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The non-negative Qi-matrix completion problem

Kalyan Sinha

Abstract

A matrix is a Qi-matrix if it is a Q-matrix with positive diagonal entries. A matrix is a nonnegative matrix
if it is a matrix with nonnegative entries. A digraph D is said to have nonnegative Q;-completion if every
partial nonnegative Q;-matrix specifying D can be completed to a nonnegative Q;-matrix. In this paper, some
necessary and sufficient conditions for a digraph to have nonnegative Q;-completion are provided. Later on the
relationship among the completion problems of nonnegative Q;-matrix and some other class of matrices are
shown. Finally, the digraphs of order at most four that include all loops and have nonnegative Qi-completion
are singled out.
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ature survey and complete updated results, one car8kee [ Let B = [bjj;] be ann x n matrix. We have

1.1 Digraphs det(B) = Z(Sgnn)bln(l) “+Bm(n)

Any standard reference, for exampl&] &nd [4] can be use where the sum is taken over all permutatiensf (n).
for graph theoretic terminologies. @irected graphor di-
graph D= (Vp,Ap) of ordern > 0 is a finite nonempty set 2 Partial nonnegative Q;-matrix and the

Vb, w_ith [Vb| = n of objects called/ert.icestogether with a nonnegative Q;-matrix completion
(possibly empty) sefp of ordered pairs of vertices, called problem

arcs We writev € D (resp.(u,v) € D) to imply v € Vp (resp.
(u,v) € Ap). If x= (u,u), thenxis called doopat the vertex A partial nonnegative matrix is a partial matrix in which all
u. specified entries are nonnegative. pArtial Q;-matrix is a

A (directed u-v path Pof lengthk > 0 in D is an al- partial Q-matrix with all specified diagonal entries are posi-
ternating sequencl = vp,Xg, V1, ..., X, Vk = V) Of vertices tive. Thus, apartial nonnegative @matrix is a partial non-
and arcs, wherg;, 1 <i <Kk, are distinct vertices ang =  negative matriM with all specified positive diagonal entries
(Vi—1,Vi). Further, ifk > 2 andu=v, then au-vpathis ecycle andS(M) > 0 for everyk € {1,2,...,n}, whenever alk x k
of lengthk. The vertices; and the arcs; are said to be oR.  principal submatrices are fully specified. Now, a partiahho
We then writeCy = (v1,Vo,...,Vk) and callCy ak-cycle inD.  negativeQ;-matrix is characterized as follows.

A digraph without any cycle is said to laeyclic A 1-cycle
consists of a vertex and a loop at.

A cycle C is odd (resp. ever) if its length is odd (resp.
even). A digraphH = (V4,An) is a subdigraph of order
k of the digraphD if V4| =k andVy C Vp, Ay C Ap. A
subdigraptH of D is aninduced subdigrapif Ay = (Vi x
V1) NAp (induced by M) and is aspanning subdigrapif
Vi =Vp. A digraphD is said to be connected (resp. strong|
connected) if for every pain, v of vertices,D contains au-v

Proposition 2.1. Suppose M= [a;;] is a partial nonnegative
matrix. Then M is a partial nonnegative;@natrix if and
only if exactly one of the following holds:
(i) At least one diagonal entry of M is unspecified, all speci-
fied diagonal entries are positive.
(ii) All diagonal entries are specified and positive; at leas
one off-diagonal entry is unspecified.

y(iii) All entries of M are specified and M is a honnegative

path (resp. both a-v path and a-u path). The maximal Qu-matrix.
connected (resp. strongly connected) subdigrapH3 afe For any partial nonnegativ®;-matrix M, a completion
calledcomponentéresp.strong component®f D. B of M is called anonnegative @completionof M, if Bis a

The complement of a digraph B the digraptD, where  nonnegativ&;-matrix. Since permutation similarity of a ma-
Vg =Vp and(u,v) € Ay if and only if (u,v) ¢ Ap. Adigraph  trix to a nonnegativ€;-matrix is a nonnegativ@®;-matrix, it
D is said to besymmetricif (u,v) € D implies (v,u) € D. s quite clear that if a partial nonnegati@g-matrix M has a
On the other handD is asymmetricif (u,v) € D implies  nonnegativ&;-completion, so does any partial matrix which
(v,u) ¢ D. A complete symmetric digrapn n vertices, de- is permutation similar tdA.
noted byK,, is the digraph having all possible arcs (including  One can easily verify that any partial nonnegative matrix

all loops). M with all unspecified diagonal entries has nonnegafye
Two digraphsD; = (V1,A1) and D, = (V,,Ap) areiso- completion. By choosing sufficiently large values for the
morphig if there is a bijectionp : V; — V, such thatA, =  unspecified diagonal entries, a nonnegatecompletion

