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1. Introduction
We present some elements of the theory of generalized

functions. The applications of integral transforms are used in
the fields of science and engineering. The ordinary and par-
tial differential equations can be solved by integral transform
method .Here we use two different integral transforms.The
theory of Laplace transform has been developed on vari-
ous testing function spaces and distribution spaces. Khobra-
gade [1] and Patel [3] used Finite Marchi Fasulo Transform
and studied its application.Sajane and Chaudhary [5] stud-
ied the inversion formula for extended finite Hankel Laplace
transform.Zemanian[9] extended the two sided and right sided
Laplace transformation to a class of generalized function.Al-
omari SKQ [2] studied the generalized Stieljes and Fourier
transforms of certain spaces of generalized functions.Pathak
[4]discussed properties of inversion and uniqueness.Sundararanjan[7]

studied and discussed the properties of Fourier and Hartly
transforms. Most of the integral transforms and their inverses
have been defined in Sneddon [6].Distributional aspects of
some integral transforms are given by Zemanian[8]. We con-
struct an integral transform whose kernel is the product of the
kernels of Laplace and Finite Marchi Fasulo Transform.

2. Preliminaries
Testing function spaces £+,a and £+(w)
We shall denote the open set (0,∞)× (−h,h) by I . Let £+,a
denote the space of all complex valued smooth functions
ϕ(z, t) that are infinitely differentiable with respect to z and t
on I on which the functionals λa,k1,k2 defined by

λ (ϕ), sup | eatDk1
t Ω

k2
z ϕ(z, t) |

0 < t < ∞

−h < z < h

assumes finite values where k1, k2 are non negative integers
and Dt =

∂

∂ t ,Dz =
∂

∂ z

(Ωk2
z )(ϕ) = (D2

z )
k2(ϕ)

Now £+,a is linear space under the pointwise addition of func-
tions and their multiplication by complex numbers. Each
λa,k1,k2 is a seminorm on £+,a and λa,0,0 is a norm, hence
the countable collections {λa,k1,k2}∞

k1,k2=0 of seminorms is a
countable multinorm on £+,a. We assign to £+,a the topol-
ogy generated by {λa,k1,k2}∞

k1,k2=0 making it countably multi-
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normed space. A sequence {ϕp}∞
p=1 converges in £+,a to

ϕ if and only if for each pair of nonnegative integers k1,k2
λa,k1,k2(ϕp−ϕ)→ 0 as p→ ∞ and a sequence {ϕp}∞

p=1 is a
Cauchy sequence in £+,a if and only if λa,k1,k2(ϕp−ϕq)→ 0
∀k1,k2 = 0,1,2, . . . as p,q→ ∞.

Lemma 2.1. The space £+,a is complete and therefore it is a
Frechet space.

Proof. Let {ϕp}∞
p=1 be a Cauchy sequence in £+,a. Then

there exists a smooth function ϕ(z, t) such that for each pair of
non negative integers k1,k2 Dk1

t Ω
k2
z ϕp(z, t)→ Dk1

t Ω
k2
z ϕ(z, t)

as p→ ∞. Moreover given any ε > 0 there exists Nk1,k2 such
that for every p,q > Nk1,k2

| eatDk1
t Ω

k2
z [ϕp(z, t)−φq(z, t)] |< ε

for all z.
Taking the limit as q→ ∞, we obtain

| eatDk1
t Ω

k2
z [ϕp(z, t)−ϕ(z, t)] |< ε 0< t <∞,−h< z< h

(2.1)

Thus as p→ ∞ λa,k1,k2(ϕp(z, t)−ϕ(z, t))→ 0 for each k1,k2.
Since the convergence is uniform and not depending on p such
that | eatDk1

t Ω
k2
z [ϕp(z, t)] |<Ck1,k2 for all z, t. Therefore (2.1)

implies that | eatDk1
t Ω

k2
z [ϕ(z, t)] |< Ck1,k2 + ε which shows

that the limit function φ(z, t) is a member of £+,a hence £+,a
is complete, so it is Frechet space.

