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The non-negative Q1-matrix completion problem
Kalyan Sinha

Abstract
A matrix is a Q1-matrix if it is a Q-matrix with positive diagonal entries. A matrix is a nonnegative matrix
if it is a matrix with nonnegative entries. A digraph D is said to have nonnegative Q1-completion if every
partial nonnegative Q1-matrix specifying D can be completed to a nonnegative Q1-matrix. In this paper, some
necessary and sufficient conditions for a digraph to have nonnegative Q1-completion are provided. Later on the
relationship among the completion problems of nonnegative Q1-matrix and some other class of matrices are
shown. Finally, the digraphs of order at most four that include all loops and have nonnegative Q1-completion
are singled out.

Keywords
Partial matrix, Nonnegative Q1-matrix, Digraph, Matrix completion, Nonnegative Q1-completion problem.

AMS Subject Classification
15A48.

Department of Mathematics, A. B. N. Seal College, Coochbehar, India-736101.
Corresponding author : kalyansinha90@gmail.com
Article History : Received 12 April 2019; Accepted 8 August 2019 c©2019 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

1.1 Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

1.2 Digraphs with matrices . . . . . . . . . . . . . . . . . 652

2 Partial nonnegative Q1-matrix and the nonnegative
Q1-matrix completion problem . . . . . . . . . . . . . . . . . . . . 652

3 Digraphs and the nonnegative Q1-completion prob-
lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

3.1 Sufficient conditions for nonnegative Q1-matrix com-
pletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
654

3.2 Necessary conditions for nonnegative Q1-matrix com-
pletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
655

4 Relationship theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

4.1 Q-completion and nonnegative Q1-completion 655

4.2 Nonnegative Q-completion and non-negative Q1

-completion . . . . . . . . . . . . . . . . . . . . . . . . . 656

4.3 Positive Q-completion and nonnegative Q1-completion
656

5 Classification of digraphs of small order having non-
negative Q1-completion . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

1. Introduction
A real n× n matrix B = [bi j ] is a Q1-matrix if all diagonal
entries are positive and for everyk∈ {1,2, . . . ,n}, Sk(B)> 0,
whereSk(B) is the sum of allk×k principal minors ofB. The
matrixB is aQ-matrixif for everyk∈{1,2, . . . ,n}, Sk(B)> 0.
A nonnegativeQ1-matrix is aQ1-matrix in which all off di-
agonal entries are nonnegative. Apartial matrix is a rectan-
gular array of numbers in which some entries are specified
while others are free to be chosen. A partial matrixM is
fully specifiedif all entries ofM are specified, i.e., ifM is a
matrix. A partial nonnegative(positive) matrix is a partial
matrix whose specified entries are nonnegative (positive).

For a subsetα of 〈n〉 = {1,2, . . . ,n}, the principal par-
tial submatrix M(α) is the partial matrix obtained fromM by
deleting all rows and columns not indexed byα. A principal
minor of M is the determinant of a fully specified principal
submatrix ofM. For a given classΓ of matrices (e.g.,Q, Q1-
matrices) apartial Γ-matrix is a partial matrix for which the
specified entries satisfy the properties of aΓ-matrix. A com-
pletion of a partial matrix is a specific choice of values for
the unspecified entries. Amatrix completion problemasks
which partial matrices have completions with a given prop-
erty. A Γ-completionof a partialΓ-matrixM is a completion
of M which is aΓ-matrix.

A number of researchers studied matrix completion prob-
lems for different classes of matrices ([5–13]). In 2009, DeAlba
et al. [2] solved theQ-matrix completion problem. For liter-
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ature survey and complete updated results, one can see [3].

1.1 Digraphs
Any standard reference, for example, [1] and [4] can be use
for graph theoretic terminologies. Adirected graphor di-
graph D= (VD,AD) of ordern > 0 is a finite nonempty set
VD, with |VD| = n of objects calledverticestogether with a
(possibly empty) setAD of ordered pairs of vertices, called
arcs. We writev∈ D (resp.(u,v) ∈ D) to imply v∈VD (resp.
(u,v) ∈ AD). If x= (u,u), thenx is called aloopat the vertex
u.

