

The non-negative *Q*₁-matrix completion problem

Kalyan Sinha

Abstract

A matrix is a Q_1 -matrix if it is a Q-matrix with positive diagonal entries. A matrix is a nonnegative matrix if it is a matrix with nonnegative entries. A digraph D is said to have nonnegative Q_1 -completion if every partial nonnegative Q_1 -matrix specifying D can be completed to a nonnegative Q_1 -matrix. In this paper, some necessary and sufficient conditions for a digraph to have nonnegative Q_1 -completion are provided. Later on the relationship among the completion problems of nonnegative Q_1 -matrix and some other class of matrices are shown. Finally, the digraphs of order at most four that include all loops and have nonnegative Q_1 -completion are singled out.

Keywords

Partial matrix, Nonnegative Q_1 -matrix, Digraph, Matrix completion, Nonnegative Q_1 -completion problem.

AMS Subject Classification

15A48.

Department of Mathematics, A. B. N. Seal College, Coochbehar, India-736101. Corresponding author: kalyansinha90@gmail.com Article History: Received 12 April 2019; Accepted 8 August 2019

©2019 MJM.

Contents

1	Introduction651
1.1	Digraphs 651
1.2	Digraphs with matrices
2	Partial nonnegative Q_1 -matrix and the nonnegative Q_1 -matrix completion problem
3	Digraphs and the nonnegative Q_1 -completion problem
3.1	Sufficient conditions for nonnegative <i>Q</i> ₁ -matrix completion
3.2	Necessary conditions for nonnegative <i>Q</i> ₁ -matrix completion
4	Relationship theorems655
4.1	Q -completion and nonnegative Q_1 -completion 655
4.2	Nonnegative <i>Q</i> -completion and non-negative <i>Q</i> ₁ -completion
4.3	Positive Q -completion and nonnegative Q_1 -completion 656
5	Classification of digraphs of small order having non- negative Q_1 -completion
	References

1. Introduction

A real $n \times n$ matrix $B = [b_{ij}]$ is a Q_1 -matrix if all diagonal entries are positive and for every $k \in \{1, 2, ..., n\}$, $S_k(B) > 0$, where $S_k(B)$ is the sum of all $k \times k$ principal minors of B. The matrix B is a Q-matrix if for every $k \in \{1, 2, ..., n\}$, $S_k(B) > 0$. A nonnegative Q_1 -matrix is a Q_1 -matrix in which all off diagonal entries are nonnegative. A *partial matrix* is a rectangular array of numbers in which some entries are specified while others are free to be chosen. A partial matrix M is *fully specified* if all entries of M are specified, i.e., if M is a matrix. A *partial nonnegative (positive) matrix* is a partial matrix whose specified entries are nonnegative (positive).

For a subset α of $\langle n \rangle = \{1, 2, ..., n\}$, the *principal partial submatrix* $M(\alpha)$ is the partial matrix obtained from M by deleting all rows and columns not indexed by α . A *principal minor* of M is the determinant of a fully specified principal submatrix of M. For a given class Γ of matrices (e.g., Q, Q_1 -matrices) a *partial* Γ -*matrix* is a partial matrix for which the specified entries satisfy the properties of a Γ -matrix. A *completion* of a partial matrix is a specific choice of values for the unspecified entries. A *matrix completion problem* asks which partial matrices have completions with a given property. A Γ -*completion* of a partial Γ -matrix M is a completion of M which is a Γ -matrix.

A number of researchers studied matrix completion problems for different classes of matrices ([5-13]). In 2009, DeAlba *et al.* [2] solved the *Q*-matrix completion problem. For literature survey and complete updated results, one can see [3].

1.1 Digraphs

Any standard reference, for example, [1] and [4] can be use for graph theoretic terminologies. A *directed graph* or *digraph* $D = (V_D, A_D)$ of order n > 0 is a finite nonempty set V_D , with $|V_D| = n$ of objects called *vertices* together with a (possibly empty) set A_D of ordered pairs of vertices, called *arcs*. We write $v \in D$ (resp. $(u, v) \in D$) to imply $v \in V_D$ (resp. $(u, v) \in A_D$). If x = (u, u), then x is called a *loop* at the vertex u.

A (*directed*) *u-v* path *P* of length $k \ge 0$ in *D* is an alternating sequence $(u = v_0, x_1, v_1, \dots, x_k, v_k = v)$ of vertices and arcs, where v_i , $1 \le i \le k$, are distinct vertices and $x_i = (v_{i-1}, v_i)$. Further, if $k \ge 2$ and u = v, then a *u-v* path is a cycle of length *k*. The vertices v_i and the arcs x_i are said to be on *P*. We then write $C_k = \langle v_1, v_2, \dots, v_k \rangle$ and call C_k a *k*-cycle in *D*. A digraph without any cycle is said to be *acyclic*. A 1-cycle consists of a vertex *v* and a loop at *v*.