{(@(u), (V) : (u,v) € A1 }. An unlabelleddigraph is an can be obtained. Suppo$& be a partial nonnegativ®;-
equivalent class of isomorphic digraphs. Choosing a particmatrix in which the diagonal entries &t i) positions(i =
lar member of an unlabelled digraph is referred &belling  k-+1,...,n) are unspecified. IM[1,... K] is fully specified,

of the unlabelled digraph. M may not have a nonnegati@g-completion. For example,
the partial nonnegative matrix,
1.2 Digraphs with matrices
) - . 01 01 01
Let m be a permutation of a nonempty finite &t The di- M=1|01 01 01
graphDy = (V,An), whereAr = { (v, 1t(v)) : ve V} is called 01 01 2 |’

apermutation digraphClearly, each component of a permu-
tation digraph is a loop or a cycle. The digraph is said to  where ? denotes an unspecified entry, does not have nonneg-
bepositive(resp.negativg if 1Tis an even permutation (resp. ative Q;-completion. In fact for any completioB of M,
an odd permutation). Itis clear th; is negative if and only  S3(B) = 0. On the other hand, ¥([1,... k] has an unspeci-
if it has odd number of even cycles. fied entry and has a nonnegati®g-completion, therM has
A permutation subdigraph Hof orderk) of a digraphD  a nonnegative);-completion. A completion oM can be
is a permutation digraph that is a subdigrapBbf orderk).  obtained by choosing sufficiently large values for the unspe
A digraphD is stratifiedif D has a permutation subdigraph ified diagonal entries. These above observations are listed
of orderk for everyk=2,3,...,|D|. the following results.
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Theorem 2.2. If a nonnegative matrix M omits all diagonal Example 2.5. Consider the partial nonnegative matrix,

entries, then M has nonnegativg-Qompletion.

Proof. SupposéM = [g;j] be a partial nonnegativ@;-matrix.
For anys> 1, consider a completidB= [bj;] of M by setting
all diagonal entries equal te and rest of the off diagonal
entries to be equal to zero. Then, any r principal minor
will be of the forms" + p(s), wherep(s) is a polynomial of
degree<r — 1. Now by choosings large enough, we have
S(B) > 0 for all r x r principal minors ofB. Since only

i a2 ?  au
azq d2 ? ?
M= ,
? asz d3 ?
aqr  ? sz ?

where? denotes the unspecified entries. Here we have@
Vi=1,2,3. We show that for any choice of values of the spec-

finitely many principal minors are to be considered, thus foified entries M has nonnegative; @ompletions, but there

sufficiently larges, M has nonnegativ®;-completion. [

Theorem 2.3. Suppose M be a partial nonnegative-@atrix
in which the diagonal entry afr + 1,r + 1) position is un-
specified. If the principal submatrix [ ... r] of M is not
fully specified and has nonnegativg-Qompletion, then M
has nonnegative completion.

Proof. SupposéVl = [a;j] be a partial nonnegativ@;-matrix
which omits the diagonal entry &t+ 1,r + 1) position. Then,
M is of the form,

= )

where,M1; =M[1,... r] andMgo = M[r + 1,r + 1.
ConsidemB; be the nonnegativ@®;-matrix completion of
M[1,...,r]. Then,
v e |

is a partial nonnegativ®:-matrix, sinceM,, has an unspec-
ified diagonal entry. Now fos > 0, consider a completion
B = [bij] of M’ obtained by choosingi =s, i =r+1 and
bij = 0 against all other unspecified entriesM. ThenB is
of the form,

|

SinceB; is a nonnegativ®;-matrix,S(B;) > 0for1<i <r.
For2<j<r+1,

M11
M2

M1
M2z

B
M21

Mz
M22

B:1 B
Bo1 S ’