The countable union space £+(w)
Let w denote either a finite real number or −∞. We choose
the monotonic sequence since the convergence is uniform and
{ap}∞

p=1 such that ap→ w+. Then{£+,ap}∞
p=1 is a sequence

of testing function spaces is such that £+,ap ⊂ £+,ap+1 for all
p and the topology of £+,ap is stronger than the topology in-
duced on it by £+,ap+1 .

Definition 2.2. £+(w) =
∞⋃

p=1
£+,ap . A sequence {ϕp}∞

p=1

converges in £+(w) if and only if it converges in £+,ap for
some p. Then with these properties £+(w) is countable union
space.

£+(w) is a linear space. Further it is complete space, since
for fixed p,£+,ap is complete.

The dual spaces £′+,a and £′+(w)
The dual space £′+,a of £+,a is the collection of all continuous
linear functionals on £+,a. Since £+,a is complete, £′+,a is
also complete. If a ≤ c then £+,c ⊂ £+,a and the topology
of £+,c is stronger than the topology induced on it by £+,a.
Therefore the restriction of any member f ∈ £′+,a to £+,c is
in £′+,c. We assign the customary weak topology generated
by the multinorm {ξϕ}ϕ ∈ £+,a to the dual space £′+,a, where
ξϕ( f ) =|< f ,ϕ >| ϕ ∈ £+,a . We denote by £′+(w) the dual
space of £+(w). Since all £+,ap are complete and £+(w) is
complete, the dual space £′+(w) is also complete.

The properties of testing function spaces and their
duals

1. D⊂ £+,a and the convergence in D(I) implies the con-
vergence in £+,a . Therefore the restriction of any mem-
ber of £′+,a (I) to D(I) is in D′(I). Similarly D(I) is
subspace of £+(w) whatever may be the value of w.
The convergence in D(I) implies the convergence in
£+(w) and the restriction of any member of £+(w) to
D(I) is a member of D′(I).The member of £′+,a (I) and
£′+(w) are called distributions.

2. D(I) is dense in £+(w) for every w. Therefore £′+(w)
is subspace of D′(I).

3. For each f ∈ £′+,a(I) there exists a +ve constant c and a
nonnegative integer r , such that for
all ϕ ∈ £+,a (I)

|< f ,ϕ >|≤ c max λa,k1,k2(ϕ)

0≤ k1 ≤ r

0≤ k1 ≤ r

4. If f (z, t) is a locally integrable function defined on the

interval I such that
∫ h

−h

∫
∞

0
| e−at f (z, t)dtdz | exists then

f (z, t) generates a regular member of £+,a(I) through
the definition

< f ,ϕ >=
∫ h

−h

∫
∞

0
f (z, t)ϕ(z, t)dtdz,

ϕ(z, t) ∈ £+,a(I)...(∗)

|< f ,ϕ >|=|
∫ h

−h

∫
∞

0

f (z, t)
eat eat

φ(z, t)dtdz |

≤ λa,0,0

∫ h

−h

∫
∞

0
| e−at f (z, t) | dtdz

which exists in view of our assumption . Therefore
(*) defines a functional f on £+,a this functional is lin-
ear. Further if {φp}∞

p=1 converges in £+,a to zero then
λa,0,0(ϕp)→ 0 so that |< f ,ϕp >|→ 0 therefore f is
continuous on £+,a. Similarly if w< a, then f generates
a regular distribution of £′+(w) through the definition

< f ,ϕ >=
∫ h

−h

∫
∞

0
f (z, t)ϕ(z, t)dtdz ϕ(z, t)∈ £+,a(I)

where
∫ h

−h

∫
∞

0
| e−at f (z, t) | dtdz exists.This condition

is satisfied if e−σt f (z, t) bounded on o< t <∞ for every
choice of σ where σ > w.

