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Abstract
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1. Introduction
The class of pseudocontractive operator is introduced by

Browder and Petryshyn[13] in 1967 in Hilbert space who
said that U is pseudocontractive operator if and only if T=I-
U is monotone operator.They also proved the existence re-
sults and convergence results for this class of mappings in
Hilbert space using Krasnoselskij[14] iteration .In the same
year, Browder[15] independently gave the existence of fixed
points of pseudocontractive mapping in real uniformly con-
vex Banach space and real Banach space with uniform struc-
ture.He assreted that the class of pseudocontractive operators
includes the important class of nonexpansive operators and
shown that T is pseudocontractive if A=I-T is accretive.
It is well known if T is a nonexpansive mapping then U:I-T is

monotone in Hilbert space for any subset D of H into H and
accretive operator in Banach space into itself.However, con-
verse is not true i.e.if U is monotone or accretive operator then
T=I-U is not nonexpansive (see Browder[16]. In fact, this was
the reason why pseudocontractive operator was introduced.
The class of pseudocontractive mappings plays an impor-
tant role in the theory of nonlinear mappings because of its
firm connection with the accretive mappings.(see Kirk and
Shoneberg[17].Browder[15] and Kato[18]. Independent of
each other ,these authors have tried to characterize pseudocon-
tractive mappings as the mapping T for which the mapping
A=I-T is accretive.Consequently, several methods of approxi-
mating the equilibrium points of the initial value problems

x′(t)+Ax(t) = 0,x(0) = x0

have been evolved so for proving the existence and approxima-
tion using pseudocontractive operators.One of them is based
on Viscosity Implicit Rule.
The viscosity iterative algorithms has been investigated exten-
sively by many authors to find the common element of the set
of fixed point of pseudocontractive mappings and the set of so-
lution of variational inequality problem ( see [11],[21],[22]and
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the references therein).On this line of investigation, in 2000 ,
Moudafi [1] introduced the viscosity iterative algorithm for
proving the strong convergence of non-expansive mappings in
real Hilbert space. Later in 2004, Xu [2] extended the result of
Moudafi [1] to a Banach space and introduced the following
viscosity technique for non expansive mapping in a uniformly
smooth Banach space :

xn+1 = αn f (xn)+(1−αn)T xn, n≥ 0

where f is a contraction and ‖αn‖ is a sequence in [0,1].
The implicit midpoint rule is a powerful method for solv-

ing ordinary differential equations ; (see [[8],[9]] and the
references therein).Recently, in 2015 , Xu et. al [4] applied
the viscosity technique fo rthe non expansive mapping and
introduced the following viscosity implicit midpoint rule

xn+1 = αn f (xn)+(1−αn)T (
xn + xn+1

2
), n≥ 0 (1.1)

They proved that the sequence generated by equation (1.1)
converges strongly to a fixed point of T ,which also solves the
following variational inequality in Hilbert space ,

〈(I− f )q,x−q〉 ≥ 0, x ∈ F(T ) (1.2)

In 2017, Luo et. al. [7] proved strong convergence for
strict pseudocontractive mapping with some appropriate con-
ditions on parameters by using the above [4] implicit midpoint
rule of non expansive mappings in uniformly smooth Banach
space which also solves some variational inequality problem.
Recently,Yan et. al. [10] extended the result of Luo et.al. [7]
from non expansive mapping to asymptotically non expansive
mapping and gave the generalized viscosity implicit rule for
asymptotically non expansive mapping in Hilbert space as

xn+1 = αn f (xn)+(1−αn)T n(
xn + xn+1

2
), n≥ 0

Further, Yao et. al. [12] introduced another semi-implicit
midpoint rule as follows :

xn+1 = αn f (xn)+βn f (xn)+ γnT (
xn + xn+1

2
), n≥ 0

In 2016, Yu et. al. [19] extended the work of Yao et.
al.[12] and gave following generalized viscosity implicit rule
for non expansive mapping in Hilbert space :

xn+1 = αn f (xn)+βnxn + γnT (δnxn +(1−δn)xn+1), n≥ 0

. Its sequence converges strongly to fixed point T . In 2017,
Wang et. al.[20] extended the work of [19]to a uniformly
L-Lipschitzian asymptotically pesudocontractive mapping in
Banach space and introduced the following modified viscosity
implicit rule

xn+1 = αnxn+βn f (xn)+γnT n(ζnxn +(1−ζn)xn+1), n≥ 0

Now in this paper, motivated by above results of [[19],[20]]
we introduce the following modified iterative algorithm based
on viscosity implicit rule for a uniformly L-Lipschitzian asymp-
totically pseudocontractive mapping in Banach space, which
is more general than Theorem 2.1 of [20],

xn+1 = αn(1−δn)xn +βn f (xn)

