The non-negative Q_{1}-matrix completion problem

Kalyan Sinha

Abstract

A matrix is a Q_{1}-matrix if it is a Q-matrix with positive diagonal entries. A matrix is a nonnegative matrix if it is a matrix with nonnegative entries. A digraph D is said to have nonnegative Q_{1}-completion if every partial nonnegative Q_{1}-matrix specifying D can be completed to a nonnegative Q_{1}-matrix. In this paper, some necessary and sufficient conditions for a digraph to have nonnegative Q_{1}-completion are provided. Later on the relationship among the completion problems of nonnegative Q_{1}-matrix and some other class of matrices are shown. Finally, the digraphs of order at most four that include all loops and have nonnegative Q_{1}-completion are singled out.

Keywords
Partial matrix, Nonnegative Q_{1}-matrix, Digraph, Matrix completion, Nonnegative Q_{1}-completion problem.
AMS Subject Classification
15A48.
Department of Mathematics, A. B. N. Seal College, Coochbehar, India-736101.
Corresponding author: kalyansinha90@gmail.com
Article History: Received 12 April 2019; Accepted 8 August 2019

Contents

1 Introduction 651
1.1 Digraphs 651
1.2 Digraphs with matrices 652
2 Partial nonnegative Q_{1}-matrix and the nonnegative Q_{1}-matrix completion problem 652
3 Digraphs and the nonnegative Q_{1}-completion prob-Iem653
3.1 Sufficient conditions for nonnegative Q_{1}-matrix com- pletion 654
3.2 Necessary conditions for nonnegative Q_{1}-matrix com- pletion 655
4 Relationship theorems 655
4.1 Q-completion and nonnegative Q_{1}-completion 655
4.2 Nonnegative Q-completion and non-negative Q_{1} -completion 656
4.3 Positive Q-completion and nonnegative Q_{1}-completion 656
5 Classification of digraphs of small order having non- negative Q_{1}-completion 657
References 657

1. Introduction

A real $n \times n$ matrix $B=\left[b_{i j}\right]$ is a Q_{1}-matrix if all diagonal entries are positive and for every $k \in\{1,2, \ldots, n\}, S_{k}(B)>0$, where $S_{k}(B)$ is the sum of all $k \times k$ principal minors of B. The matrix B is a Q-matrix if for every $k \in\{1,2, \ldots, n\}, S_{k}(B)>0$. A nonnegative Q_{1}-matrix is a Q_{1}-matrix in which all off diagonal entries are nonnegative. A partial matrix is a rectangular array of numbers in which some entries are specified while others are free to be chosen. A partial matrix M is fully specified if all entries of M are specified, i.e., if M is a matrix. A partial nonnegative (positive) matrix is a partial matrix whose specified entries are nonnegative (positive).

For a subset α of $\langle n\rangle=\{1,2, \ldots, n\}$, the principal partial submatrix $M(\alpha)$ is the partial matrix obtained from M by deleting all rows and columns not indexed by α. A principal minor of M is the determinant of a fully specified principal submatrix of M. For a given class Γ of matrices (e.g., $Q, Q_{1^{-}}$ matrices) a partial Γ-matrix is a partial matrix for which the specified entries satisfy the properties of a Γ-matrix. A completion of a partial matrix is a specific choice of values for the unspecified entries. A matrix completion problem asks which partial matrices have completions with a given property. A Γ-completion of a partial Γ-matrix M is a completion of M which is a Γ-matrix.

A number of researchers studied matrix completion problems for different classes of matrices ([5-13]). In 2009, DeAlba et al. [2] solved the Q-matrix completion problem. For liter-
ature survey and complete updated results, one can see [3].

1.1 Digraphs

Any standard reference, for example, [1] and [4] can be use for graph theoretic terminologies. A directed graph or digraph $D=\left(V_{D}, A_{D}\right)$ of order $n>0$ is a finite nonempty set V_{D}, with $\left|V_{D}\right|=n$ of objects called vertices together with a (possibly empty) set A_{D} of ordered pairs of vertices, called arcs. We write $v \in D$ (resp. $(u, v) \in D)$ to imply $v \in V_{D}$ (resp. $\left.(u, v) \in A_{D}\right)$. If $x=(u, u)$, then x is called a loop at the vertex u.

A (directed) $u-v$ path P of length $k \geq 0$ in D is an alternating sequence ($u=v_{0}, x_{1}, v_{1}, \ldots, x_{k}, v_{k}=v$) of vertices and arcs, where $v_{i}, 1 \leq i \leq k$, are distinct vertices and $x_{i}=$ $\left(v_{i-1}, v_{i}\right)$. Further, if $k \geq 2$ and $u=v$, then a $u-v$ path is a cycle of length k. The vertices v_{i} and the $\operatorname{arcs} x_{i}$ are said to be on P. We then write $C_{k}=\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ and call C_{k} a k-cycle in D. A digraph without any cycle is said to be acyclic. A 1-cycle consists of a vertex v and a loop at v.