A cycle *C* is *odd* (resp. *even*) if its length is odd (resp. even). A digraph $H = (V_H, A_H)$ is a *subdigraph of order k* of the digraph *D* if $|V_H| = k$ and $V_H \subseteq V_D$, $A_H \subseteq A_D$. A subdigraph *H* of *D* is an *induced subdigraph* if $A_H = (V_H \times V_H) \cap A_D$ (*induced by* V_H) and is a *spanning subdigraph* if $V_H = V_D$. A digraph *D* is said to be connected (resp. strongly connected) if for every pair *u*, *v* of vertices, *D* contains a *u*-*v* path (resp. both a *u*-*v* path and a *v*-*u* path). The maximal connected (resp. strongly connected) subdigraphs of *D* are called *components* (resp. *strong components*) of *D*.

The *complement of a digraph* D is the digraph \overline{D} , where $V_{\overline{D}} = V_D$ and $(u, v) \in A_{\overline{D}}$ if and only if $(u, v) \notin A_D$. A digraph D is said to be *symmetric* if $(u, v) \in D$ implies $(v, u) \in D$. On the other hand, D is *asymmetric* if $(u, v) \in D$ implies $(v, u) \notin D$. A *complete symmetric digraph* on n vertices, denoted by K_n , is the digraph having all possible arcs (including all loops).

Two digraphs $D_1 = (V_1, A_1)$ and $D_2 = (V_2, A_2)$ are *isomorphic*, if there is a bijection $\phi : V_1 \to V_2$ such that $A_2 = \{(\phi(u), \phi(v)) : (u, v) \in A_1\}$. An *unlabelled* digraph is an equivalent class of isomorphic digraphs. Choosing a particular member of an unlabelled digraph is referred as a *labelling* of the unlabelled digraph.

1.2 Digraphs with matrices

Let π be a permutation of a nonempty finite set *V*. The digraph $D_{\pi} = (V, A_{\pi})$, where $A_{\pi} = \{(v, \pi(v)) : v \in V\}$ is called a *permutation digraph*. Clearly, each component of a permutation digraph is a loop or a cycle. The digraph D_{π} is said to be *positive* (resp. *negative*) if π is an even permutation (resp. an odd permutation). It is clear that D_{π} is negative if and only if it has odd number of even cycles.

A *permutation subdigraph* H (of order k) of a digraph D is a permutation digraph that is a subdigraph of D (of order k). A digraph D is *stratified* if D has a permutation subdigraph of order k for every k = 2, 3, ..., |D|.

Let
$$B = [b_{ij}]$$
 be an $n \times n$ matrix. We have

$$\det(B) = \sum (\operatorname{sgn} \pi) b_{1\pi(1)} \cdots b_{n\pi(n)}$$

where the sum is taken over all permutations π of $\langle n \rangle$.

2. Partial nonnegative *Q*₁-matrix and the nonnegative *Q*₁-matrix completion problem

A partial nonnegative matrix is a partial matrix in which all specified entries are nonnegative. A *partial* Q_1 -*matrix* is a partial Q-matrix with all specified diagonal entries are positive. Thus, a *partial nonnegative* Q_1 -*matrix* is a partial nonnegative matrix M with all specified positive diagonal entries and $S_k(M) > 0$ for every $k \in \{1, 2, ..., n\}$, whenever all $k \times k$ principal submatrices are fully specified. Now, a partial nonnegative Q_1 -matrix is characterized as follows.

Proposition 2.1. Suppose $M = [a_{ij}]$ is a partial nonnegative matrix. Then M is a partial nonnegative Q_1 -matrix if and only if exactly one of the following holds:

(i) At least one diagonal entry of M is unspecified, all specified diagonal entries are positive.

(ii) All diagonal entries are specified and positive; at least one off-diagonal entry is unspecified.

(iii) All entries of M are specified and M is a nonnegative Q_1 -matrix.

For any partial nonnegative Q_1 -matrix M, a completion B of M is called a *nonnegative* Q_1 -completion of M, if B is a nonnegative Q_1 -matrix. Since permutation similarity of a matrix to a nonnegative Q_1 -matrix is a nonnegative Q_1 -matrix, it is quite clear that if a partial nonnegative Q_1 -matrix M has a nonnegative Q_1 -completion, so does any partial matrix which is permutation similar to M.