+ γnT n(snxn +(1− sn)xn+1), n≥ 0

with some suitable assumptions imposed on parameters and
prove strong convergence theorem for asymptotically pseu-
docontractive mapping in Banach space. It extends the main
result of Wang et. al.[20] and improve many such other re-
sults.

2. Preliminaries
Through out this paper, we assume that E is a real Banach

space and E∗ is the dual space of E. Let C be a subset of E
and let J denote the normalized duality mapping from E into
2E∗ defined by

J(x) = f ∈ E∗ : 〈x, f 〉= ‖x‖2 = ‖ f‖2

for all x ∈ E, where 〈., .〉 denotes the generalized duality pair-
ing.We denote the single valued duality pairing by j.In a
Hilbert space H, j is the identity mapping.We recall here
some useful definitions.

Definition 2.1. A mapping f : C→ C is said to be a strict
contraction if there exists a constant λ ∈ (0,1) satisfying

‖ f (x)− f (y)‖ ≤ λ‖x− y‖, ∀x,y ∈C

Definition 2.2. A mapping T : C→C is said to be an asymp-
totically non-expansive if there exists a sequence {kn} with
kn→ 1 such that

‖T nx−T ny‖ ≤ kn‖x− y‖, ∀x,y ∈C

Definition 2.3. A mapping T : C→C is said to be an asymp-
totically pseudocontractive in Banach space if there exists a
sequence {kn} with kn→ 1 and j(x− y) ∈ J(x− y) for which
the following inequality holds

〈T nx−T ny, j(x− y)〉 ≤ kn‖x− y‖2, ∀x,y ∈C,n≥ 1

Definition 2.4. A mapping T : C→C is said to be uniformly
L-Lipschitzian if there exists some L > 0 such that

‖T nx−T ny‖ ≤ L‖x− y‖, ∀x,y ∈C, n≥ 1

We can easily see that if T is an asymptotically non-
expansive mapping then it is both asymptotically pseudocon-
tractive and uniformly L-Lipschitzian but the converse need
not to be true in general.
We shall use here the following lemmas :

Lemma 2.5 ([2]). Assume {an} be a sequence of nonnegative
real numbers such that
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an+1 ≤ (1−αn)an +δn, n≥ 0

where {αn} is a sequence in (0,1) and {δn} is a sequence in
R such that

1. ∑
∞

n=0 αn = ∞.

2. limsupn→∞

δn

αn
≤ 0 or ∑

∞
n=1 |δn|< ∞.

then limn→∞ an = 0.

Lemma 2.6 ([11]). Let E be a reflexive smooth Banach space
with a weakly sequential continuous duality mapping J. Let
C be a nonempty bounded and closed convex subset of E and
T : C→C be a uniformly L-Lipschitzian and asymptotically
pseudocontraction. Then (I−T ) is demiclosed at zero, where
I is the identity mapping, i.e., if xn ⇀ x weakly and xn−T xn→
0 strongly, then x ∈ F(T ).

Lemma 2.7 ([12]). Let {xn} and {yn} be two bounded se-
quence in a Banach space E and {βn} be a sequence in [0,1]
with 0 < liminfn→∞ βn ≤ limsupn→∞ βn. Suppose that

xn+1 = (1−βn)+βnyn∀n≥ 0

and limsupn→∞(‖yn+1− yn‖−‖xn+1− xn‖)≤ 0.
Then limn→∞ ‖yn− xn‖= 0.