Si(B) = Sj(B1)+ Sa,l(Bl) +5j,
wheres; is a constant. Nov§;(B) > 0 for sufficiently large

values ofs and clearlyB is nonnegativé&);-matrix. O

Corollary 2.4. Suppose M be a partial nonnegative-@atrix
in which the diagonal entries &t, i) positions(i=r+1,...,n)
are unspecified. If the principal submatrixM... r] of M is
not fully specified and has nonnegative-@ompletion, then
M has nonnegative completion.

are occasions when M, 2, 3] does not have nonnegativg-Q
completion. For x> 0, consider the completion(B) of M
defined as follows:

i az ;A
apgy dz 1
B(X) —
® 0 ap X—lz
a1 x4 a3 X
Then,
S(B() = x+3d,
S(B(t) = x(d1+d2+d3)—%+fo(x),
S(B(t) = ansaxt+x%+ f1(x),
Si(B(t)) = ansdpdax® + dyx? + f1(x),

where f(x) is a polynomial in x of degree at mostii=
0,1. Consequently, &) is a nonnegative @matrix for suffi-
ciently large x, and therefore M has nonnegative€@mpletion.
On contrast, the partial nonnegative @natrix

1 10 2
M[1,23 =] 10 1 2],
2 0 1

with unspecified entrie® is the principal submatrix of M
induced by its diagona{1,2,3}. Now one can verify that
M[1,2,3] does not have nonnegativg-Qompletion, because
S (M) < 0for any completion of N1, 2, 3].

3. Digraphs and the nonnegative
Q1-completion problem

An n x n partial matrixM specifiesa digraphD = ((n), Ap)
if for1 <i,j <n,(i,j) € Ap if and only if the(i, j)-th entry
of M is specified. For example, the partial nonnegafye
matrix M in Example2.5specifies the digrapB in Figurel.
We say that a digrapB has nonnegativ®;-completion if
every partial nonnegativ@; -matrix specifyindd can be com-
pleted to a nonnegativ@;-matrix. The nonnegativ@®:-matrix

The following example shows that the converse of Corokompletion problenaims at studying and classifying all di-

lary 2.4is not true.
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The property of being a nonnegati@®-matrix is pre- 3.1 Sufficient conditions for nonnegative Q1-matrix
served under similarity and transposition, but it is not in-  completion
herited by principal submatrices, as it can easily be vekifieTheorem 3.3. If a digraph D+# K, of order n has nonnega-
Also itis clear that if a digrapB has nonnegativ@®;-completiontive Q,-completion, then any spanning subdigraph & D
then any digraph which is isomorphic Bbhas nonnegative has nonnegative Qcompletion.

Q:-completion.
Proof. SupposéVip, be a partial nonnegativ@,-matrix spec-

Theorem 3.1. Suppose M is a partial nonnegative-@atrix  ifying the digraphDo. Consider a partial matrillp obtained
specifying the digraph D. If the partial submatrix of M in-from Mp, by specifying the entries corresponding(toj) €
duced by every strongly connected induced subdigraph of Ry \ Ap, as 0 and(i,i) € Ap \ Ap, as 1. SinceD # Kn, Mp
has nonnegative Qcompletion, then M has nonnegative-Q is a partial nonnegativ®;-matrix specifyingD (By Proposi-
completion. tion 2.1). Suppose be a nonnegativ®;-completion ofVip
which is also nonnegativ@,-completion ofMp,. Hence the

Proof. We prove the result for the case wHeihas two strong result follows

component®; andD,. The general result will then follow

by induction. By a relabeling of the verticesDf if required, =
we have M M Theorem 3.4. A digraph has nonnegative;ompletion if
M= Lo it does not contain an cycle of even length.
X Mg
whereM; is a partial nonnegativ@; -matrix specifyingD;, i= Proof. SupposeM be a partial nonnegativ@;-matrix spec-

1,2, and all entries ifX are unspecified. By the hypothesis,ifying a digraphD which has no cycles of even length. For
M;i has a nonnegativ@;-completionB;. Consider the com- t > 0, consider a completioB of M by assigning all the un-

pletion specified diagonal entries and all unspecified off diagonal
B_ Bi1 Bio entries as 0. Then for each<lk < n, §(B) contains a pos-
T | Ba1 By | itive constant. On the other hand, for edch {1,2,...,n},

S(B) contains no negative terms, becals#goes not contain

by choosing all entries iX as well as all unspecified entries
y 9 b an even cycle. Hence the result follows. O

in My as 0. Then, for X k < |D| we have,

1 Corollary 3.5. An acyclic digraph has nonnegativgQ
S(B) = S(B11) + S(B22) + Zs(Bll)&,r(Bzz) >0, completion.
r=

However the converse of the Theor8mis not true which
Here, we mea(Bii) = 0 whenevek exceeds the size &i.  can be seen from the Exam3es.
ThusM can be completed to a nonnegat@gmatrix. [

) o Example 3.6. Consider the digraph Pin Figure 2. Now
The proof of the following result is similar.