One can easily verify that any partial nonnegative matrix M with all unspecified diagonal entries has nonnegative Q_1 completion. By choosing sufficiently large values for the
unspecified diagonal entries, a nonnegative Q_1 -completion
can be obtained. Suppose M be a partial nonnegative Q_1 matrix in which the diagonal entries at (i,i) positions (i = k+1,...,n) are unspecified. If M[1,...,k] is fully specified, M may not have a nonnegative Q_1 -completion. For example,
the partial nonnegative matrix,

$$M = \left[\begin{array}{rrrr} 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & ? \end{array} \right],$$

where ? denotes an unspecified entry, does not have nonnegative Q_1 -completion. In fact for any completion B of M, $S_3(B) = 0$. On the other hand, if $M[1, \ldots, k]$ has an unspecified entry and has a nonnegative Q_1 -completion, then M has a nonnegative Q_1 -completion. A completion of M can be obtained by choosing sufficiently large values for the unspecified diagonal entries. These above observations are listed in the following results. **Theorem 2.2.** If a nonnegative matrix M omits all diagonal entries, then M has nonnegative Q_1 -completion.

Proof. Suppose $M = [a_{ij}]$ be a partial nonnegative Q_1 -matrix. For any s > 1, consider a completion $B = [b_{ij}]$ of M by setting all diagonal entries equal to s and rest of the off diagonal entries to be equal to zero. Then, any $r \times r$ principal minor will be of the form $s^r + p(s)$, where p(s) is a polynomial of degree $\leq r - 1$. Now by choosing s large enough, we have $S_r(B) > 0$ for all $r \times r$ principal minors of B. Since only finitely many principal minors are to be considered, thus for sufficiently large s, M has nonnegative Q_1 -completion. \Box

Theorem 2.3. Suppose M be a partial nonnegative Q_1 -matrix in which the diagonal entry at (r + 1, r + 1) position is unspecified. If the principal submatrix M[1, ..., r] of M is not fully specified and has nonnegative Q_1 -completion, then Mhas nonnegative Q_1 -completion.

Proof. Suppose $M = [a_{ij}]$ be a partial nonnegative Q_1 -matrix which omits the diagonal entry at (r+1, r+1) position. Then, M is of the form,

$$M = \left[\begin{array}{cc} M_{11} & M_{12} \\ M_{21} & M_{22} \end{array} \right]$$

where, $M_{11} = M[1, ..., r]$ and $M_{22} = M[r+1, r+1]$.

Consider B_1 be the nonnegative Q_1 -matrix completion of M[1,...,r]. Then,

$$M' = \left[\begin{array}{cc} B_1 & M_{12} \\ M_{21} & M_{22} \end{array} \right],$$

is a partial nonnegative Q_1 -matrix, since M_{22} has an unspecified diagonal entry. Now for s > 0, consider a completion $B = [b_{ij}]$ of M' obtained by choosing $b_{ii} = s$, i = r + 1 and $b_{ij} = 0$ against all other unspecified entries in M'. Then B is of the form,

$$B = \left[\begin{array}{cc} B_1 & B_{12} \\ B_{21} & s \end{array} \right]$$

Since B_1 is a nonnegative Q_1 -matrix, $S_i(B_1) > 0$ for $1 \le i \le r$. For $2 \le j \le r+1$,

$$S_j(B) = S_j(B_1) + sS_{j-1}(B_1) + s_j,$$

where s_j is a constant. Now $S_j(B) > 0$ for sufficiently large values of *s* and clearly *B* is nonnegative Q_1 -matrix.

Corollary 2.4. Suppose M be a partial nonnegative Q_1 -matrix in which the diagonal entries at (i,i) positions (i = r+1,...,n)are unspecified. If the principal submatrix M[1,...,r] of M is not fully specified and has nonnegative Q_1 -completion, then M has nonnegative Q_1 -completion.

The following example shows that the converse of Corollary 2.4 is not true. **Example 2.5.** Consider the partial nonnegative matrix,

$$M = \begin{bmatrix} d_1 & a_{12} & ? & a_{14} \\ a_{21} & d_2 & ? & ? \\ ? & a_{32} & d_3 & ? \\ a_{41} & ? & a_{43} & ? \end{bmatrix},$$

where ? denotes the unspecified entries. Here we have $d_i > 0$, $\forall i = 1,2,3$. We show that for any choice of values of the specified entries M has nonnegative Q_1 -completions, but there are occasions when M[1,2,3] does not have nonnegative Q_1 completion. For x > 0, consider the completion B(x) of Mdefined as follows:

$$B(x) = \begin{bmatrix} d_1 & a_{12} & \frac{1}{x} & a_{14} \\ a_{21} & d_2 & 1 & 0 \\ 0 & a_{32} & d_3 & \frac{1}{x^2} \\ a_{41} & x^4 & a_{43} & x \end{bmatrix}$$