A cycle C is odd (resp. even) if its length is odd (resp. even). A digraph $H=\left(V_{H}, A_{H}\right)$ is a subdigraph of order k of the digraph D if $\left|V_{H}\right|=k$ and $V_{H} \subseteq V_{D}, A_{H} \subseteq A_{D}$. A subdigraph H of D is an induced subdigraph if $A_{H}=\left(V_{H} \times\right.$ $\left.V_{H}\right) \cap A_{D}$ (induced by V_{H}) and is a spanning subdigraph if $V_{H}=V_{D}$. A digraph D is said to be connected (resp. strongly connected) if for every pair u, v of vertices, D contains a $u-v$ path (resp. both a $u-v$ path and a $v-u$ path). The maximal connected (resp. strongly connected) subdigraphs of D are called components (resp. strong components) of D.

The complement of a digraph D is the digraph \bar{D}, where $V_{\bar{D}}=V_{D}$ and $(u, v) \in A_{\bar{D}}$ if and only if $(u, v) \notin A_{D}$. A digraph D is said to be symmetric if $(u, v) \in D$ implies $(v, u) \in D$. On the other hand, D is asymmetric if $(u, v) \in D$ implies $(v, u) \notin D$. A complete symmetric digraph on n vertices, denoted by K_{n}, is the digraph having all possible arcs (including all loops).

Two digraphs $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ are isomorphic, if there is a bijection $\phi: V_{1} \rightarrow V_{2}$ such that $A_{2}=$ $\left\{(\phi(u), \phi(v)):(u, v) \in A_{1}\right\}$. An unlabelled digraph is an equivalent class of isomorphic digraphs. Choosing a particular member of an unlabelled digraph is referred as a labelling of the unlabelled digraph.

1.2 Digraphs with matrices

Let π be a permutation of a nonempty finite set V. The digraph $D_{\pi}=\left(V, A_{\pi}\right)$, where $A_{\pi}=\{(v, \pi(v)): v \in V\}$ is called a permutation digraph. Clearly, each component of a permutation digraph is a loop or a cycle. The digraph D_{π} is said to be positive (resp. negative) if π is an even permutation (resp. an odd permutation). It is clear that D_{π} is negative if and only if it has odd number of even cycles.

A permutation subdigraph H (of order k) of a digraph D is a permutation digraph that is a subdigraph of D (of order k). A digraph D is stratified if D has a permutation subdigraph of order k for every $k=2,3, \ldots,|D|$.

Let $B=\left[b_{i j}\right]$ be an $n \times n$ matrix. We have

$$
\operatorname{det}(B)=\sum(\operatorname{sgn} \pi) b_{1 \pi(1)} \cdots b_{n \pi(n)}
$$

where the sum is taken over all permutations π of $\langle n\rangle$.

2. Partial nonnegative Q_{1}-matrix and the nonnegative Q_{1}-matrix completion problem

A partial nonnegative matrix is a partial matrix in which all specified entries are nonnegative. A partial Q_{1}-matrix is a partial Q-matrix with all specified diagonal entries are positive. Thus, a partial nonnegative Q_{1}-matrix is a partial nonnegative matrix M with all specified positive diagonal entries and $S_{k}(M)>0$ for every $k \in\{1,2, \ldots, n\}$, whenever all $k \times k$ principal submatrices are fully specified. Now, a partial nonnegative Q_{1}-matrix is characterized as follows.

Proposition 2.1. Suppose $M=\left[a_{i j}\right]$ is a partial nonnegative matrix. Then M is a partial nonnegative Q_{1}-matrix if and only if exactly one of the following holds:
(i) At least one diagonal entry of M is unspecified, all specified diagonal entries are positive.
(ii) All diagonal entries are specified and positive; at least one off-diagonal entry is unspecified.
(iii) All entries of M are specified and M is a nonnegative Q_{1}-matrix.

For any partial nonnegative Q_{1}-matrix M, a completion B of M is called a nonnegative Q_{1}-completion of M, if B is a nonnegative Q_{1}-matrix. Since permutation similarity of a matrix to a nonnegative Q_{1}-matrix is a nonnegative Q_{1}-matrix, it is quite clear that if a partial nonnegative Q_{1}-matrix M has a nonnegative Q_{1}-completion, so does any partial matrix which is permutation similar to M.