3. Main result
Theorem 3.1. Let E be a reflexive smooth Banach space
with a weakly sequentially continuous duality mapping. Let
J,C be a nonempty bounded and closed convex subset of E,
and let T : C→C be a uniformly L-Lipschitzian asymptoti-
cally pseudocontractive mapping with a sequence kn such that
F(T ) 6= φ and f : C→ C be a contraction with coefficient
λ ∈ (0,1). Pick any x0 ∈C, let xn be a sequence generated by

xn+1 =αn(1−δn)xn+βn f (xn)+γnT n(snxn+(1−sn)xn+1)

(3.1)

where {αn},{βn},{γn},{δn} and {sn} ⊂ (0,1) satisfying the
conditions

1. αn +βn + γn = 1, limn→∞ βn = 0,
γn = ηβn, limn→∞ δn = 0;

0 < η <
(sn+1)−λ

L− (sn+1)

2. 0 < liminfn→∞ αn ≤ limsupn→∞ αn < 1,
limn→∞ βn = 0, limn→∞ | αn+1−αn |= 0
, limn→∞ | βn+1−βn |= 0 , limn→∞ |δn+1−δn|= 0.

3. ∑
∞
n=0 βn = ∞, 0 < sn < sn+1 < 1, ∑

∞
n=0 δn = ∞ ,

γn(1− sn)<
1
L ;

4. limn→∞ ‖T n+1x−T nx‖= 0,x ∈C
′

where C
′

is any bounded subset of C for all n≥ 0.Then {xn}
defined by 3.1 converges strongly to a fixed point p of the
asymptotically pseudocontractive mapping T , which solves
the variational inequality :

〈(I− f )p, j(p− y)〉 ≤ 0, ∀y ∈ F(T )

Proof. We divide the proof into five steps
Step 1: First we show that {xn} is bounded. Take p ∈ F(T )
arbitrarily, we have

||xn+1− p||= ||αn(1−δn)xn +βn f (xn)

+ γnT n(snxn +(1− sn)xn+1)− p||
= ||αnxn−αnδnxn +βn f (xn)

+ γnT n(snxn +(1− sn)xn+1)− p||
= ||αn[(1−δn)(xn− p)+δn(−p)]

+ γn[T n(snxn +(1− sn+1)xn+1)− p]

+βn( f (xn)− f (p))+βn( f (p)− p)||
≤ αn(1−δn)||xn− p||+αnδn||p||
+βn||( f (xn)− f (p)||+βn||( f (p)− p)||
+ γn||T n(snxn +(1− sn)xn+1)− p||
≤ αn(1−δn)||(xn− p)||+αnδn||p||
+βnλ ||xn− p||+βn||( f (p)− p)||
+ γnL||(snxn +(1− sn)xn+1)− p||
≤ αn(1−δn)||(xn− p)||+αnδn||p||
+βnλ ||xn− p||+βn||( f (p)− p)||
+ γnLsn||xn− p||
+ γnL(1−δn)||xn+1− p||
= (αn(1−δn)+βnλ + γnLsn)||(xn− p)||
+βn||( f (p)− p)||+αnδn||p||
+ γnL(1− sn)||xn+1− p||.

which implies that

[1− γnL(1− sn)]||xn+1− p|| ≤ (αn(1−δn)+βnλ

+ γnLsn)||xn− p||+βn|| f (p)− p||
+αnδn||p|| (3.2)

Since γn,1− sn ∈ (0,1),γn(1− sn)<
1
L

we get 1− γnL(1− sn)> 0.
By (3.2) and condition (1).
[αn +βn + γn = 1, limn→∞ βn = 0,γn = ηβn,

0 < η <
(sn +1)−λ

L− ((sn +1))
]
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It follows that

||xn+1− p||

≤ αn(1− sn)+λβn + γnLsn

1− γnL(1− sn)
||xn− p||

+
βn

1− γnL(1− sn)
|| f (p)− p||

+
αnsn

1− γnL(1− sn)
||p||

= [1− 1−αn(1− sn)−λβn− γnL
1− γnL(1− sn)

]||xn− p||

+
βn

1− γnL(1− sn)
|| f (p)− p||

+
αnsn

1− γnL(1− sn)
||p||.