Then,

$$S_1(B(t)) = x + \sum d_i,$$

$$S_2(B(t)) = x(d_1 + d_2 + d_3) - \frac{a_{43}}{x^2} + f_0(x),$$

$$S_3(B(t)) = a_{14}a_{21}x^4 + x^2 + f_1(x),$$

$$S_4(B(t)) = a_{14}a_{21}d_3x^4 + d_1x^2 + f_1(x),$$

where $f_i(x)$ is a polynomial in x of degree at most i, i = 0, 1. Consequently, B(x) is a nonnegative Q_1 -matrix for sufficiently large x, and therefore M has nonnegative Q_1 -completion. On contrast, the partial nonnegative Q_1 -matrix

$$M[1,2,3] = \left[\begin{array}{rrrr} 1 & 10 & 2 \\ 10 & 1 & 2 \\ 2 & 0 & 1 \end{array} \right],$$

with unspecified entries ? is the principal submatrix of M induced by its diagonal $\{1,2,3\}$. Now one can verify that M[1,2,3] does not have nonnegative Q_1 -completion, because $S_2(M) < 0$ for any completion of M[1,2,3].

3. Digraphs and the nonnegative *Q*₁-completion problem

An $n \times n$ partial matrix M specifies a digraph $D = (\langle n \rangle, A_D)$ if for $1 \le i, j \le n, (i, j) \in A_D$ if and only if the (i, j)-th entry of M is specified. For example, the partial nonnegative Q_1 matrix M in Example 2.5 specifies the digraph D in Figure 1. We say that a digraph D has nonnegative Q_1 -completion, if every partial nonnegative Q_1 -matrix specifying D can be completed to a nonnegative Q_1 -matrix. The nonnegative Q_1 -matrix completion problem aims at studying and classifying all digraphs D which have nonnegative Q_1 -completion.

The property of being a nonnegative Q_1 -matrix is preserved under similarity and transposition, but it is not inherited by principal submatrices, as it can easily be verified. Also it is clear that if a digraph *D* has nonnegative Q_1 -completi then any digraph which is isomorphic to *D* has nonnegative Q_1 -completion.

Theorem 3.1. Suppose M is a partial nonnegative Q_1 -matrix specifying the digraph D. If the partial submatrix of M induced by every strongly connected induced subdigraph of D has nonnegative Q_1 -completion, then M has nonnegative Q_1 -completion.

Proof. We prove the result for the case when D has two strong components D_1 and D_2 . The general result will then follow by induction. By a relabeling of the vertices of D, if required, we have

$$M = \left[\begin{array}{cc} M_{11} & M_{12} \\ X & M_{22} \end{array} \right],$$

where M_{ii} is a partial nonnegative Q_1 -matrix specifying D_i , i = 1, 2, and all entries in X are unspecified. By the hypothesis, M_{ii} has a nonnegative Q_1 -completion B_{ii} . Consider the completion

$$B = \left[\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array} \right]$$

by choosing all entries in X as well as all unspecified entries in M_{12} as 0. Then, for $2 \le k \le |D|$ we have,

$$S_k(B) = S_k(B_{11}) + S_k(B_{22}) + \sum_{r=1}^{k-1} S_r(B_{11}) S_{k-r}(B_{22}) \ge 0,$$

Here, we mean $S_k(B_{ii}) = 0$ whenever *k* exceeds the size of B_{ii} . Thus *M* can be completed to a nonnegative Q_1 -matrix.

The proof of the following result is similar.

Theorem 3.2. Suppose M is a partial nonnegative Q_1 -matrix specifying the digraph D. If the partial submatrix of M induced by each component of D has a nonnegative Q_1 -completion, then M has a nonnegative Q_1 -completion.

Consider the digraph D in the Figure 1. We show that D has nonnegative Q_1 -completion, but the subdigraph D_1 induced by vertices $\{1,2,3\}$ does not have nonnegative Q_1 -completion (See Example 2.5). The property of having non-

Figure 1. The Digraph D

negative Q_1 -completion is not inherited by induced subdigraphs. This can be also seen from the Example 2.5.

3.1 Sufficient conditions for nonnegative *Q*₁-matrix completion

herited by principal submatrices, as it can easily be verified. **Theorem 3.3.** If a digraph $D \neq K_n$ of order *n* has nonnegative Q_1 -completion, tive Q_1 -completion, then any spanning subdigraph D_0 of D then any digraph which is isomorphic to D has nonnegative *has nonnegative Q_1*-completion.