5. For each positive integer n and Re.s ≥ a the function
e−st pn(z) is a member of £+,a and is also member of
£+(w) if a > w.

Proof.

eat [Dk1
t Ω

k2
z e−st pn(z)] = (−1)k1+k2sk1(a2

n)
k2e−(s−a)t pn(Z)

627
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(2.2)

for t ≥ 0 −h < z < h.
The right hand side of above equation is bounded for

Re.s≥ a for the positive eigen values an. Thus for each k1,k2
λa,k1,k2 [e

−st pn(z)] exists which shows that e−st pn(z) belongs
to £+,a. In the similar way we can show that for every a >
w,e−st pn(z) ∈ £+(w).

3. The Generalized Laplace Finite Marchi
Fasulo Transform

We call the generalized function f as Laplace Finite Marchi
Fasulo transformable if it belongs to £′+(w) for some real num-
ber w. Let σ f be defined as , σ f = inf{w| f ∈ £′+(w)} If f is
Laplace Finite Marchi Fasulo transformable function, then we
see that ∃σ f such that f ∈ £′+(w)∀w < σ f . Thus for a given
Laplace Finite Marchi Fasulo transformable function f ∈
£′+(w) if D f denote strip of definition i.e. D f = {(n,s)/σ f <
Res,n is +ve integer}. Then generalised Laplace Finite Marchi
Fasulo transformation F(n,s) of f (z, t) is defined by £M[ f (z, t)],
F(n,s) =< f (z, t),e−st pn(z)> i.e , it is defined as the appli-
cation of f ∈ £′+(σ f ) to kernel e−st ∈ £′+(σ f ) or equivalently
f ∈ £′+,a to e−st pn(z) ∈ £+,a for any σ f < a≤ Re.s

Boundedness property of generalised Laplace Fi-
nite Marchi Fasulo transform:
We show that the generalized Laplace Finite Marchi Fasulo
transform F(n,s) defined as above is bounded for (n,s) ∈ D f .
by using [9]

Theorem 3.1. Let f ∈ £′+,a and F(n,s)=< f (z, t),e−st pn(z)>
For (n,s)∈D f . Then F(n,s) satisfies the inequality |F(n,s) |≤
CAP(| s | (a2

n)
r)

Proof. Let f ∈ £′+,a(I). Then by property (3) above there
exists a non negative integer r and a positive constant C such
that for Re.s≥ a

| F(n,s) |=|< f (z, t),e−st pn(z)>|
≤C max λa,k1,k2 [e

−stPn(z)]

0≤ k1 ≤ r

0≤ k2 ≤ r

≤C max sup | eatDk1
t (D2

z )
k2e−stPn(z) |

0≤ k1 ≤ r (z, t) ∈ I

0≤ k2 ≤ r

≤C max sup | eatsk1a2k2
n e−stPn(z) |

0≤ k1 ≤ r (z, t) ∈ I

0≤ k2 ≤ r

=C max sup | eatsk1a2k2
n e−stPn(z) |

0≤ k1 ≤ r (z, t) ∈ I

0≤ k2 ≤ r

but | eate−stPn(z) |< A on 0 < t < ∞,−h < z < h so that

| F(n,s) |≤C A max | sk1a2k2
n |

0≤ K1 ≤ r

0≤ k2 ≤ r

| F(n,s) |≤CA P(|s|(a2
n)

r)
where P(|s|(a2

n)
r) is a polynomial that depends in general on

the choice of A .

Theorem 3.2 (Analyticity theorem). The generalized Laplace
Finite Marchi Fasulo transform is an analytic function of s.