A (directed) u-v path Pof length k ≥ 0 in D is an al-
ternating sequence(u = v0,x1,v1, . . . ,xk,vk = v) of vertices
and arcs, wherevi , 1 ≤ i ≤ k, are distinct vertices andxi =
(vi−1,vi). Further, ifk≥ 2 andu= v, then au-vpath is acycle
of lengthk. The verticesvi and the arcsxi are said to be onP.
We then writeCk = 〈v1,v2, . . . ,vk〉 and callCk a k-cycle inD.
A digraph without any cycle is said to beacyclic. A 1-cycle
consists of a vertexv and a loop atv.

A cycle C is odd (resp. even) if its length is odd (resp.
even). A digraphH = (VH ,AH) is a subdigraph of order
k of the digraphD if |VH | = k andVH ⊆ VD, AH ⊆ AD. A
subdigraphH of D is aninduced subdigraphif AH = (VH ×
VH)∩AD (induced by VH) and is aspanning subdigraphif
VH =VD. A digraphD is said to be connected (resp. strongly
connected) if for every pairu,v of vertices,D contains au-v
path (resp. both au-v path and av-u path). The maximal
connected (resp. strongly connected) subdigraphs ofD are
calledcomponents(resp.strong components) of D.

Thecomplement of a digraph Dis the digraphD, where
VD =VD and(u,v) ∈ AD if and only if (u,v) /∈ AD. A digraph
D is said to besymmetricif (u,v) ∈ D implies (v,u) ∈ D.
On the other hand,D is asymmetricif (u,v) ∈ D implies
(v,u) /∈ D. A complete symmetric digraphon n vertices, de-
noted byKn, is the digraph having all possible arcs (including
all loops).

Two digraphsD1 = (V1,A1) and D2 = (V2,A2) are iso-
morphic, if there is a bijectionφ : V1 → V2 such thatA2 =
{(φ(u),φ(v)) : (u,v) ∈ A1}. An unlabelleddigraph is an
equivalent class of isomorphic digraphs. Choosing a particu-
lar member of an unlabelled digraph is referred as alabelling
of the unlabelled digraph.

1.2 Digraphs with matrices
Let π be a permutation of a nonempty finite setV. The di-
graphDπ = (V,Aπ), whereAπ = {

(

v,π(v)
)

: v∈V} is called
a permutation digraph. Clearly, each component of a permu-
tation digraph is a loop or a cycle. The digraphDπ is said to
bepositive(resp.negative) if π is an even permutation (resp.
an odd permutation). It is clear thatDπ is negative if and only
if it has odd number of even cycles.

A permutation subdigraph H(of orderk) of a digraphD
is a permutation digraph that is a subdigraph ofD (of orderk).
A digraphD is stratified if D has a permutation subdigraph
of orderk for everyk= 2,3, . . . , |D|.

Let B= [bi j ] be ann×n matrix. We have

det(B) = ∑(sgnπ)b1π(1) · · ·bnπ(n)

where the sum is taken over all permutationsπ of 〈n〉.

2. Partial nonnegative Q1-matrix and the
nonnegative Q1-matrix completion

problem

A partial nonnegative matrix is a partial matrix in which all
specified entries are nonnegative. Apartial Q1-matrix is a
partialQ-matrix with all specified diagonal entries are posi-
tive. Thus, apartial nonnegative Q1-matrix is a partial non-
negative matrixM with all specified positive diagonal entries
andSk(M)> 0 for everyk∈ {1,2, . . . ,n}, whenever allk×k
principal submatrices are fully specified. Now, a partial non-
negativeQ1-matrix is characterized as follows.

Proposition 2.1. Suppose M= [ai j ] is a partial nonnegative
matrix. Then M is a partial nonnegative Q1-matrix if and
only if exactly one of the following holds:
(i) At least one diagonal entry of M is unspecified, all speci-
fied diagonal entries are positive.
(ii) All diagonal entries are specified and positive; at least
one off-diagonal entry is unspecified.
(iii) All entries of M are specified and M is a nonnegative
Q1-matrix.

For any partial nonnegativeQ1-matrix M, a completion
B of M is called anonnegative Q1-completionof M, if B is a
nonnegativeQ1-matrix. Since permutation similarity of a ma-
trix to a nonnegativeQ1-matrix is a nonnegativeQ1-matrix, it
is quite clear that if a partial nonnegativeQ1-matrix M has a
nonnegativeQ1-completion, so does any partial matrix which
is permutation similar toM.