Proof. Suppose M_{D_0} be a partial nonnegative Q_1 -matrix specifying the digraph D_0 . Consider a partial matrix M_D obtained from M_{D_0} by specifying the entries corresponding to $(i, j) \in A_D \setminus A_{D_0}$ as 0 and $(i, i) \in A_D \setminus A_{D_0}$ as 1. Since $D \neq K_n$, M_D is a partial nonnegative Q_1 -matrix specifying D (By Proposition 2.1). Suppose B be a nonnegative Q_1 -completion of M_D which is also nonnegative Q_1 -completion of M_{D_0} . Hence the result follows.

Theorem 3.4. A digraph has nonnegative Q_1 -completion if it does not contain an cycle of even length.

Proof. Suppose *M* be a partial nonnegative Q_1 -matrix specifying a digraph *D* which has no cycles of even length. For t > 0, consider a completion *B* of *M* by assigning all the unspecified diagonal entries as *t* and all unspecified off diagonal entries as 0. Then for each $1 \le k \le n$, $S_k(B)$ contains a positive constant. On the other hand, for each $k \in \{1, 2, ..., n\}$, $S_k(B)$ contains no negative terms, because *D* does not contain an even cycle. Hence the result follows.

Corollary 3.5. An acyclic digraph has nonnegative Q_1 -completion.

However the converse of the Theorem 3.4 is not true which can be seen from the Example 3.6.

Example 3.6. Consider the digraph D_1 in Figure 2. Now

Figure 2. The digraph D_1 having nonnegative Q_1 -completion

consider a partial nonnegative Q_1 -matrix

$$M = \begin{bmatrix} d_1 & ? & ? & a_{14} \\ a_{21} & d_2 & ? & ? \\ ? & a_{32} & d_3 & ? \\ ? & ? & a_{43} & d_4 \end{bmatrix}$$

specifying the digraph D_1 with unspecified entries as ?. Now being a partial nonnegative Q_1 matrix M, all the specified offdiagonal entries are nonnegative and $d_i > 0$, $\forall i = 1,2,3,4$. If any one off-diagonal specified entries are zero, then by

putting all unspecified entries as zero, we get the desired result. Suppose $a_{21}a_{14}a_{43}a_{32} \neq 0$. For t > 0, consider a completion

$$B == \begin{bmatrix} d_1 & 0 & t & a_{14} \\ a_{21} & d_2 & 0 & 0 \\ 0 & a_{32} & d_3 & 0 \\ 0 & 0 & a_{43} & d_4 \end{bmatrix},$$

of *M*. Then we have a positive term $ta_{32}a_{21}$ in $S_3(B)$ and $d_4ta_{32}a_{21}$ in det *B*. By choosing *t* sufficiently large, we have $S_3(B) > 0$ and $S_4(B) > 0$. Again for positive diagonal entries $d_i, i = 1, ..., 4$, we have $S_1(B) > 0$ and $S_2(B) > 0$. Hence the result follows.

Now we have the following result:

Theorem 3.7. Suppose $D \neq K_4$ be a digraph with all loops and without any 2-cycle. Suppose D has one even cycle C of length 4. If \overline{D} contains a 2-cycle $\langle u, v \rangle$ such that either C + (u, v) or C + (v, u) has a 3-cycle, then D has nonnegative Q_1 -completion.

Proof. Suppose $M = [a_{ij}]$ be a partial nonnegative Q_1 -matrix specifying the digraph D. Suppose (u, v) forms a 3-cycle in C + (u, v). For t > 0, consider a completion $B = [b_{ij}]$ of M as follows:

$$b_{ij} = \begin{cases} a_{ij}, & \text{if } (i,j) \in D \\ t, & \text{if } (i,j) = (u,v) \in \overline{D} \\ 0, & \text{otherwise.} \end{cases}$$

It can be easily seen that $S_1(B)$ and $S_2(B)$ are positive. If any one of the specified off diagonal entries are zero, then we are done. If not, then $S_3(B)$ contains a positive term $ta_{ij}a_{jk}$ specifying the 3-cycle of C + (u, v). Again $S_4(B)$ contains a positive term $d_l ta_{ij}a_{jk}$ as well as a negative term $\prod_{i \neq j} a_{ij}$. By choosing *t* sufficiently large, we have $S_k(B) > 0$ for k = 3, 4. Hence the result follows.

The digraph D_1 in Figure 2 satisfies the Theorem 3.7. The digraph D_1 contains a 4 cycle $C = \langle 1, 4, 3, 2 \rangle$. Also the digraph \overline{D} contains a 2-cycle $\langle 1, 3 \rangle$. Now C + (3, 1) contains a 3-cycle $\langle 1, 4, 3 \rangle$. Hence D_1 has nonnegative Q_1 -completion by Theorem 3.7.