One can easily verify that any partial nonnegative matrix M with all unspecified diagonal entries has nonnegative $Q_{1^{-}}$ completion. By choosing sufficiently large values for the unspecified diagonal entries, a nonnegative Q_{1}-completion can be obtained. Suppose M be a partial nonnegative $Q_{1^{-}}$ matrix in which the diagonal entries at (i, i) positions $(i=$ $k+1, \ldots, n)$ are unspecified. If $M[1, \ldots, k]$ is fully specified, M may not have a nonnegative Q_{1}-completion. For example, the partial nonnegative matrix,

$$
M=\left[\begin{array}{lll}
0.1 & 0.1 & 0.1 \\
0.1 & 0.1 & 0.1 \\
0.1 & 0.1 & ?
\end{array}\right]
$$

where ? denotes an unspecified entry, does not have nonnegative Q_{1}-completion. In fact for any completion B of M, $S_{3}(B)=0$. On the other hand, if $M[1, \ldots, k]$ has an unspecified entry and has a nonnegative Q_{1}-completion, then M has a nonnegative Q_{1}-completion. A completion of M can be obtained by choosing sufficiently large values for the unspecified diagonal entries. These above observations are listed in the following results.

Theorem 2.2. If a nonnegative matrix M omits all diagonal entries, then M has nonnegative Q_{1}-completion.

Proof. Suppose $M=\left[a_{i j}\right]$ be a partial nonnegative Q_{1}-matrix. For any $s>1$, consider a completion $B=\left[b_{i j}\right]$ of M by setting all diagonal entries equal to s and rest of the off diagonal entries to be equal to zero. Then, any $r \times r$ principal minor will be of the form $s^{r}+p(s)$, where $p(s)$ is a polynomial of degree $\leq r-1$. Now by choosing s large enough, we have $S_{r}(B)>0$ for all $r \times r$ principal minors of B. Since only finitely many principal minors are to be considered, thus for sufficiently large s, M has nonnegative Q_{1}-completion.

Theorem 2.3. Suppose M be a partial nonnegative Q_{1}-matrix in which the diagonal entry at $(r+1, r+1)$ position is unspecified. If the principal submatrix $M[1, \ldots, r]$ of M is not fully specified and has nonnegative Q_{1}-completion, then M has nonnegative Q_{1}-completion.

Proof. Suppose $M=\left[a_{i j}\right]$ be a partial nonnegative Q_{1}-matrix which omits the diagonal entry at $(r+1, r+1)$ position. Then, M is of the form,

$$
M=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]
$$

where, $M_{11}=M[1, \ldots, r]$ and $M_{22}=M[r+1, r+1]$.
Consider B_{1} be the nonnegative Q_{1}-matrix completion of $M[1, \ldots, r]$. Then,

$$
M^{\prime}=\left[\begin{array}{cc}
B_{1} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]
$$

is a partial nonnegative Q_{1}-matrix, since M_{22} has an unspecified diagonal entry. Now for $s>0$, consider a completion $B=\left[b_{i j}\right]$ of M^{\prime} obtained by choosing $b_{i i}=s, \quad i=r+1$ and $b_{i j}=0$ against all other unspecified entries in M^{\prime}. Then B is of the form,

$$
B=\left[\begin{array}{cc}
B_{1} & B_{12} \\
B_{21} & s
\end{array}\right]
$$

Since B_{1} is a nonnegative Q_{1}-matrix, $S_{i}\left(B_{1}\right)>0$ for $1 \leq i \leq r$. For $2 \leq j \leq r+1$,

$$
S_{j}(B)=S_{j}\left(B_{1}\right)+s S_{j-1}\left(B_{1}\right)+s_{j},
$$

where s_{j} is a constant. Now $S_{j}(B)>0$ for sufficiently large values of s and clearly B is nonnegative Q_{1}-matrix.

Corollary 2.4. Suppose M be a partial nonnegative Q_{1}-matrix in which the diagonal entries at (i, i) positions $(i=r+1, \ldots, n)$ are unspecified. If the principal submatrix $M[1, \ldots, r]$ of M is not fully specified and has nonnegative Q_{1}-completion, then M has nonnegative $Q_{1-c o m p l e t i o n . ~}^{\text {-con }}$

The following example shows that the converse of Corollary 2.4 is not true.

Example 2.5. Consider the partial nonnegative matrix,

$$
M=\left[\begin{array}{llll}
d_{1} & a_{12} & ? & a_{14} \\
a_{21} & d_{2} & ? & ? \\
? & a_{32} & d_{3} & ? \\
a_{41} & ? & a_{43} & ?
\end{array}\right]
$$

where? denotes the unspecified entries. Here we have $d_{i}>0$, $\forall i=1,2,3$. We show that for any choice of values of the specified entries M has nonnegative Q_{1}-completions, but there are occasions when $M[1,2,3]$ does not have nonnegative $Q_{1^{-}}$ completion. For $x>0$, consider the completion $B(x)$ of M defined as follows:

$$
B(x)=\left[\begin{array}{cccc}
d_{1} & a_{12} & \frac{1}{x} & a_{14} \\
a_{21} & d_{2} & 1 & 0 \\
0 & a_{32} & d_{3} & \frac{1}{x^{2}} \\
a_{41} & x^{4} & a_{43} & x
\end{array}\right]
$$