One can easily verify that any partial nonnegative matrix
M with all unspecified diagonal entries has nonnegativeQ1-
completion. By choosing sufficiently large values for the
unspecified diagonal entries, a nonnegativeQ1-completion
can be obtained. SupposeM be a partial nonnegativeQ1-
matrix in which the diagonal entries at(i, i) positions(i =
k+1, . . . ,n) are unspecified. IfM[1, . . . ,k] is fully specified,
M may not have a nonnegativeQ1-completion. For example,
the partial nonnegative matrix,

M =





0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 ?



 ,

where ? denotes an unspecified entry, does not have nonneg-
ative Q1-completion. In fact for any completionB of M,
S3(B) = 0. On the other hand, ifM[1, . . . ,k] has an unspeci-
fied entry and has a nonnegativeQ1-completion, thenM has
a nonnegativeQ1-completion. A completion ofM can be
obtained by choosing sufficiently large values for the unspec-
ified diagonal entries. These above observations are listedin
the following results.
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Theorem 2.2. If a nonnegative matrix M omits all diagonal
entries, then M has nonnegative Q1-completion.

Proof. SupposeM = [ai j ] be a partial nonnegativeQ1-matrix.
For anys> 1, consider a completionB= [bi j ] of M by setting
all diagonal entries equal tos and rest of the off diagonal
entries to be equal to zero. Then, anyr × r principal minor
will be of the formsr + p(s), wherep(s) is a polynomial of
degree≤ r −1. Now by choosings large enough, we have
Sr(B) > 0 for all r × r principal minors ofB. Since only
finitely many principal minors are to be considered, thus for
sufficiently larges, M has nonnegativeQ1-completion.

Theorem 2.3. Suppose M be a partial nonnegative Q1-matrix
in which the diagonal entry at(r + 1, r + 1) position is un-
specified. If the principal submatrix M[1, . . . , r] of M is not
fully specified and has nonnegative Q1-completion, then M
has nonnegative Q1-completion.

Proof. SupposeM = [ai j ] be a partial nonnegativeQ1-matrix
which omits the diagonal entry at(r+1, r+1) position. Then,
M is of the form,

M =

[

M11 M12

M21 M22

]

,

where,M11 = M[1, . . . , r] andM22 = M[r +1, r +1].
ConsiderB1 be the nonnegativeQ1-matrix completion of

M[1, . . . , r]. Then,

M′ =

[

B1 M12

M21 M22

]

,

is a partial nonnegativeQ1-matrix, sinceM22 has an unspec-
ified diagonal entry. Now fors> 0, consider a completion
B = [bi j ] of M′ obtained by choosingbii = s, i = r +1 and
bi j = 0 against all other unspecified entries inM′. ThenB is
of the form,

B=

[

B1 B12

B21 s

]

.

SinceB1 is a nonnegativeQ1-matrix,Si(B1)> 0 for 1≤ i ≤ r.
For 2≤ j ≤ r +1,

Sj(B) = Sj(B1)+ sSj−1(B1)+ sj ,

wheresj is a constant. NowSj(B) > 0 for sufficiently large
values ofsand clearlyB is nonnegativeQ1-matrix.

Corollary 2.4. Suppose M be a partial nonnegative Q1-matrix
in which the diagonal entries at(i, i) positions(i = r+1, . . . ,n)
are unspecified. If the principal submatrix M[1, . . . , r] of M is
not fully specified and has nonnegative Q1-completion, then
M has nonnegative Q1-completion.

The following example shows that the converse of Corol-
lary 2.4 is not true.

Example 2.5. Consider the partial nonnegative matrix,

M =













d1 a12 ? a14

a21 d2 ? ?

? a32 d3 ?

a41 ? a43 ?













,

where?denotes the unspecified entries. Here we have di > 0,
∀i = 1,2,3. We show that for any choice of values of the spec-
ified entries M has nonnegative Q1-completions, but there
are occasions when M[1,2,3] does not have nonnegative Q1-
completion. For x> 0, consider the completion B(x) of M
defined as follows:

B(x) =













d1 a12
1
x a14

a21 d2 1 0

0 a32 d3
1
x2

a41 x4 a43 x













.

Then,

S1(B(t)) = x+∑di,

S2(B(t)) = x(d1+d2+d3)−
a43

x2 + f0(x),

S3(B(t)) = a14a21x
4+ x2+ f1(x),

S4(B(t)) = a14a21d3x4+d1x
2+ f1(x),

where fi(x) is a polynomial in x of degree at most i, i =
0,1. Consequently, B(x) is a nonnegative Q1-matrix for suffi-
ciently large x, and therefore M has nonnegative Q1-completion.
On contrast, the partial nonnegative Q1-matrix

M[1,2,3] =





1 10 ?
10 1 ?
? 0 1



 ,

with unspecified entries? is the principal submatrix of M
induced by its diagonal{1,2,3}. Now one can verify that
M[1,2,3] does not have nonnegative Q1-completion, because
S2(M) < 0 for any completion of M[1,2,3].