3.2 Necessary conditions for nonnegative *Q*₁-matrix completion

Theorem 3.8. If a digraph $D \neq K_n$ of order $n \ge 2$ contains two vertices v_1 and v_2 with indegree or outdegree n, then Ddoes not have nonnegative Q_1 -completion.

Proof. Suppose a digraph *D* of order $n \ge 2$ contains two vertices v_1 and v_2 with indegree or outdegree *n*. Consider a partial nonnegative Q_1 -matrix *M* specifying *D* with all specified entries are exactly 1. Then two columns or rows of *M* are equal and for any completion *B* of *M*, we have det B = 0. Hence the result follows.

Theorem 3.9. Suppose $D \neq K_n$ be a digraph which includes all loops and has nonnegative Q_1 -completion, then D does not have a 2-cycle.

Proof. Suppose that *D* has a 2-cycle $\langle v_1, v_2 \rangle$. Consider a partial nonnegative Q_1 -matrix $M = [a_{ij}]$ specifying *D* such that $a_{ii} = 1 \ (1 \le i \le n)$ and $a_{v_1v_2}a_{v_2v_1} > \binom{n}{2}$ and rest of all specified entries are zero. Let $B = [b_{ij}]$ be any completion of *M*. Then

$$S_2(B) = \sum_{i \neq j} b_{ii} b_{jj} - \sum_{i \neq j} b_{ij} b_{ji} < -\sum_{i,j \notin \{v_1, v_2\}} b_{ij} b_{ji} < 0,$$

and, therefore, B is not a nonnegative Q_1 -matrix.

Example 3.10. Consider the digraph D_2 in Figure 3. Here D_2 has a 2-cycle $\langle 1,3 \rangle$. Thus by Theorem 3.9, D_2 does not have nonnegative Q_1 -completion. To see this consider a partial nonnegative Q_1 -matrix

$$M = \begin{bmatrix} 1 & ? & 10 & 0 \\ 0 & 1 & ? & 0 \\ 10 & 0 & 1 & 0 \\ ? & ? & ? & 1 \end{bmatrix},$$

specifying the digraph D_2 . Then for any completion B of M, we have $S_2(B) < 0$. Hence, M cannot be completed to a non-negative Q_1 -matrix.

Figure 3. The Digraphs D_2 and $\overline{D_2}$

Remark 3.11. If a digraph D of order n includes all loops has nonnegative Q_1 -completion, then D has less than $\frac{1}{2}n(n+1)$ arcs. In case D has more than $\frac{1}{2}n(n+1)$ arcs, then D must have a 2-cycle.

Theorem 3.12. Let $D \neq K_n$ be a digraph of order *n* that includes all loops and contains an even cycle *C* of length 4. If *D* has nonnegative Q_1 -completion, then \overline{D} has a 2-cycle.

Proof. Suppose $M = [a_{ij}]$ be a partial nonnegative Q_1 -matrix specifying the digraph D. For t > 1, consider the partial nonnegative Q_1 -matrix M(t) with the specified entries as follows

$$a_{ij} = \begin{cases} t, & \text{if } (i,j) \in A_C \\ 1, & \text{if } (i,i) \in A_D \\ 0, & \text{otherwise.} \end{cases}$$

Let $B = [b_{ij}]$ be a completion of M(t), where $b_{ij} = x_{ij} \ge 0$ for $(i, j) \notin A_D$. Now we have,

$$0 < S_2(B) = 6 - \sum b_{ij} b_{ji},$$

and this implies each of x_{ij} to be bounded above by 6. On the other hand we have,

$$S_4(B(t)) = -t^4 + p(t, x_{ij})$$

where $p(t, x_{ij})$ is a polynomial and have degree at most 3 in t. Consequently, for a large value of t, $S_4(B(t)) < 0$ for any nonnegative choices of x_{ij} within their bounds. For such a value of t, B(t) is not a Q_1 -matrix.

Example 3.13. Consider the digraph D_3 and its complement $\overline{D_3}$ in Figure 4. The digraph D_3 satisfies the conditions of the Theorem 3.12. Hence it does not have nonnegative Q_1 -completion.

Figure 4. The Digraphs D_3 and $\overline{D_3}$

4. Relationship theorems

4.1 *Q*-completion and nonnegative *Q*₁-completion

It is easily seen that a nonnegative Q_1 matrix is a Q-matrix but not vice versa. However their completion problems are not related.

