then there exists an n0 such that Ω(hn, h) ≥ 0 for all n ≥ n0.

Then we have the following result.

Theorem 3.6. Suppose that all the conditions (i)-(iii) are satisfied. In addition, for all h, k ∈ B(W) with Ω(h, k) ≥ 0
we have

ψ(dB(F(h), F(k))) ≤ φ(M(h, k))M(h, k) + ϕ(N(h, k))N(h, k), (3.9)
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where

M(h, k) := max{dB(h, k), dB(k, F(h))}

and

N(h, k) := min{dB(h, k), dB(h, F(h)), dB(k, F(k)), dB(h, F(k)), dB(k, F(h))}.

Then functional equation (3.7) possesses a solution in B(W).

Proof. Bearing in mind that (B(W), dB) is a complete metric space, where dB is the metric induced by the
usual metric on B(W). It is easy to see that B(W) is F-invariant, that is, for any h ∈ B(W) we get F(h) ∈ B(W).
Clearly, F is both hybrid generalized multi-valued α-contractive type mapping and α-admissible with

α(h, k) =
{

1, Ω(h, k) ≥ 0
0, o.w.

Now, replacing f by the identity mapping and taking hn+1 = F(hn) in the proof of Theorem 2.5 we can find a
positive integer nk such that

φnk (dB(hk−1, hk)) ≤ [1− φ(M(hk−1, hk))]M(hk−1, hk)

and

ψ(dB(hk, hk+1)) ≤ ψ(dB(F(hk−1), F(hk))) + φnk (dB(hk−1, hk)) (3.10)

for each k = 1, 2, .... These inequalities together with the fact that F enjoys condition (3.9) implies that
dB(hk−1, hk) is a nondecreasing sequence, hence hk converges to some h in B(W). Now by subadditivity of
ψ and using (3.9) we easily conclude that dB(h, F(h)) = 0 which completes the proof.

Theorem 3.7. Suppose in addition to conditions of Theorem 3.6, that

Ω(h, k) ≥ 0 =⇒ (
1

dB
− (

φ

ψ
) ◦ dB)(h, k) > 0 (3.11)

for h, k ∈ B(W) such that h 6= k. Then functional equation (3.7) has a unique solution in B(W).

Proof. Let u, v ∈ B(W) be two distinct solutions of functional equation (3.7), that is, Tu = u and Tv = v. Then
using (3.9) we get

ψ(dB(u, v)) ≤ φ(dB(u, v))dB(u, v)

which contradicts (3.11) and the conclusion follows.
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