Then,

$$
\begin{aligned}
S_{1}(B(t)) & =x+\sum d_{i} \\
S_{2}(B(t)) & =x\left(d_{1}+d_{2}+d_{3}\right)-\frac{a_{43}}{x^{2}}+f_{0}(x) \\
S_{3}(B(t)) & =a_{14} a_{21} x^{4}+x^{2}+f_{1}(x) \\
S_{4}(B(t)) & =a_{14} a_{21} d_{3} x^{4}+d_{1} x^{2}+f_{1}(x)
\end{aligned}
$$

where $f_{i}(x)$ is a polynomial in x of degree at most $i, i=$ 0,1 . Consequently, $B(x)$ is a nonnegative Q_{1}-matrix for sufficiently large x, and therefore M has nonnegative Q_{1}-completion. On contrast, the partial nonnegative Q_{1}-matrix

$$
M[1,2,3]=\left[\begin{array}{ccc}
1 & 10 & ? \\
10 & 1 & ? \\
? & 0 & 1
\end{array}\right]
$$

with unspecified entries ? is the principal submatrix of M induced by its diagonal $\{1,2,3\}$. Now one can verify that $M[1,2,3]$ does not have nonnegative Q_{1}-completion, because $S_{2}(M)<0$ for any completion of $M[1,2,3]$.

3. Digraphs and the nonnegative Q_{1}-completion problem

An $n \times n$ partial matrix M specifies a digraph $D=\left(\langle n\rangle, A_{D}\right)$ if for $1 \leq i, j \leq n,(i, j) \in A_{D}$ if and only if the (i, j)-th entry of M is specified. For example, the partial nonnegative $Q_{1^{-}}$ matrix M in Example 2.5 specifies the digraph D in Figure 1. We say that a digraph D has nonnegative Q_{1}-completion, if every partial nonnegative Q_{1}-matrix specifying D can be completed to a nonnegative Q_{1}-matrix. The nonnegative Q_{1}-matrix completion problem aims at studying and classifying all digraphs D which have nonnegative Q_{1}-completion.

The property of being a nonnegative Q_{1}-matrix is preserved under similarity and transposition, but it is not inherited by principal submatrices, as it can easily be verified. Also it is clear that if a digraph D has nonnegative Q_{1}-completio then any digraph which is isomorphic to D has nonnegative Q_{1}-completion.

Theorem 3.1. Suppose M is a partial nonnegative Q_{1}-matrix specifying the digraph D. If the partial submatrix of M induced by every strongly connected induced subdigraph of D has nonnegative Q_{1}-completion, then M has nonnegative $Q_{1^{-}}$ completion.

Proof. We prove the result for the case when D has two strong components D_{1} and D_{2}. The general result will then follow by induction. By a relabeling of the vertices of D, if required, we have

$$
M=\left[\begin{array}{cc}
M_{11} & M_{12} \\
X & M_{22}
\end{array}\right]
$$

where $M_{i i}$ is a partial nonnegative Q_{1}-matrix specifying $D_{i}, i=$ 1,2 , and all entries in X are unspecified. By the hypothesis, $M_{i i}$ has a nonnegative Q_{1}-completion $B_{i i}$. Consider the completion

$$
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

by choosing all entries in X as well as all unspecified entries in M_{12} as 0 . Then, for $2 \leq k \leq|D|$ we have,

$$
S_{k}(B)=S_{k}\left(B_{11}\right)+S_{k}\left(B_{22}\right)+\sum_{r=1}^{k-1} S_{r}\left(B_{11}\right) S_{k-r}\left(B_{22}\right) \geq 0
$$

Here, we mean $S_{k}\left(B_{i i}\right)=0$ whenever k exceeds the size of $B_{i i}$. Thus M can be completed to a nonnegative Q_{1}-matrix.

The proof of the following result is similar.
Theorem 3.2. Suppose M is a partial nonnegative Q_{1}-matrix specifying the digraph D. If the partial submatrix of M induced by each component of D has a nonnegative Q_{1}-completion, then M has a nonnegative Q_{1}-completion.

Consider the digraph D in the Figure 1. We show that D has nonnegative Q_{1}-completion, but the subdigraph D_{1} induced by vertices $\{1,2,3\}$ does not have nonnegative $Q_{1^{-}}$ completion (See Example 2.5). The property of having non-

Figure 1. The Digraph D
negative Q_{1}-completion is not inherited by induced subdigraphs. This can be also seen from the Example 2.5.

3.1 Sufficient conditions for nonnegative Q_{1}-matrix completion

Theorem 3.3. If a digraph $D \neq K_{n}$ of order n has nonnega,tive Q_{1}-completion, then any spanning subdigraph D_{0} of D has nonnegative Q_{1}-completion.