= [1− βn[1+ sn−λ ]− γn(L− (sn +1))
1− γnL(1− sn)

]||xn− p||

+
βn

1− γnL(1− sn)
|| f (p)− p||

+
αnsn

1− γnL(1− sn)
||p||

= [1− βn[(1+ sn)−λ ]−η [L− (sn +1)
1− γnL(1− sn)

]||xn− p||

+
βn[(sn +1)−λ −η [L− (sn +1)]]

1− γnL(1− sn)

|| f (p)− p||
(sn +1)−λ −η [L− (sn +1)]

+
αnsn[(sn +1)−λ −η [L− (sn +1)]]

1− γnL(1− sn)

||p||
αnsn[(sn +1)−λ −η [L− (sn +1)]

Consequently , we get

||xn+1− p||

≤ max
{
||xn− p||, 1

(sn +1)−λ −η [L− (sn +1)]

|| f (p)− p||, 1
(sn +1)−λ −η [L− (sn +1)]

||p||
}
,

∀n≥ 0.

By induction we readily obtained

||xn− p||

≤ max
{
||x0− p||, 1

(sn +1)−λ −η [L− (sn +1)]

|| f (p)− p||, 1
(sn +1)−λ −η [L− (sn +1)]

||p||
}
,

∀n≥ 0.

Hence we can observe that xn is bounded . Consequently,
f (xn) and T n(snxn +(1− sn)xn+1) are also bounded.

Step 2: limn→∞ ‖xn+1− xn‖= 0.
To see this , we set

yn =
xn+1−αn(1−δn)xn

1−αn(1−δn)

Thus we have

yn+1− yn =
xn+2−αn+1(1−δn+1)xn+1

1−αn+1(1−δn+1)

− xn+1−αn(1−δn)xn

1−αn(1−δn)

from equation(3.1), we get

yn+1− yn

=
1

1−αn+1(1−δn+1)

{
βn+1 f (xn+1)

+ γn+1T n+1(sn+1xn+1 +(1− sn+1)xn+1)
}

− βn f (xn)+ γnT n(snxn +(1− sn)xn+1)

1−αn(1−δn)

=
1

1−αn+1(1−δn+1)

{
βn+1 f (xn+1)

+ γn+1T n+1(sn+1xn+1 +(1− sn+1)xn+2)
}

− βn f (xn)+(1−αn−βn)T n(snxn +(1− sn)xn+1)

1−αn(1−δn)

=
βn+1

1−αn+1(1−δn+1)
[ f (xn+1)− f (xn)]

+(
βn+1

1−αn+1(1−δn+1)
− βn

1−αn(1−δn)
) f (xn)

− (
βn+1

1−αn+1(1−δn+1)
− βn

1−αn(1−δn)
).

[T n(snxn +(1− sn)xn+1)]

− βn+1

1−αn+1(1−δn+1)
[T n+1(sn+1xn+1

+(1− sn+1)xn+2)−T n(snxn +(1− sn)xn+1)]

+ [T n+1(sn+1xn+1 +(1− sn+1)xn+2)

−T n(snxn +(1− sn)xn+1)]

=
βn+1

1−αn+1(1−δn+1)
[ f (xn+1)− f (xn)]

+(
βn+1

1−αn+1(1−δn+1)
− βn

1−αn(1−δn)
)[ f (xn)

−T n(snxn +(1− sn)xn+1)]

− βn+1

1−αn+1(1−δn+1)
[T n+1(sn+1xn+1

+(1− sn+1)xn+2)−T n(snxn +(1− sn)xn+1)]

+ [T n+1(sn+1xn+1 +(1− sn+1)xn+2)

−T n(snxn +(1− sn)xn+1)]
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Thus,

yn+1− yn

=
βn+1

1−αn+1(1−δn+1)
[ f (xn+1)− f (xn)]

+(
βn+1

1−αn+1(1−δn+1)
− βn

1−αn(1−δn)
)[ f (xn)

−T n(snxn +(1− sn)xn+1)]

+(1− βn+1

1−αn+1(1−δn+1)
)[T n+1(sn+1xn+1

+(1− sn+1)xn+2)−T n(sn+1xn+1 +(1− sn+1)xn+2)]

+(1− βn+1

1−αn+1(1−δn+1)
)[T n(sn+1xn+1

+(1− sn+1)xn+2)−T n(snxn +(1− sn)xn+1)]