(i) Consider the digraph D₄ and its complement D₄ in Figure 5. Here D₄ is acyclic and contains all loops. Hence by Corollary 3.5, D₄ has nonnegative Q₁-completion. On the other hand D₄ is not stratified, thus it does not have Q-completion. (See Theorem 2.8, [2]).

Figure 5. The Digraph D_4 and its complement $\overline{D_4}$

(ii) Consider the digraph D_5 and its complement $\overline{D_5}$ in Figure 6. Here the digraph D_5 does not have nonnegative Q_1 -completion (by Theorem 3.9). But since $\overline{D_5}$ is weakly stratified, D_5 has Q-completion (See Theorem 2.12, [2]).

Figure 6. The Digraphs D_5 and $\overline{D_5}$

4.2 Nonnegative *Q*-completion and non-negative *Q*₁ -completion

Although a nonnegative Q_1 -matrix is a nonnegative Q-matrix, but their completion problem are partially different. Now we have the following:

Proposition 4.1. If a digraph D has nonnegative Q-completion then it has nonnegative Q_1 -completion.

Proof. Suppose $M = [a_{ij}]$ be a partial nonnegative Q_1 -matrix specifying the digraph D. Then M is also a partial nonnegative Q-matrix specifying the digraph D. Since M has nonnegative Q-completion, thus M can be completed to a nonnegative Q-matrix B by assigning the unspecified diagonal entries (if any) as a positive real number t. Clearly B is a nonnegative Q_1 -completion of M.

However the converse of the Proposition 4.1 is not true. The digraph D_6 in Figure 7 has nonnegative Q_1 -completion but does not have nonnegative Q-completion. Consider a par-

Figure 7. The Digraph D_6

tial nonnegative Q-matrix

$$M = \left[\begin{array}{rrr} 1 & 0 \\ ? & 0 \end{array} \right],$$

specifying the digraph D_6 . It is easily seen that M cannot be completed to a nonnegative Q-matrix since for any completion B of M we have det B = 0. On the other hand, the digraph D_6 has nonnegative Q_1 -completion by Theorem 3.4.

4.3 Positive *Q*-completion and nonnegative Q_1 -completion In this subsection, we will compare the nonnegative Q_1 -completion problem with the positive *Q*-completion problem.

Proposition 4.2. If a digraph D has nonnegative Q_1 -completion, then D has positive Q-completion.

Proof. Suppose $M = [a_{ij}]$ be a partial positive *Q*-matrix specifying the digraph *D*. Then *M* is a partial nonnegative Q_1 -matrix specifying *D*. Let *B* be a nonnegative *Q*-completion

of *M*. Then, perturbing the zero entries in *B* by small positive quantities, a positive *Q*-completion of *M* can be obtained. \Box

However, the converse is not true which can be seen from the following example.

Example 4.3. Consider the digraph D_7 in Figure 8. The complement of the digraph D_7 i.e. $\overline{D_7}$ contains a 2-cycle $\langle 2, 4 \rangle$ such that the arc (4,2) in $\overline{D_7}$ satisfies the Theorem 2.10,[12]. Hence the digraph D_7 has positive Q-completion. On the

Figure 8. The Digraph D_7

other hand, consider a partial nonnegative Q_1 matrix

	1	t	1	1	x_1	1
	x_2	1	t	<i>x</i> ₃	x_4	
M(t) =	<i>x</i> 5	x_6	1	0	t	,
	<i>x</i> 7	x_8	<i>x</i> 9	1	1	
	t	1	x_{10}	<i>x</i> ₁₁	1	

specifying the digraph D_7 , where t > 1 and x_i are unspecified entries. Now for any completion B(t), we have

$$S_2(B(t)) = \begin{pmatrix} 5\\2 \end{pmatrix} - (t\sum x_i + \sum x_i + x_3x_8) > 0, \quad (4.1)$$

which implies that x_i and x_3x_8 are bounded by $\begin{pmatrix} 5\\2 \end{pmatrix}$. However x_3 and x_8 can take any arbitrary values. Again we have,

$$S_4(B(t)) = -t^4 + c_1t^2 + c_2t + c_3 + x_3(-t^2 + c_4) + x_4(-c_6t^2 + c_7)$$
(4.2)

where c_r are polynomials in x_i . Consequently, for large values of t, $S_4(B(t)) < 0$ for any completion B(t) of M(t)

5. Classification of digraphs of small order having nonnegative *Q*₁-completion

In this section we will classify all the digraphs of order at most four as to nonnegative Q_1 -completion. For this purpose we will apply the previously obtained results on the digraphs. The nomenclature of the digraphs has been considered from the list in [4, Appendix, pp. 233]. Here, $D_p(q,n)$ is the one obtained by attaching a loop at each of the vertices to the *n*-th member in the list of digraphs with *p* vertices and *q* (non-loop) arcs in the list.