Proof. Suppose $M_{D_{0}}$ be a partial nonnegative Q_{1}-matrix specifying the digraph D_{0}. Consider a partial matrix M_{D} obtained from $M_{D_{0}}$ by specifying the entries corresponding to $(i, j) \in$ $A_{D} \backslash A_{D_{0}}$ as 0 and $(i, i) \in A_{D} \backslash A_{D_{0}}$ as 1 . Since $D \neq K_{n}, M_{D}$ is a partial nonnegative Q_{1}-matrix specifying D (By Proposition 2.1). Suppose B be a nonnegative Q_{1}-completion of M_{D} which is also nonnegative Q_{1}-completion of $M_{D_{0}}$. Hence the result follows.

Theorem 3.4. A digraph has nonnegative Q_{1}-completion if it does not contain an cycle of even length.

Proof. Suppose M be a partial nonnegative Q_{1}-matrix specifying a digraph D which has no cycles of even length. For $t>0$, consider a completion B of M by assigning all the unspecified diagonal entries as t and all unspecified off diagonal entries as 0 . Then for each $1 \leq k \leq n, S_{k}(B)$ contains a positive constant. On the other hand, for each $k \in\{1,2, \ldots, n\}$, $S_{k}(B)$ contains no negative terms, because D does not contain an even cycle. Hence the result follows.

Corollary 3.5. An acyclic digraph has nonnegative $Q_{1^{-}}$ completion.

However the converse of the Theorem 3.4 is not true which can be seen from the Example 3.6.

Example 3.6. Consider the digraph D_{1} in Figure 2. Now

D_{1}

Figure 2. The digraph D_{1} having nonnegative Q_{1}-completion
consider a partial nonnegative Q_{1}-matrix

$$
M=\left[\begin{array}{cccc}
d_{1} & ? & ? & a_{14} \\
a_{21} & d_{2} & ? & ? \\
? & a_{32} & d_{3} & ? \\
? & ? & a_{43} & d_{4}
\end{array}\right]
$$

specifying the digraph D_{1} with unspecified entries as ?. Now being a partial nonnegative Q_{1} matrix M, all the specified offdiagonal entries are nonnegative and $d_{i}>0, \forall i=1,2,3,4$. If any one off-diagonal specified entries are zero, then by
putting all unspecified entries as zero, we get the desired result. Suppose $a_{21} a_{14} a_{43} a_{32} \neq 0$. For $t>0$, consider a completion

$$
B==\left[\begin{array}{cccc}
d_{1} & 0 & t & a_{14} \\
a_{21} & d_{2} & 0 & 0 \\
0 & a_{32} & d_{3} & 0 \\
0 & 0 & a_{43} & d_{4}
\end{array}\right]
$$

of M. Then we have a positive term $t a_{32} a_{21}$ in $S_{3}(B)$ and $d_{4} t a_{32} a_{21}$ in $\operatorname{det} B$. By choosing t sufficiently large, we have $S_{3}(B)>0$ and $S_{4}(B)>0$. Again for positive diagonal entries $d_{i}, i=1, \ldots, 4$, we have $S_{1}(B)>0$ and $S_{2}(B)>0$. Hence the result follows.

Now we have the following result:
Theorem 3.7. Suppose $D \neq K_{4}$ be a digraph with all loops and without any 2-cycle. Suppose D has one even cycle C of length 4. If \bar{D} contains a 2-cycle $\langle u, v\rangle$ such that either $C+(u, v)$ or $C+(v, u)$ has a 3-cycle, then D has nonnegative Q_{1}-completion.

Proof. Suppose $M=\left[a_{i j}\right]$ be a partial nonnegative Q_{1}-matrix specifying the digraph D. Suppose (u, v) forms a 3-cycle in $C+(u, v)$. For $t>0$, consider a completion $B=\left[b_{i j}\right]$ of M as follows:

$$
b_{i j}= \begin{cases}a_{i j}, & \text { if }(i, j) \in D \\ t, & \text { if }(i, j)=(u, v) \in \bar{D} \\ 0, & \text { otherwise }\end{cases}
$$

It can be easily seen that $S_{1}(B)$ and $S_{2}(B)$ are positive. If any one of the specified off diagonal entries are zero, then we are done. If not, then $S_{3}(B)$ contains a positive term $t a_{i j} a_{j k}$ specifying the 3-cycle of $C+(u, v)$. Again $S_{4}(B)$ contains a positive term $d_{l} t a_{i j} a_{j k}$ as well as a negative term $\prod_{i \neq j} a_{i j}$. By choosing t sufficiently large, we have $S_{k}(B)>0$ for $k=3,4$. Hence the result follows.

The digraph D_{1} in Figure 2 satisfies the Theorem 3.7. The digraph D_{1} contains a 4 cycle $C=\langle 1,4,3,2\rangle$. Also the digraph \bar{D} contains a 2 -cycle $\langle 1,3\rangle$. Now $C+(3,1)$ contains a 3 -cycle $\langle 1,4,3\rangle$. Hence D_{1} has nonnegative Q_{1}-completion by Theorem 3.7.

3.2 Necessary conditions for nonnegative Q_{1}-matrix completion

Theorem 3.8. If a digraph $D \neq K_{n}$ of order $n \geq 2$ contains two vertices v_{1} and v_{2} with indegree or outdegree n, then D does not have nonnegative Q_{1}-completion.