It follows that

‖yn+1− yn‖

≤ λβn+1

1−αn+1(1−δn+1)
||(xn+1− xn||

+ | βn+1

1−αn+1(1−δn+1)
− βn

1−αn(1−δn)
|M

+ sup
x∈C′
||T n+1x−T nx||

+(1− βn+1

1−αn+1(1−δn+1)
)L||(sn+1xn+1

+(1− sn+1)xn+2− (snxn +(1− sn)xn+1)||

≤ λβn+1

1−αn+1(1−δn+1)
||(xn+1− xn||

+ | βn+1

1−αn+1(1−δn+1)
− βn

1−αn(1−δn)
|M

+ sup
x∈C′
||T n+1x−T nx||

+(1− βn+1

1−αn+1(1−δn+1)
)

L||sn(xn+1− sn)+(1− sn+1)(xn+2− xn+1)|| (3.3)

≤ λβn+1

1−αn+1(1−δn+1)
||(xn+1− xn||

+ | βn+1

1−αn+1(1−δn+1)
− βn

1−αn(1−δn)
|M

+ sup
x∈C′
||T n+1x−T nx||+(1− βn+1

1−αn+1(1−δn+1)
)

L[sn||xn+1− xn||+(1− sn+1)||xn+2− xn+1||]

where C
′

contains sequence {snxn +(1− sn)xn+1} and M > 0
is a constant such that

M ≥{sup
n≥0
||xn−T n+1(snxn +(1− sn)xn+1)||,

|| f (xn)−T n+1(snxn +(1− sn)xn+1)||,
|| f (xn)−T n(snxn +(1− sn)xn+1)||}

From (3.1), we have

||xn+2− xn+1||
= ‖αn+1(1−δn+1)xn+1 +βn+1 f (xn+1)

+ γn+1T n+1(sn+1xn+1 +(1− sn+1)xn+2)

−αn(1−δn)xn−βn f (xn)

− γnTn(snxn +(1+ sn)xn+1)‖
= ‖αn+1(xn+1− xn)−αn+1δn+1(xn+1− xn)

+(αn+1−αn)xn−αnxn(δn+1−δn)

− (αn+1−αn)δn+1xn +βn+1( f (xn+1− f (xn))

+(βn+1−βn) f (xn)+ γn+1[T n+1(sn+1xn+1

+(1− sn+1)xn+2)−T n+1(snxn +(1− sn)xn+1)]

+(γn+1− γn)T n+1(snxn +(1− sn)xn+1)+ γn[T n+1

(snxn +(1− sn)xn+1)−T n(snxn +(1− sn)xn+1)]‖
= ‖αn+1(xn+1− xn)−αn+1δn+1(xn+1− xn)

+(αn+1−αn)xn−αnxn(δn+1−δn)− (αn+1−αn)

.δn+1xn +βn+1( f (xn+1− f (xn))+(βn+1−βn)

f (xn)z+ γn+1[T n+1(sn+1xn+1 +(1− sn+1)xn+2)

−T n+1(snxn +(1− sn)xn+1)]− [(αn+1−αn)

+(βn+1−βn)]T n+1(snxn +(1− sn)xn+1)

+ γn[T n+1(snxn +(1− sn)xn+1)

−T n(snxn +(1− sn)xn+1)]

= ‖(αn+1(1+δn+1))(xn+1− xn)+(αn+1−αn)

[xn−δn+1xn−T n+1(snxn +(1−δn)xn+1)]

−αnxn(δn+1−δn)+(βn+1−βn)[ f (xn)−T n+1

(snxn +(1− sn)xn+1)]+βn+1( f (xn+1− f (xn)))

+ γn+1[T n+1(sn+1xn+1 +(1− sn+1)xn+2)

−T n+1(snxn +(1− sn)xn+1)]+ γn[T n+1(snxn

+(1− sn)xn+1)−T n(snxn +(1− sn)xn+1)]

≤ (αn+1−αn+1δn+1)||(xn+1− xn)||+ |(αn+1

−αn)|||xn(1−δn+1)−T n+1(snxn +(1− sn)

xn+1)||−αn||xn|||δn+1−δn|+ |βn+1−βn|
|| f (xn)−T n+1(snxn +(1− sn)xn+1||+λβn+1

||(xn+1− xn)||+ γn+1L||(sn+1xn+1 +(1− sn+1)

xn+2− snxn− (1− sn)xn+1||+ γn||T n+1(snxn

+(1− sn)xn+1)−T n(snxn +(1− sn)xn+1||
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||xn+2− xn+1||
≤ (αn+1−αn+1δn+1)+ ||(xn+1− xn)||
+ |(αn+1−αn)|M+ |βn+1−βn|M
−αn|δn+1−δn|||xn||+λβn+1||(xn+1− xn)||
+ γn+1L||(1− sn+1)(xn+2− xn+1)+ sn(xn+1− xn)||
+ γn||T n+1(snxn +(1− sn)xn+1)