Theorem 3.2. Suppose M is a partial nonnegative-@atrix IS ! 43 - i
specifying the digraph D. If the partial submatrix of M in-
duced by each component of D has a nonnegativednpletion,
then M has a nonnegative,ompletion.
Consider the digrapb in the Figurel. We show that S 5 0 2 = 8

D has nonnegativ€;-completion, but the subdigrapb, . ) i .
induced by vertice§1, 2,3} does not have nonnegatiga-  Figure 2. The digraptD; having nonnegative
completion (See Examp[5). The property of having non- Qi-completion

2 . . . .
consider a partial nonnegative:@matrix

dl ? ? au
agy d2 ? ?

M= ?  az d3 ?
! : ? 0?7 a; g
Figure 1. The DigraphD specifying the digraph Dwith unspecified entries & Now

being a partial nonnegative dmatrix M, all the specified off-
negativeQ;-completion is not inherited by induced subdi-diagonal entries are nonnegative and> 0, Vi = 1,2,3,4.
graphs. This can be also seen from the Exar2fe If any one off-diagonal specified entries are zero, then by

Sto
S N0207>
g“:bym‘l <73
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putting all unspecified entries as zero, we get the desired réheorem 3.9. Suppose B£ K, be a digraph which includes
sult. Supposeaajsagzaze # 0. Fort > 0, consider a com- all loops and has nonnegative;ompletion, then D does

pletion not have a&2-cycle.
di 0 t aus .
a1 d 0 O Proof. Suppose théd has a 2-cyclévy, vo). Consider a par-
B==1 ) ap, ds 0 |° tial nonnegative;-matrix M = [a;j] specifyingD such that

0 0 a3 dg aj =1 (1<i<n)andayy,avy > ( 2 and rest of all

of M. Then we have a positive termgta,s in S3(B) and  specified entries are zero. LBt= [bjj] be any completion of
dstazpaps in detB. By choosing t sufficiently large, we havepn; Then

S3(B) > 0and §(B) > 0. Again for positive diagonal entries
result follows. I£] 7] ijg{viva}

Now we have the following result: and, thereforeB is not a nonnegativ®,-matrix. O

Theorem 3.7. Suppose D~ K4 be a digraph with all 100ps - £yampje 3.10. Consider the digraph Rin Figure 3. Here

and without any 2-cycle. Suppose D has one even cycle |§2 has a2-cycle(1,3). Thus by Theorer8.9, D, does not

of length4. If D contains a2-cycle (u,v) such that either a6 nonnegative @completion. To see this consider a par-
C+ (u,v) or C+(v,u) has a3-cycle, then D has nonnegative nonnegative @ matrix

Q1-completion.

Proof. SupposéV = [a;j] be a partial nonnegativ@;-matrix é I ],')0 8
specifying the digrapb. Supposé€u,v) forms a 3-cycle in M= 10 0 1 ol
C+(u,v). Fort > 0, consider a completioB = [bj;] of M as o o 2 1
follows: D
aj, if(i,j)eD specifying the digraph R Then for any completion B of M,
. we have g§B) < 0. Hence, M cannot be completed to a non-
bij=4q t.  if(,j))=(uv)ebD negative Q-matrix.
0, otherwise
It can be easily seen th& (B) and S;(B) are positive. If L 2 . Z
any one of the specified off diagonal entries are zero, then we
are done. If not, the&s(B) contains a positive terma;jajx
specifying the 3-cycle of + (u,v). Again $4(B) contains a
positive termd;ta;jajx as well as a negative terfiy.; &;. By
choosing sufficiently large, we hav&(B) > 0 fork = 3, 4. 4 s N °
Hence the result follows. O Figure 3. The Digraphd, andD,

The digraptD; in Figure2 satisfies the Theoret7. The
digraphD; contains a 4 cycl€ = (1,4,3,2). Also the di-
graphD contains a 2-cyclél,3). Now C+ (3,1) contains a
3-cycle(1,4,3). HenceD; has nonnegativ®;-completion
by Theoren8.7.