Proof. Suppose a digraph D of order $n \geq 2$ contains two vertices v_{1} and v_{2} with indegree or outdegree n. Consider a partial nonnegative Q_{1}-matrix M specifying D with all specified entries are exactly 1 . Then two columns or rows of M are equal and for any completion B of M, we have $\operatorname{det} B=0$. Hence the result follows.

Theorem 3.9. Suppose $D \neq K_{n}$ be a digraph which includes all loops and has nonnegative Q_{1}-completion, then D does not have a 2-cycle.

Proof. Suppose that D has a 2 -cycle $\left\langle v_{1}, v_{2}\right\rangle$. Consider a partial nonnegative Q_{1}-matrix $M=\left[a_{i j}\right]$ specifying D such that $a_{i i}=1(1 \leq i \leq n)$ and $a_{v_{1} v_{2}} a_{v_{2} v_{1}}>\binom{n}{2}$ and rest of all specified entries are zero. Let $B=\left[b_{i j}\right]$ be any completion of M. Then

$$
S_{2}(B)=\sum_{i \neq j} b_{i i} b_{j j}-\sum_{i \neq j} b_{i j} b_{j i}<-\sum_{i, j \notin\left\{v_{1}, v_{2}\right\}} b_{i j} b_{j i}<0,
$$

and, therefore, B is not a nonnegative Q_{1}-matrix.
Example 3.10. Consider the digraph D_{2} in Figure 3. Here D_{2} has a 2-cycle $\langle 1,3\rangle$. Thus by Theorem 3.9, D_{2} does not have nonnegative Q_{1}-completion. To see this consider a partial nonnegative Q_{1}-matrix

$$
M=\left[\begin{array}{cccc}
1 & ? & 10 & 0 \\
0 & 1 & ? & 0 \\
10 & 0 & 1 & 0 \\
? & ? & ? & 1
\end{array}\right]
$$

specifying the digraph D_{2}. Then for any completion B of M, we have $S_{2}(B)<0$. Hence, M cannot be completed to a nonnegative Q_{1}-matrix.

Figure 3. The Digraphs D_{2} and $\overline{D_{2}}$

Remark 3.11. If a digraph D of order n includes all loops has nonnegative Q_{1}-completion, then D has less than $\frac{1}{2} n(n+1)$ arcs. In case D has more than $\frac{1}{2} n(n+1)$ arcs, then D must have a 2-cycle.

Theorem 3.12. Let $D \neq K_{n}$ be a digraph of order n that includes all loops and contains an even cycle C of length 4. If D has nonnegative Q_{1}-completion, then \bar{D} has a 2-cycle.

Proof. Suppose $M=\left[a_{i j}\right]$ be a partial nonnegative Q_{1}-matrix specifying the digraph D. For $t>1$, consider the partial nonnegative Q_{1}-matrix $M(t)$ with the specified entries as follows

$$
a_{i j}= \begin{cases}t, & \text { if }(i, j) \in A_{C} \\ 1, & \text { if }(i, i) \in A_{D} \\ 0, & \text { otherwise }\end{cases}
$$

Let $B=\left[b_{i j}\right]$ be a completion of $M(t)$, where $b_{i j}=x_{i j} \geq 0$ for $(i, j) \notin A_{D}$. Now we have,

$$
0<S_{2}(B)=6-\sum b_{i j} b_{j i}
$$

and this implies each of $x_{i j}$ to be bounded above by 6 . On the other hand we have,

$$
S_{4}(B(t))=-t^{4}+p\left(t, x_{i j}\right),
$$

where $p\left(t, x_{i j}\right)$ is a polynomial and have degree at most 3 in t. Consequently, for a large value of $t, S_{4}(B(t))<0$ for any nonnegative choices of $x_{i j}$ within their bounds. For such a value of $t, B(t)$ is not a Q_{1}-matrix.

Example 3.13. Consider the digraph D_{3} and its complement $\overline{D_{3}}$ in Figure 4. The digraph D_{3} satisfies the conditions of the Theorem 3.12. Hence it does not have nonnegative Q_{1-} completion.

Figure 4. The Digraphs D_{3} and $\overline{D_{3}}$

4. Relationship theorems

4.1 Q-completion and nonnegative Q_{1}-completion

It is easily seen that a nonnegative Q_{1} matrix is a Q-matrix but not vice versa. However their completion problems are not related.
(i) Consider the digraph D_{4} and its complement $\overline{D_{4}}$ in Figure 5. Here D_{4} is acyclic and contains all loops. Hence by Corollary $3.5, D_{4}$ has nonnegative Q_{1}-completion. On the other hand $\overline{D_{4}}$ is not stratified, thus it does not have Q-completion. (See Theorem 2.8, [2]).