Now permutation similarity of nonnegative Q_1 -matrix implies that if a digraph D has nonnegative Q_1 -completion, then any digraph which is isomorphic to D has nonnegative Q_1 -completion. Thus any digraph which is obtained by labelling the unlabelled digraph associated to D has nonnegative Q_1 -completion.

Theorem 5.1. For $1 \le p \le 4$, the digraphs $D_p(q,n)$ which are listed below have nonnegative Q_1 -completion.

p = 2;	q = 0, 1, 2;	n = 1
p = 3;	q = 0, 1;	n = 1
	q = 2;	n = 2 - 4
	q = 3;	n = 2, 3
	q = 6;	n = 1
p = 4;	q = 0, 1;	n = 1
	q = 2;	n = 2 - 5
	q = 3;	n = 4 - 13
	q = 4;	n = 16 - 27
	q = 5;	n = 29 - 38
	q = 6;	<i>n</i> = 46–48
	q = 12;	n = 1.

Proof. It can be easily seen that $D_p(q,n)$ has nonnegative Q_1 -completion if q = 0 or it is a complete digraph.

The digraphs $D_2(q,n), q = 1, n = 1; D_3(q,n), q = 1, n = 1; q = 2, n = 2-4; q = 3, n = 2, 3, D_4(q,n), q = 1, n = 1; q = 2, n = 2-5; q = 3, n = 3-13; q = 4, n = 17-27; q = 5, n = 29, 30, 31, 33-38; q = 6, n = 46-48$ do not contain a cycle of even length and hence each of the digraph has nonnegative Q_1 -completion by Theorem 3.4.

Each of the digraph $D_4(q,n), q = 4, n = 16; q = 5, n = 32; q = 6, n = 45$ satisfies the statement of the Theorem 3.7, and hence each digraph has nonnegative Q_1 -completion.

The digraph $D_4(q,n), q = 6, n = 45$ satisfies the statement of the Theorem 3.12, hence it does not have nonnegative Q_1 -completion.

The rest of digraphs $D_p(q,n)$; $3 \le p \le 4$, contains a 2-cycle and they do not have nonnegative Q_1 -completion.

References

- ^[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition, *Chapman and Hall/CRC*, London, 2005.
- [2] L. M. Dealba, L. Hogben and B.K. Sarma, The *Q*-Matrix Completion Problem, *Electronic Journal of Linear Algebra*, 18:176–191, March 2009.
- [3] L. Hogben and A. Wangsness, Matrix Completion Problems, in *Handbook of Linear Algebra*, L. Hogben, Editor, Chapman and Hall/CRC Press, Boca Raton, 2007.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
- ^[5] C.R. Johnson and B.K. Kroschel, The Combinatorially Symmetric *P*-Matrix Completion Problem, *Electronic Journal of Linear Algebra*,1:59–63, 1996.

- [6] L. Hogben, Graph theoretic methods for matrix completion problems, *Linear Algebra and its Applications*, 319:83–102, 2000.
- [7] C. Jordan, J.R. Torregrosa, and A.M. Urbano, Completions of partial *P*-matrices with acyclic or nonacyclic associated graph, *Linear Algebra and its Applications*,312:25–51,2000.
- [8] J.Y. Choi, L.M. DeAlba, L. Hogben, M.S. Maxwell, A. Wangsness, The P₀-matrix completion problem, *Electronic Journal of Linear Algebra*, 9:1–20, 2002.
- [9] J.Y. Choi, L.M. DeAlba, L. Hogben, B. Kivunge, S. Nordstrom, M. Shedenhelm, The Nonnegative P₀-Matrix Completion Problem, *Electronic Journal of Linear Algebra*, 10:46–59, 2003.
- [10] L. Hogben, Matrix Completion Problems for Pairs of Related Classes of , *Linear Algebra and its Applications*, 373:13–29, 2003.
- [11] S.M. Fallat, C.R. Johnson, J.R. Torregrosa, and A.M. Urbano, *P*-matrix Completions under weak symmetry assumptions, *Linear Algebra and its Applications*, 312:73– 91, 2012.
- ^[12] B.K. Sarma and K. Sinha, The positive *Q*-matrix completion problem, *Discrete Mathematics, Algorithms and Applications*,7,2015. DOI-10.1142/S1793830915500524.
- [13] K. Sinha, The Q_1 -matrix completion problem, Malaya Journal of Mathematik, 6(2):443-450 2018.
- ^[14] A. Wangness, The matrix completion problem regarding various classes of $P_{0,1}$ matrices, *Ph.D Thesis*, Iowa State University, 2005.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