−T n(snxn +(1− sn)xn+1)||
≤ (αn+1−αn+1δn+1 +λβn+1 + γn+1Lsn)||(xn+1− xn)||
+ γn+1L(1− sn+1)||(xn+2− xn+1)||
−αn|δn+1−δn|||xn||
+(|αn+1−αn|+ |βn+1−βn|)M+ sup

xεc′
||T n+1x−T nx||

It turns out that

||xn+2− xn+1||

≤ (αn+1−αn+1δn+1 +λβn+1 + γn+1Lsn)

1− γn+1L(1− sn+1)

||xn+1− xn||+
M

1− γn+1L(1− sn+1)

(|αn+1−αn|+ |βn+1−βn|)+
1

1− γn+1L(1− sn+1)

sup
xεc|
||T n+1x−T nx||− αn|δn+1−δn|

1− γn+1L(1− sn+1)
||x||

= [1− βn+1(1−λ )+ γn+1L(sn+1− sn)− γn+1(L−1)
1− γn+1L(1− sn+1)

− αn+1δn+1

1− γn+1L(1− sn+1)
]||xn+1− xn|| (3.4)

+
M

1− sn+1L(1− sn+1)
(|αn+1−αn|

+ |βn+1−βn|)+
1

1− γn+1L(1− sn+1)

sup
xεc′
||T n+1x−T nx||− αn|δn+1−δn|

1− γn+1L(1− sn+1)
||xn||

≤ [1− βn+1[1−λ −η(L−1)]+ γn+1L(sn+1− sn)

1− γnL(1− sn+1)

− αn+1δn+1

1− γnL(1− sn+1)
]||xn+1− xn||

+
M

1− γn+1L(1− sn+1)
(|αn+1−αn|

+ |βn+1−βn|)+
1

1− γn+1L(1− sn+1)

sup
xεc′
||T n+1x−T nx||− αn|δn+1−δn|

1− γn+1L(1− sn+1)
||xn||

put (3.4) into (3.3), we get

||yn+1− yn||

≤ [
λβn+1

1−αn+1(1−δn+1)
+(1− βn+1

1−αn+1(1−δn+1)
)

Lsn +(1− βn+1

1−αn+1(1−δn+1)
)L(1− sn+1)]

||xn+1− xn||

+
(γn+1 +αn+1δn+1)L(1− sn+1)

[1−αn+1(1−δn+1)][1− γn+1L(1− sn+1)]

(|αn+1−αn|+ |βn+1−βn|)+
(γn+1 +αn+1δn+1)L(1− sn+1)

[1−αn+1][1− γn+1(1− sn+1)]
sup
xεc|
||T n+1x−T nx||

+ | βn+1

1−αn+1(1−δn+1)
− βn

1−αn(1−δn)
| (3.5)

= [
λβn+1 +(γn+1 +αn+1δn+1)Lsn

1−αn+1(1−δn+1)

+
(γn+1 +αn+1δn+1)L(1− sn+1)

1−αn+1(1−δn+1)
]||xn+1− xn||

+ | βn+1

1−αn+1(1−δn+1)
− βn

1−αn(1−δn)
|M

+
1

[1−αn+1(1−δn+1)][1− γn+1L(1− sn+1)]

sup
xεc′
||T n+1x−T nx||

+
γn+1L(1− sn+1)M

[1−αn+1(1−δn+1)][1− γn+1L(1− sn+1)]

(|αn+1−αn|+ |βn+1−βn|)

≤ [
λβn+1 + γn+1L+αn+1δn+1L

1−αn+1(1−δn+1)
]||xn+1− xn||

+ | βn+1

1−αn+1(1−δn+1)
− βn

1−αn(1−δn)
|M

+
1

[1−αn+1(1−δn+1)][1− γn+1L(1− sn+1)]

sup
xεc′
||T n+1x−T nx||

+
γn+1L(1− sn+1)M

[1−αn+1(1−δn+1)][1− γn+1L(1− sn+1)]