Figure 5. The Digraph D_{4} and its complement $\overline{D_{4}}$
(ii) Consider the digraph D_{5} and its complement $\overline{D_{5}}$ in Figure 6. Here the digraph D_{5} does not have nonnegative Q_{1}-completion (by Theorem 3.9). But since $\overline{D_{5}}$ is weakly stratified, D_{5} has Q-completion (See Theorem 2.12, [2]).

Figure 6. The Digraphs D_{5} and $\overline{D_{5}}$

4.2 Nonnegative Q-completion and non-negative Q_{1} -completion

Although a nonnegative Q_{1}-matrix is a nonnegative Q-matrix, but their completion problem are partially different. Now we have the following:

Proposition 4.1. If a digraph D has nonnegative Q-completion then it has nonnegative Q_{1}-completion.

Proof. Suppose $M=\left[a_{i j}\right]$ be a partial nonnegative Q_{1}-matrix specifying the digraph D. Then M is also a partial nonnegative Q-matrix specifying the digraph D. Since M has nonnegative Q-completion, thus M can be completed to a nonnegative Q-matrix B by assigning the unspecified diagonal entries (if any) as a positive real number t. Clearly B is a nonnegative Q_{1}-completion of M.

However the converse of the Proposition 4.1 is not true. The digraph D_{6} in Figure 7 has nonnegative Q_{1}-completion but does not have nonnegative Q-completion. Consider a par-

Figure 7. The Digraph D_{6}
tial nonnegative Q-matrix

$$
M=\left[\begin{array}{ll}
1 & 0 \\
? & 0
\end{array}\right]
$$

specifying the digraph D_{6}. It is easily seen that M cannot be completed to a nonnegative Q-matrix since for any completion B of M we have $\operatorname{det} B=0$. On the other hand, the digraph D_{6} has nonnegative Q_{1}-completion by Theorem 3.4.

4.3 Positive Q-completion and nonnegative Q_{1}-completion

In this subsection, we will compare the nonnegative Q_{1}-completion problem with the positive Q-completion problem.

Proposition 4.2. If a digraph D has nonnegative Q_{1}-completion, then D has positive Q-completion.

Proof. Suppose $M=\left[a_{i j}\right]$ be a partial positive Q-matrix specifying the digraph D. Then M is a partial nonnegative $Q_{1^{-}}$ matrix specifying D. Let B be a nonnegative Q-completion
of M. Then, perturbing the zero entries in B by small positive quantities, a positive Q-completion of M can be obtained.

However, the converse is not true which can be seen from the following example.

Example 4.3. Consider the digraph D_{7} in Figure 8. The complement of the digraph D_{7} i.e. $\overline{D_{7}}$ contains a 2 -cycle $\langle 2,4\rangle$ such that the arc $(4,2)$ in $\overline{D_{7}}$ satisfies the Theorem 2.10,[12]. Hence the digraph D_{7} has positive Q-completion. On the

Figure 8. The Digraph D_{7}
other hand, consider a partial nonnegative Q_{1} matrix

$$
M(t)=\left[\begin{array}{ccccc}
1 & t & 1 & 1 & x_{1} \\
x_{2} & 1 & t & x_{3} & x_{4} \\
x_{5} & x_{6} & 1 & 0 & t \\
x_{7} & x_{8} & x_{9} & 1 & 1 \\
t & 1 & x_{10} & x_{11} & 1
\end{array}\right]
$$

specifying the digraph D_{7}, where $t>1$ and x_{i} are unspecified entries. Now for any completion $B(t)$, we have

$$
\begin{equation*}
S_{2}(B(t))=\binom{5}{2}-\left(t \sum x_{i}+\sum x_{i}+x_{3} x_{8}\right)>0 \tag{4.1}
\end{equation*}
$$

which implies that x_{i} and $x_{3} x_{8}$ are bounded by $\binom{5}{2}$. However x_{3} and x_{8} can take any arbitrary values. Again we have,
$S_{4}(B(t))=-t^{4}+c_{1} t^{2}+c_{2} t+c_{3}+x_{3}\left(-t^{2}+c_{4}\right)+x_{4}\left(-c_{6} t^{2}+c_{7}\right)$,
where c_{r} are polynomials in x_{i}. Consequently, for large values of $t, S_{4}(B(t))<0$ for any completion $B(t)$ of $M(t)$

5. Classification of digraphs of small order having nonnegative Q_{1}-completion

In this section we will classify all the digraphs of order at most four as to nonnegative Q_{1}-completion. For this purpose we will apply the previously obtained results on the digraphs. The nomenclature of the digraphs has been considered from the list in [4, Appendix, pp. 233]. Here, $D_{p}(q, n)$ is the one obtained by attaching a loop at each of the vertices to the n th member in the list of digraphs with p vertices and q (nonloop) arcs in the list.

Now permutation similarity of nonnegative Q_{1}-matrix implies that if a digraph D has nonnegative Q_{1}-completion, then any digraph which is isomorphic to D has nonnegative $Q_{1^{-}}$completion. Thus any digraph which is obtained by labelling the unlabelled digraph associated to D has nonnegative $Q_{1^{-}}$ completion.