3. Digraphs and the nonnegative
Q1-completion problem

An n×n partial matrixM specifiesa digraphD = (〈n〉,AD)
if for 1 ≤ i, j ≤ n, (i, j) ∈ AD if and only if the(i, j)-th entry
of M is specified. For example, the partial nonnegativeQ1-
matrixM in Example2.5specifies the digraphD in Figure1.
We say that a digraphD has nonnegativeQ1-completion, if
every partial nonnegativeQ1-matrix specifyingD can be com-
pleted to a nonnegativeQ1-matrix. The nonnegativeQ1-matrix
completion problemaims at studying and classifying all di-
graphsD which have nonnegativeQ1-completion.
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The property of being a nonnegativeQ1-matrix is pre-
served under similarity and transposition, but it is not in-
herited by principal submatrices, as it can easily be verified.
Also it is clear that if a digraphD has nonnegativeQ1-completion,
then any digraph which is isomorphic toD has nonnegative
Q1-completion.

Theorem 3.1. Suppose M is a partial nonnegative Q1-matrix
specifying the digraph D. If the partial submatrix of M in-
duced by every strongly connected induced subdigraph of D
has nonnegative Q1-completion, then M has nonnegative Q1-
completion.

Proof. We prove the result for the case whenD has two strong
componentsD1 andD2. The general result will then follow
by induction. By a relabeling of the vertices ofD, if required,
we have

M =

[

M11 M12

X M22

]

,

whereMii is a partial nonnegativeQ1-matrix specifyingDi , i =
1,2, and all entries inX are unspecified. By the hypothesis,
Mii has a nonnegativeQ1-completionBii . Consider the com-
pletion

B=

[

B11 B12

B21 B22

]

,

by choosing all entries inX as well as all unspecified entries
in M12 as 0. Then, for 2≤ k≤ |D| we have,

Sk(B) = Sk(B11)+Sk(B22)+
k−1

∑
r=1

Sr(B11)Sk−r(B22)≥ 0,

Here, we meanSk(Bii ) = 0 wheneverk exceeds the size ofBii .
ThusM can be completed to a nonnegativeQ1-matrix.

The proof of the following result is similar.

Theorem 3.2. Suppose M is a partial nonnegative Q1-matrix
specifying the digraph D. If the partial submatrix of M in-
duced by each component of D has a nonnegative Q1-completion,
then M has a nonnegative Q1-completion.

Consider the digraphD in the Figure1. We show that
D has nonnegativeQ1-completion, but the subdigraphD1

induced by vertices{1,2,3} does not have nonnegativeQ1-
completion (See Example2.5). The property of having non-

b

4
b

3

b
2

b1

Figure 1. The DigraphD

negativeQ1-completion is not inherited by induced subdi-
graphs. This can be also seen from the Example2.5.

3.1 Sufficient conditions for nonnegative Q1-matrix
completion

Theorem 3.3. If a digraph D 6= Kn of order n has nonnega-
tive Q1-completion, then any spanning subdigraph D0 of D
has nonnegative Q1-completion.

Proof. SupposeMD0 be a partial nonnegativeQ1-matrix spec-
ifying the digraphD0. Consider a partial matrixMD obtained
from MD0 by specifying the entries corresponding to(i, j) ∈
AD \AD0 as 0 and(i, i) ∈ AD \AD0 as 1. SinceD 6= Kn, MD

is a partial nonnegativeQ1-matrix specifyingD (By Proposi-
tion 2.1). SupposeB be a nonnegativeQ1-completion ofMD

which is also nonnegativeQ1-completion ofMD0. Hence the
result follows.

Theorem 3.4. A digraph has nonnegative Q1-completion if
it does not contain an cycle of even length.

Proof. SupposeM be a partial nonnegativeQ1-matrix spec-
ifying a digraphD which has no cycles of even length. For
t > 0, consider a completionB of M by assigning all the un-
specified diagonal entries ast and all unspecified off diagonal
entries as 0. Then for each 1≤ k ≤ n, Sk(B) contains a pos-
itive constant. On the other hand, for eachk ∈ {1,2, . . . ,n},
Sk(B) contains no negative terms, becauseD does not contain
an even cycle. Hence the result follows.