Proof. Let (n,s) be arbitrary but fixed point in D f and choose
the real number a and r such that σ f < a≤ Re.s−r≤ Re.s+r
let ∆s be complex increment such that |∆s| < r. Now for
∆s 6= 0 by definition of F(n,s) as

F(n,s+4s)−F(n,s)
4s

−< f (z, t),
∂

∂ s
e−stPn(z)>

=< f (z, t),Ψ4s(z, t) (3.1)

where

ΨMs(z, t) = {
1
M s

[e−(s+4s)t − e−st ]− ∂

∂ s
e−st}pn(z)

(3.2)

since ΨMs(z, t) ∈ £+,a equation (3.2) has meaning . We show
that ΨMs(z, t)→ 0 in £+,a as M s→ 0 but as f ∈ £′+,a this
implies that < f ,ΨMs >→ 0
let c denote the circle with centre at s and radius r1 where
0 < r < r1 < Re.s−a by equation (3.2)
Dk1

t Ω
k2
z Ψ4s(z, t) = (−1)k1+k2(a2

n)
k2 pn(z)

{ 1
Ms [(s+4s)k1e−(s+4s)t − sk1e−st ]− sk1 e−st}

since e−st pn(z) is analytic in s using Cauchy’s integral formula
to the right hand side of the last equation , we obtain

Dk1
t Ω

k2
z Ψ4s(z, t) = (−1)k1+k2(a2

n)
k2 pn(z)[

1
2πi

1
4s∫

c

ξ k1e−ξ tdξ

ξ − (s+4s)
−
∫

c

ξ k1e−ξ tdξ

ξ − s
− 1

2πi

∫
c

ξ k1e−ξ tdξ

(ξ − s)2 ]

Dk1
t Ω

k2
z Ψ4s(z, t) = (−1)k1+k2(a2

n)
k2 pn(z)

× 1
2πi

∫
c

ξ k1e−ξ tdξ

(ξ − s)(ξ − s−4s)
−

∫
c

ξ k1e−ξ tdξ

(ξ − s)2

Dk1
t Ω

k2
z Ψ4s(z, t) = (−1)k1+k2(a2

n)
k2 pn(z)

4s
2πi∫

c

ξ k1e−ξ tdξ

(ξ − s)(ξ − s−4s)(ξ − s)2

628
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now for all ξ ∈C and 0 < t < ∞, −h < z < h

| eatDk1
t Ω

k2
z Ψ4s(z, t) |= (a2

n)
k2 | pn(z) |

| 4s |
2πi∫

c

| eatξ k1e−ξ t || dξ |
(ξ − s)(ξ − s−4s)(ξ − s)2

| eatDk1
t Ω

k2
z Ψ4s(z, t) | ≤

| 4s |
2πi

k(a2
n)

k2

∫
c

| dξ |
(r1− r)r2

1

≤ | 4s | k(a2
n)

k2

(r1− r)r1

where | eatξ k1e−ξ t || pn(z)] |≤ k k being constant independent
of ξ and t. The right hand side of the last equality is indepen-
dent of z, t and converges to zero as | 4s |→ 0 This proves
thatΨ4s(z, t) converges to zero in £+,a as4s→ 0.
Hence if f ∈ £′+,a, < f ,Ψ4s >→ o as4s→ o.

Lemma 3.3. Let £M[ f (z, t)]=F(n,s) where (n,s)∈D f ,Re.s>
σ and ϕ(z, t) ∈ £+,a and −h < a1 < b1 < h assume that ,

ϕ(n,s) =
∫ b1

a1

∫
∞

0
ϕ(z, t)est pn(z)

λn
dtdz. (3.3)

Then for any fixed real number r with o < r < ∞∫ r

−r
< f (u,v),e−su pn(v)> ϕ(n,s)dρ

=< f (u,v),
∫ r

−r
e−su pn(v)ϕ(n,s)dρ > (3.4)

where s = σ + iρ and σ is fixed and σ > σ f .