Theorem 5.1. For $1 \leq p \leq 4$, the digraphs $D_{p}(q, n)$ which are listed below have nonnegative Q_{1}-completion.

$$
\begin{array}{lll}
p=2 ; & q=0,1,2 ; & n=1 \\
p=3 ; & q=0,1 ; & n=1 \\
& q=2 ; & n=2-4 \\
& q=3 ; & n=2,3 \\
& q=6 ; & n=1 \\
p=4 ; & q=0,1 ; & n=1 \\
& q=2 ; & n=2-5 \\
& q=3 ; & n=4-13 \\
& q=4 ; & n=16-27 \\
& q=5 ; & n=29-38 \\
& q=6 ; & n=46-48 \\
& q=12 ; & n=1 .
\end{array}
$$

Proof. It can be easily seen that $D_{p}(q, n)$ has nonnegative $Q_{1^{-}}$ completion if $q=0$ or it is a complete digraph.

The digraphs $D_{2}(q, n), q=1, n=1 ; D_{3}(q, n), q=1, n=$ $1 ; q=2, n=2-4 ; q=3, n=2,3, D_{4}(q, n), q=1, n=1 ; q=$ $2, n=2-5 ; q=3, n=3-13 ; q=4, n=17-27 ; q=5, n=$ $29,30,31,33-38 ; q=6, n=46-48$ do not contain a cycle of even length and hence each of the digraph has nonnegative Q_{1}-completion by Theorem 3.4.

Each of the digraph $D_{4}(q, n), q=4, n=16 ; q=5, n=$ 32; $q=6, n=45$ satisfies the statement of the Theorem 3.7, and hence each digraph has nonnegative Q_{1}-completion.

The digraph $D_{4}(q, n), q=6, n=45$ satisfies the statement of the Theorem 3.12, hence it does not have nonnegative $Q_{1^{-}}$ completion.

The rest of digraphs $D_{p}(q, n) ; 3 \leq p \leq 4$, contains a 2cycle and they do not have nonnegative Q_{1}-completion.

References

${ }^{[1]}$ G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition, Chapman and Hall/CRC, London, 2005.
${ }^{\text {[2] L. M. Dealba, L. Hogben and B.K. Sarma, The } Q \text {-Matrix }}$ Completion Problem, Electronic Journal of Linear Algebra, 18:176-191, March 2009.
${ }^{[3]}$ L. Hogben and A. Wangsness, Matrix Completion Problems, in Handbook of Linear Algebra, L. Hogben, Editor, Chapman and Hall/CRC Press, Boca Raton, 2007.
${ }^{\text {[4] }}$ F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
${ }^{[5]}$ C.R. Johnson and B.K. Kroschel, The Combinatorially Symmetric P-Matrix Completion Problem, Electronic Journal of Linear Algebra,1:59-63, 1996.
${ }^{\text {[6] }}$ L. Hogben, Graph theoretic methods for matrix completion problems, Linear Algebra and its Applications, 319:83-102, 2000.
${ }^{[7]}$ C. Jordan, J.R. Torregrosa, and A.M. Urbano, Completions of partial P-matrices with acyclic or nonacyclic associated graph, Linear Algebra and its Applications,312:25-51, 2000.
${ }^{[8]}$ J.Y. Choi, L.M. DeAlba, L. Hogben, M.S. Maxwell, A. Wangsness, The P_{0}-matrix completion problem, Electronic Journal of Linear Algebra, 9:1-20, 2002.
${ }^{[9]}$ J.Y. Choi, L.M. DeAlba, L. Hogben, B. Kivunge, S. Nordstrom, M. Shedenhelm, The Nonnegative $P_{0^{-}}$ Matrix Completion Problem, Electronic Journal of Linear Algebra, 10:46-59, 2003.
${ }^{[10]}$ L. Hogben, Matrix Completion Problems for Pairs of Related Classes of, Linear Algebra and its Applications, 373:13-29, 2003.
${ }^{[11]}$ S.M. Fallat, C.R. Johnson, J.R. Torregrosa, and A.M. Urbano, P-matrix Completions under weak symmetry assumptions, Linear Algebra and its Applications, 312:7391, 2012.
${ }^{[12]}$ B.K. Sarma and K. Sinha, The positive Q-matrix completion problem, Discrete Mathematics, Algorithms and Applications,7,2015. DOI-10.1142/S1793830915500524.
[13] K. Sinha, The Q_{1}-matrix completion problem, Malaya Journal of Mathematik,6(2):443-450 2018.
[14] A. Wangness, The matrix completion problem regarding various classes of $P_{0,1}$ - matrices, Ph.D Thesis, Iowa State University, 2005.

$$
\text { ISSN(P):2319 - } 3786
$$

Malaya Journal of Matematik
ISSN(O):2321-5666