Corollary 3.5. An acyclic digraph has nonnegative Q1-
completion.

However the converse of the Theorem3.4is not true which
can be seen from the Example3.6.

Example 3.6. Consider the digraph D1 in Figure 2. Now

b

2
b

3

b
4

b
1

D1

b

2
b

3

b
4

b
1

D1

Figure 2. The digraphD1 having nonnegative
Q1-completion

consider a partial nonnegative Q1-matrix

M =









d1 ? ? a14

a21 d2 ? ?
? a32 d3 ?
? ? a43 d4









specifying the digraph D1 with unspecified entries as?. Now
being a partial nonnegative Q1 matrix M, all the specified off-
diagonal entries are nonnegative and di > 0, ∀i = 1,2,3,4.
If any one off-diagonal specified entries are zero, then by
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putting all unspecified entries as zero, we get the desired re-
sult. Suppose a21a14a43a32 6= 0. For t > 0, consider a com-
pletion

B==









d1 0 t a14

a21 d2 0 0
0 a32 d3 0
0 0 a43 d4









,

of M. Then we have a positive term ta32a21 in S3(B) and
d4ta32a21 in detB. By choosing t sufficiently large, we have
S3(B)> 0 and S4(B)> 0. Again for positive diagonal entries
di , i = 1, . . . ,4, we have S1(B)> 0 and S2(B)> 0. Hence the
result follows.

Now we have the following result:

Theorem 3.7. Suppose D6= K4 be a digraph with all loops
and without any 2-cycle. Suppose D has one even cycle C
of length4. If D contains a2-cycle 〈u,v〉 such that either
C+(u,v) or C+(v,u) has a3-cycle, then D has nonnegative
Q1-completion.

Proof. SupposeM = [ai j ] be a partial nonnegativeQ1-matrix
specifying the digraphD. Suppose(u,v) forms a 3-cycle in
C+(u,v). Fort > 0, consider a completionB= [bi j ] of M as
follows:

bi j =















ai j , if (i, j) ∈ D

t, if (i, j) = (u,v) ∈ D

0, otherwise.

It can be easily seen thatS1(B) and S2(B) are positive. If
any one of the specified off diagonal entries are zero, then we
are done. If not, thenS3(B) contains a positive termtai j a jk

specifying the 3-cycle ofC+(u,v). AgainS4(B) contains a
positive termdl tai j a jk as well as a negative term∏i6= j ai j . By
choosingt sufficiently large, we haveSk(B) > 0 for k = 3,4.
Hence the result follows.

The digraphD1 in Figure2 satisfies the Theorem3.7. The
digraphD1 contains a 4 cycleC = 〈1,4,3,2〉. Also the di-
graphD contains a 2-cycle〈1,3〉. NowC+(3,1) contains a
3-cycle〈1,4,3〉. HenceD1 has nonnegativeQ1-completion
by Theorem3.7.

3.2 Necessary conditions for nonnegative Q1-matrix
completion

Theorem 3.8. If a digraph D 6= Kn of order n≥ 2 contains
two vertices v1 and v2 with indegree or outdegree n, then D
does not have nonnegative Q1-completion.

Proof. Suppose a digraphD of ordern≥ 2 contains two ver-
ticesv1 andv2 with indegree or outdegreen. Consider a par-
tial nonnegativeQ1-matrixM specifyingD with all specified
entries are exactly 1. Then two columns or rows ofM are
equal and for any completionB of M, we have detB = 0.
Hence the result follows.

Theorem 3.9. Suppose D6= Kn be a digraph which includes
all loops and has nonnegative Q1-completion, then D does
not have a2-cycle.

Proof. Suppose thatD has a 2-cycle〈v1,v2〉. Consider a par-
tial nonnegativeQ1-matrix M = [ai j ] specifyingD such that

aii = 1 (1 ≤ i ≤ n) andav1v2av2v1 >

(

n
2

)

and rest of all

specified entries are zero. LetB= [bi j ] be any completion of
M. Then

S2(B) = ∑
i6= j

bii b j j −∑
i6= j

bi j b ji < − ∑
i, j /∈{v1,v2}

bi j b ji < 0,

and, therefore,B is not a nonnegativeQ1-matrix.