Proof. We know that e−st pn(z) is a member of £+,a and∫ r
−r e−su pn(v)ϕ(n,s)dρ is also the member of £+,a indeed

Dk1
u D2k2

v

∫ r

−r
e−su pn(v)ϕ(n,s)dρ

≤ eσu
∫ r

−r
sk1(a2

n)
k2 | pn(v) || ϕ(n,s) | dρ

≤ Aeσusk1(a2
n)

k22r

(3.5)

which exists, where A is bound for ϕ(n,s).pn(v) both sides
has sense. If ϕ(z, t) = o, the proof is obvious, so assume that
ϕ(z, t) 6= o. Partition the path of integration on the straight
line s = σ − ir to s = σ + ir into m intervals each of length 2r

m
and let sp = σ + iρp be any point in path interval

θm(u,v) =
m

∑
p=1

e−s pu pn(v)ϕ(n,sp)
2r
m

(3.6)

by applying f (u,v) to (3.6) term by term

< f (u,v),θm(u,v)>

=
m

∑
p=1

< f (u,v),e−s pu pn(v)> ϕ(n,sp)
2r
m

→
∫ r

−r
< f (u,v),e−su pn(v)> ϕ(n,s)dρ

Since < f (u,v),e−su pu pn(v) > ϕ(n,s) is a continuous func-
tion of ρ choose a such that σ f < a < σ since f ∈ £+,a
to show that θm(u,v) converges in £+,a(I) to∫ r

−r
e−su pn(v)ϕ(n,s)dρ we will show that for fixed

k1,k2Am(u,v) converges uniformly to zero, as m→ ∞ 0 <
u < ∞,−h < v < h, where

Am(u,v) = eauDk1
u Ω

k2
v [θm(u,v)−

∫ r

−r
e−su pn(v)ϕ(n,s)dρ]

Am(u,v) = eau(−1)k1+k2
m

∑
p=1

sk1
p (a2

n)
k2e−s pu pn(v)ϕ(n,s)

2r
m

− (−1)k1+k2

∫ r

−r
sk1(a2

n)
k2e−su pn(v)ϕ(n,s)dρ.

(3.7)

Now | eau.e−su pn(v) |≤ e(a−σ)u.pn(z)→ 0 as | u |→∞ as a <
σ . So given ε > 0 we choose T so large that for all | u |> T

| eau.e−su pn(v) |≤
ε

2
[
∫ r

−r
| sk1(a2

n)
k2ϕ(n,s) | dρ]−1.

(3.8)

Since ϕ(z, t) 6= o the r .h. s of (3.8) is finite . Now for all
| u |> T the magnitude of the second term on the right hand
side of (3.8) is bounded by ε

2 . Moreover , for | u |> T the
magnitude of first term on right hand side of (3.8) is bounded
by

ε

2
[
∫ r

−r
| sk1(a2

n)
k2ϕ(n,s) | dρ]−1

m

∑
p=1

sk1(a2
n)

k2ϕ(n,sp)
2r
m

We can now, choose m0 so large that for all m > m0 the last
expression is less than ε Hence for all | u |> T and for all
m > m0 | Am(u,v) |< ε .

4. Inversion and Uniqueness

Theorem 4.1 (Inversion theorem). Let f ∈ £′+,a and let F(n,s)
be the distributional Laplace Finite Marchi Fasulo transform
of f (z, t) . For (n,s) ∈ D f , in the sense of convergence in
D′(I) ,

f (z, t) = lim
r,m→∞

[
1

2πi

m

∑
n=1

2pn(z)
λn

∫
σ+ir

σ−ir
F(n,s)estds

]
where σ is any fixed number such that σ > σ f .

Proof. Let ϕ(z, t) be an arbitrary member of D(I) . To show
that

lim
r,m→∞

<
1

2πi

m

∑
n=1

2pn(z)
λn

∫
σ+ir

σ−ir
F(n,s)estds,ϕ(z, t)>

→< f (u,v),ϕ(u,v)> (4.1)

629
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Let ϕ ∈D(I) has support contained in [A,B]× [a1,b1], where
0 < A < B < ∞ and −h < a1 < b1 < h.