Remark 3.11. If a digraph D of order n includes all loops
has nonnegative @Qcompletion, then D has less thén(n +1)
arcs. In case D has more tha}n(n+ 1) arcs, then D must
have a2-cycle.

3.2 Necessary conditions for nonnegative ~ Qi-matrix  Theorem 3.12. Let D+ K, be a digraph of order n that in-
completion cludes all loops and contains an even cycle C of ledgtH

Theorem 3.8. If a digraph D+# Ky, of order n> 2 contains  p has nonnegative Qcompletion, theD has a2-cycle.
two vertices y and » with indegree or outdegree n, then D

does not have nonnegativg-Qompletion. Proof. Suppose = [a;;] be a partial nonnegativ@;-matrix
specifying the digrapb®. Fort > 1, consider the partial non-

Proof. Suppose a digraph of ordern > 2 contains two ver- negativeQ;-matrix M (t) with the specified entries as follows
ticesv, andv, with indegree or outdegrae Consider a par-

tial nonnegative);-matrix M specifyingD with all specified t, if (i,j) eAc
entries are exactly 1. Then two columns or rowd\vbfare .

equal and for any completioB of M, we have deB = 0. aj=q 1 if(i)eho
Hence the result follows. O 0, otherwise

)
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LetB = [bjj] be a completion o (t), whereb;; = x;; > 0 for ) ,
(i,]) ¢ Ap. Now we have, 1 2 O
0 < $(B)=6-" bijbji,

and this implies each of; to be bounded above by 6. On the
other hand we have, | O

Su(B(t)) = —t*+ p(t,x;j),

wherep(t,x;) is a polynomial and have degree at most 3 in
t. Consequently, for a large value fS;(B(t)) < O for any
nonnegative choices ofj within their bounds. For such a
value oft, B(t) is not aQi-matrix. O

Figure 6. The Digraphs andDs

4.2 Nonnegative Q-completion and non-negative Qg
-completion

Although a nonnegativ@:-matrix is a nonnegativ®-matrix,

Example 3.13. Consider the digraph Pand its complement but their completion problem are partially different. Nove w

D3 in Figure 4. The digraph 3 satisfies the conditions of have the following:

the TheorenB8.12 Hence it does not have nonnegative-Q

completion. Proposition 4.1. If adigraph D has nonnegative Q-completion

then it has nonnegative@ompletion.

s 5 Proof. Suppose = [a;;] be a partial nonnegativ@;-matrix
specifying the digraplb. ThenM is also a partial nonnega-
tive Q-matrix specifying the digrapb. SinceM has nonneg-
ative Q-completion, thusvl can be completed to a nonnega-
tive Q-matrix B by assigning the unspecified diagonal entries
A 5 (if any) as a positive real numberClearlyB is a nonnegative
Q1-completion ofM. O

4 3

Fi 4. The Digraph®3 andD3 e
gure graph®s 3 However the converse of the Propositiéi is not true.

The digraphDg in Figure 7 has nonnegativ®;-completion

: ; but does not have nonnegati@ecompletion. Consider a par-
4. Relationship theorems ! v gatigecompleti iderap

4.1 Q-completion and nonnegative  Q;-completion

It is easily seen that a nonnegati@g matrix is aQ-matrix

but not vice versa. However their completion problems are

not related. O—%

1 2

() Consider the digrapB4 and its complemem, in Fig-
ure5. HereDy is acyclic and contains all loops. Hence
by Corollary 3.5, D4 has nonnegativ®;-completion.
On the other han®;, is not stratified, thus it does not

Figure 7. The DigraphDg

tial nonnegative&)-matrix

haveQ-completion. (See Theorem 2.8]J. 1 0
m-5 5]
? 0
1 1 specifying the digrapDe. It is easily seen tha¥l cannot be

completed to a nonnegativ@matrix since for any comple-
tion B of M we have deB = 0. On the other hand, the digraph
Dg has nonnegativ®;-completion by Theorer.4.
2 3 : 4.3 Positive Q-completion and nonnegative  Q;-completion
In this subsection, we will compare the nonnegafjyecompletion

Figure 5. The DigrapiD4 and its complemerid, problem with the positiv€-completion problem.