Example 3.10. Consider the digraph D2 in Figure 3. Here
D2 has a2-cycle〈1,3〉. Thus by Theorem3.9, D2 does not
have nonnegative Q1-completion. To see this consider a par-
tial nonnegative Q1-matrix

M =









1 ? 10 0
0 1 ? 0
10 0 1 0
? ? ? 1









,

specifying the digraph D2. Then for any completion B of M,
we have S2(B)< 0. Hence, M cannot be completed to a non-
negative Q1-matrix.

b

4
b

3

b
2

b
1

b

4
b

3

b
2

b
1

Figure 3. The DigraphsD2 andD2

Remark 3.11. If a digraph D of order n includes all loops
has nonnegative Q1-completion, then D has less than1

2n(n+1)
arcs. In case D has more than12n(n+1) arcs, then D must
have a2-cycle.

Theorem 3.12. Let D 6= Kn be a digraph of order n that in-
cludes all loops and contains an even cycle C of length4. If
D has nonnegative Q1-completion, thenD has a2-cycle.

Proof. SupposeM = [ai j ] be a partial nonnegativeQ1-matrix
specifying the digraphD. Fort > 1, consider the partial non-
negativeQ1-matrixM(t) with the specified entries as follows

ai j =















t, if (i, j) ∈ AC

1, if (i, i) ∈ AD

0, otherwise.
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Let B= [bi j ] be a completion ofM(t), wherebi j = xi j ≥ 0 for
(i, j) /∈ AD. Now we have,

0 < S2(B) = 6−∑bi j b ji ,

and this implies each ofxi j to be bounded above by 6. On the
other hand we have,

S4(B(t)) =−t4+ p(t,xi j ),

wherep(t,xi j ) is a polynomial and have degree at most 3 in
t. Consequently, for a large value oft, S4(B(t)) < 0 for any
nonnegative choices ofxi j within their bounds. For such a
value oft, B(t) is not aQ1-matrix.

Example 3.13. Consider the digraph D3 and its complement
D3 in Figure 4. The digraph D3 satisfies the conditions of
the Theorem3.12. Hence it does not have nonnegative Q1-
completion.

b

4
b

3

b
2

b
1

b

4
b

3

b
2

b
1

Figure 4. The DigraphsD3 andD3

4. Relationship theorems

4.1 Q-completion and nonnegative Q1-completion
It is easily seen that a nonnegativeQ1 matrix is aQ-matrix
but not vice versa. However their completion problems are
not related.

(i) Consider the digraphD4 and its complementD4 in Fig-
ure5. HereD4 is acyclic and contains all loops. Hence
by Corollary3.5, D4 has nonnegativeQ1-completion.
On the other handD4 is not stratified, thus it does not
haveQ-completion. (See Theorem 2.8, [2]).

b
1

b 3b2

b
1

b 3b2

Figure 5. The DigraphD4 and its complementD4

(ii) Consider the digraphD5 and its complementD5 in Fig-
ure 6. Here the digraphD5 does not have nonnega-
tive Q1-completion (by Theorem3.9). But sinceD5 is
weakly stratified,D5 hasQ-completion (See Theorem
2.12, [2]).

b

4
b
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b
1

Figure 6. The DigraphsD5 andD5

4.2 Nonnegative Q-completion and non-negative Q1

-completion
Although a nonnegativeQ1-matrix is a nonnegativeQ-matrix,
but their completion problem are partially different. Now we
have the following:

Proposition 4.1. If a digraph D has nonnegative Q-completion
then it has nonnegative Q1-completion.

Proof. SupposeM = [ai j ] be a partial nonnegativeQ1-matrix
specifying the digraphD. ThenM is also a partial nonnega-
tive Q-matrix specifying the digraphD. SinceM has nonneg-
ativeQ-completion, thusM can be completed to a nonnega-
tive Q-matrixB by assigning the unspecified diagonal entries
(if any) as a positive real numbert. ClearlyB is a nonnegative
Q1-completion ofM.

However the converse of the Proposition4.1 is not true.
The digraphD6 in Figure7 has nonnegativeQ1-completion
but does not have nonnegativeQ-completion. Consider a par-

b

1
b

2

Figure 7. The DigraphD6

tial nonnegativeQ-matrix

M =

[

1 0
? 0

]

,

specifying the digraphD6. It is easily seen thatM cannot be
completed to a nonnegativeQ-matrix since for any comple-
tion B of M we have detB= 0. On the other hand, the digraph
D6 has nonnegativeQ1-completion by Theorem3.4.