1
2π

m

∑
n=1

pn(z)
λn

∫
σ+ir

σ−ir
F(n,s)estds

is locally integrable function on I. Equation (4) can be written
without limit notation as

1
2π

∫ b1

a1

∫
∞

0
[

m

∑
n=1

2pn(z)
λn

∫
σ+ir

σ−ir
F(n,s)estds]ϕ(z, t)dtdz

substituting s = σ + iρ ds = idρ we get

1
2π

∫ b1

a1

∫
∞

0
[

m

∑
n=1

2pn(z)
λn

∫ r

−r
F(n,s)estdρ]ϕ(z, t)dtdz

We interchange the order of integration as ϕ(z, t) has bounded
support and integrand is continuous function of (z, t , ρ).
Therefore last expression takes the form

1
2π

m

∑
n=1

∫ r

−r
2F(n,s)

∫ b1

a1

∫
∞

0
ϕ(z, t)est pn(z)

λn
dtdzdρ

=
2

2π

m

∑
n=1

∫ r

−r
< f (u,v)e−su pn(v)

>
∫ b1

a1

∫
∞

0
ϕ(z, t)est pn(z)

λn
dtdzdρ

=< f (u,v),
2

2π

m

∑
n=1

∫ r

−r
e−su pn(v)∫ b1

a1

∫
∞

0
ϕ(z, t)est pn(z)

λn
dtdzdρ >

the order of integration for repeated integrals can be changed
because again ϕ(z, t) is of bounded support and the integrand
is continuous function of (t,z,ρ) , we obtain

< f (u,v),
2

2π

m

∑
n=1

∫ r

−r
e−su pn(v)∫ b1

a1

∫
∞

0
ϕ(z, t)est pn(z)

λn
dtdzdρ >

=< f (u,v),
2

2π

m

∑
n=1

∫ b1

a1

∫
∞

0
ϕ(z, t)

pn(z)pn(v)
λn

dtdz

×
∫ r

−r
eσ(t−u)e(t−u)iρ dρ >

=< f (u,v),
2

2π

m

∑
n=1

∫ b1

a1

∫
∞

0
ϕ(z, t)Tneσ(t−u)eσ(t−u)idtdz

× ei(t−u)r− e−i(t−u)r

i(t−u)
>,

where Tn =
m

∑
n=1

pn(z)pn(v)
λn

=< f (u,v),
2
π

m

∑
n=1

∫ b1

a1

∫
∞

0
ϕ(z, t)Tneσ(t−u)eσ(t−u)

(×) sinr(t−u)
(t−u)

dtdz >

→< f (u,v),(u,v)> as r,m→ ∞.

Theorem 4.2 ( Uniqueness theorem). Let £M[ f (z, t)]=F(n,s)
and £M[g(z, t)] = G(n,s) for all (n,s) ∈ D f and (n,s) ∈ Dg
respectively and if F(n,s) = G(n,s) for (n,s) ∈ D f ∩Dg 6= 0,
then f = g in sense of equality in D′(I) .

Proof. In the sense of convergence in D′(I) and in view of
inversion theorem

f (z, t) = lim
r,m→∞

1
2πi

∞

∑
n=1

pn(z)
λn

∫
σ+ir

σ−ir
F(n,s)estds (4.2)

the right hand side of this equation becomes

lim
r,m→∞

1
2πi

∞

∑
n=1

pn(z)
λn

∫
σ+ir

σ−ir
G(n,s)estds

which by inversion theorem equal to g(z, t) .
Hence f = g .

5. Conclusion
In this paper we extended the Laplace finite Marchi Fasulo

transform in the distributional space of compact support and
hence defined as generalized Laplace finite Marchi Fasulo
transform.Some lemma’s along with the inversion theorem
and analyticity theorem are proved. This plays an impor-
tant role in solving linear and nonlinear partial differential
equations.
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