Proposition 4.2. If adigraph D has nonnegative;@ompletion,

(i) Consider the digrapbs and its complemerds in Fig- then D has positive Q-completion.

ure 6. Here the digraptbDs does not have nonnega-
tive Q;-completion (by Theorer8.9). But sinceDs is  Proof. Suppos@/ = [a;j] be a partial positiv€-matrix spec-
weakly stratified Ds hasQ-completion (See Theorem ifying the digraphD. ThenM is a partial nonnegative); -

2.12, p)). matrix specifyingD. Let B be a nonnegative-completion

00%%
< 000,
ORI
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of M. Then, perturbing the zero entrieskBnby small posi-
tive quantities, a positive®-completion ofM can be obtained.
o

658

Now permutation similarity of nonnegatig® -matrix im-
plies that if a digrap® has nonnegativ®;-completion, then
any digraph which is isomorphic tb has nonnegative®;-
completion. Thus any digraph which is obtained by labelling

However, the converse is not true which can be seen frome unlabelled digraph associatedDchas nonnegative;-

the following example.

Example4.3. Consider the digraph bin Figure8. The com-
plement of the digraph pi.e. D7 contains a2-cycle (2,4)
such that the ar¢4,2) in Dy satisfies the Theorem 2.107.

Hence the digraph B has positive Q-completion. On the

1 2

Figure 8. The DigraphD7

other hand, consider a partial nonnegative @atrix

1 t 1 1 xp

X 1 t X3 Xg
Mit)=| x X% 1 0 t |,

X7 Xg X 1 1

t 1 X0 X1 1

specifying the digraph 3 where t> 1 and % are unspecified
entries. Now for any completion8, we have

(3

which implies that xand %xg are bounded b

S(B(t))

> —(tY %+ x+xxe) >0, (4.1)

5
5 | How-

completion.

Theorem 5.1. For 1 < p < 4, the digraphs 3(g,n) which

are listed below have nonnegative-Qompletion.

p=2; 9g=0,1,2; n=1

p=3; g=0,1,; n=1
q=2; n=2-+4
q=3; n=223
q==6; n=1

p=4; q=0,1, n=1
q=2; n=2-5
q=3; n=4-13
q=4; n=16-27
q=>5; n=29-38
q==6; n= 4648
q=12, n=1

Proof. It can be easily seen thBi, (g, n) has nonnegativ@®; -
completion ifq = 0 or it is a complete digraph.

The digraph®»(q,n),q=1,n=1; D3(q,n),g=1,n=
1,9=2,n=2-4;9q=3,n=2,3,D4(q,n),q=1,n=1;q=
2,n=2-5;q=3,n=3-13;g=4,n=17-27;,0=5n=
29,30,31,33-38;g = 6,n = 46—48 do not contain a cycle of

even length and hence each of the digraph has nonnegative

Q:-completion by Theorer.4.

Each of the digrapib4(g,n),g=4,n=16;q=5,n=
32; q = 6,n = 45 satisfies the statement of the Theol&m
and hence each digraph has nonneg&@~eompletion.

The digraptD4(g,n),q= 6,n= 45 satisfies the statement
of the Theoren8.12 hence it does not have nonnega¥e

ever % and » can take any arbitrary values. Again we havegcompletion.

Su(B(t)) = —t*+cat?+ Cot + Ca+Xg(—t? +Cg) + Xa(—Cot? +C7),

(4.2)

where ¢ are polynomials in x Consequently, for large val-
ues of t, (B(t)) < 0 for any completion B) of M(t)

5. Classification of digraphs of small
order having nonnegative  Q;-completion

In this section we will classify all the digraphs of order at 3!

most four as to nonnegati@ -completion. For this purpose

we will apply the previously obtained results on the digmph
The nomenclature of the digraphs has been considered froffl

the list in [4, Appendix, pp. 233]. HerdDp(q,n) is the one

obtained by attaching a loop at each of the vertices tmthe [

th member in the list of digraphs withvertices andj (non-
loop) arcs in the list.
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The rest of digraph®,(q,n);3 < p < 4, contains a 2-
cycle and they do not have nonnegaf@ecompletion. [
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