4.3 Positive Q-completion and nonnegative Q1-completion
In this subsection, we will compare the nonnegativeQ1-completion
problem with the positiveQ-completion problem.

Proposition 4.2. If a digraph D has nonnegative Q1-completion,
then D has positive Q-completion.

Proof. SupposeM = [ai j ] be a partial positiveQ-matrix spec-
ifying the digraphD. ThenM is a partial nonnegativeQ1-
matrix specifyingD. Let B be a nonnegativeQ-completion
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of M. Then, perturbing the zero entries inB by small posi-
tive quantities, a positiveQ-completion ofM can be obtained.

However, the converse is not true which can be seen from
the following example.

Example 4.3. Consider the digraph D7 in Figure8. The com-
plement of the digraph D7 i.e. D7 contains a2-cycle〈2,4〉
such that the arc(4,2) in D7 satisfies the Theorem 2.10,[12].
Hence the digraph D7 has positive Q-completion. On the
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b
2

b
1

b 4

Figure 8. The DigraphD7

other hand, consider a partial nonnegative Q1 matrix

M(t) =













1 t 1 1 x1

x2 1 t x3 x4

x5 x6 1 0 t
x7 x8 x9 1 1
t 1 x10 x11 1













,

specifying the digraph D7, where t> 1 and xi are unspecified
entries. Now for any completion B(t), we have

S2(B(t)) =

(

5
2

)

−
(

t ∑xi +∑xi + x3x8
)

> 0, (4.1)

which implies that xi and x3x8 are bounded by

(

5
2

)

. How-

ever x3 and x8 can take any arbitrary values. Again we have,

S4(B(t))=−t4+c1t
2+c2t+c3+x3(−t2+c4)+x4(−c6t

2+c7),

(4.2)

where cr are polynomials in xi . Consequently, for large val-
ues of t, S4(B(t))< 0 for any completion B(t) of M(t)

5. Classification of digraphs of small
order having nonnegative Q1-completion

In this section we will classify all the digraphs of order at
most four as to nonnegativeQ1-completion. For this purpose
we will apply the previously obtained results on the digraphs.
The nomenclature of the digraphs has been considered from
the list in [4, Appendix, pp. 233]. Here,Dp(q,n) is the one
obtained by attaching a loop at each of the vertices to then-
th member in the list of digraphs withp vertices andq (non-
loop) arcs in the list.

Now permutation similarity of nonnegativeQ1-matrix im-
plies that if a digraphD has nonnegativeQ1-completion, then
any digraph which is isomorphic toD has nonnegativeQ1-
completion. Thus any digraph which is obtained by labelling
the unlabelled digraph associated toD has nonnegativeQ1-
completion.

Theorem 5.1. For 1 ≤ p ≤ 4, the digraphs Dp(q,n) which
are listed below have nonnegative Q1-completion.

p= 2; q= 0,1,2; n= 1
p= 3; q= 0,1; n= 1

q= 2; n= 2–4
q= 3; n= 2,3
q= 6; n= 1

p= 4; q= 0,1; n= 1
q= 2; n= 2–5
q= 3; n= 4–13
q= 4; n= 16–27
q= 5; n= 29–38
q= 6; n= 46–48
q= 12; n= 1.

Proof. It can be easily seen thatDp(q,n) has nonnegativeQ1-
completion ifq= 0 or it is a complete digraph.

The digraphsD2(q,n),q= 1,n= 1; D3(q,n),q= 1,n=
1; q= 2,n= 2–4; q= 3,n= 2,3 , D4(q,n),q= 1,n= 1; q=
2,n = 2–5; q = 3,n = 3–13; q = 4,n = 17–27;q = 5,n =
29,30,31,33–38;q= 6,n= 46–48 do not contain a cycle of
even length and hence each of the digraph has nonnegative
Q1-completion by Theorem3.4.

Each of the digraphD4(q,n),q = 4,n = 16; q = 5,n =
32; q= 6,n= 45 satisfies the statement of the Theorem3.7,
and hence each digraph has nonnegativeQ1-completion.

The digraphD4(q,n),q= 6,n= 45 satisfies the statement
of the Theorem3.12, hence it does not have nonnegativeQ1-
completion.

The rest of digraphsDp(q,n);3 ≤ p ≤ 4, contains a 2-
cycle and they do not have nonnegativeQ1-completion.
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