(|αn+1−αn|+ |βn+1−βn|)

= [1− (1−λ )βn+1 +(γn+1 +αn+1δn+1)(L−1)
1−αn+1(1−δn+1)

]

||xn+1− xn||+ |
βn+1

1−αn+1(1−δn+1)
− βn

1−αn(1−δn)
|

.M+
1

[1−αn+1(1−δn+1)][1− γn+1L(1− sn+1)]

sup
x∈c′
||T n+1x−T nx||

+
γn+1L(1− sn+1)M

[1−αn+1(1−δn+1)][1− γn+1L(1− sn+1)]

(|αn+1−αn|+ |βn+1−βn|) (3.6)
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By conditions (i) , (ii) and (iii) we can get

limsup
n→∞

(‖yn+1− yn−||xn+1− xn||)≤ 0.

Using lemma (2.7) , we get

lim
n→∞
||yn− xn||= 0.

Note that

yn− xn =
xn+1−αn(1−δn)xn

1−αn(1−δn)
− xn

therefore
yn− xn =

xn+1− xn

1−αn(1−δn)

So, we obtain
lim
n→∞
||xn+1− xn||= 0

Step 3: Next we prove that

lim
n→∞
||xn−T xn||= 0

In fact we observe

||xn+1−T n(snxn +(1− sn)xn+1)||
= ‖αn(1− sn)xn +βn f (xn)+ γnT n(snxn

+(1− sn)xn+1)−T n(snxn +(1− sn)xn+1)‖
= ‖αn(1− sn)xn +βn f (xn)−αnT n(snxn

+(1− sn)xn+1)−βnT n(snxn +(1− sn)xn+1)‖
= ‖αn[xn−δnxn−T n(snxn +(1− sn)xn+1)]

+βn[ f (xn)−T n(snxn +(1− sn)xn+1)]‖
= ‖αnxn−αnxn+1 +αnxn+1−αnδnxn +αnδnxn+1

−αnδnxn+1−αnT n(snxn +(1− sn)xn+1)+βn( f (xn)

−T n(snxn +(1− sn)xn+1))‖
≤ αn||xn− xn+1||+αn||xn+1−T n(snxn

+(1− sn)xn+1)||+αnδn||xn− xn+1||−αnδnxn+1

+βn|| f (xn)−T n(snxn +(1− sn)xn+1)||.

which implies that

(1−αn)||xn+1−T n(snxn +(1− sn)xn+1)||
≤ αn||xn− xn+1||+αnδn||xn+1− xn||−αnδnxn+1+

βn|| f (xn)−T n(snxn +(1− sn)xn+1)||.

That is

||xn+1−T n(snxn +(1− sn)xn+1||

≤ αn +αnδn

(1−αn)
||xn− xn+1||+

βn

(1−αn)

|| f (xn)−T n(snxn +(1− sn)xn+1)||−
αnδn

(1−αn)
||xn+1||.

By condition (1) and (2) and using step (2) we get

||xn+1−T n(snxn+(1−sn)xn+1)||→ 0, as n→∞ (3.7)

And , moreover we have

‖xn−T nxn‖
= ‖xn− xn+1 + xn+1−T n(snxn +(1− sn)xn+1)

+T n(snxn +(1− sn)xn+1)−T nxn‖
≤ ||xn− xn+1||+ ||xn+1−T n(snxn +(1− sn)xn+1)||
+ ||T n(snxn +(1− sn)xn+1)−T nxn||
≤ ||xn− xn+1||+ ||xn+1−T n(snxn +(1− sn)xn+1)||
+L||(snxn +(1− sn)xn+1)− xn||
≤ ||xn− xn+1||+ ||xn+1−T n(snxn +(1− sn)xn+1)||
+L(1− sn)||xn− xn+1||
≤ (1+L(1− sn))||xn− xn+1||+ ||xn+1

−T n(snxn +(1− sn)xn+1)||

In view of step (2) and (3.7), we have

||xn−T nxn|| → 0, as n→ ∞ (3.8)

Since T is uniformly L-Lipschitzian, we derive

||xn−T xn||
= ||xn−T nxn +T nxn−T xn||
≤ ||xn−T nxn||+ ||T nxn−T xn||
≤ ||xn−T nxn||+L||T n−1xn− xn||
≤ ||xn−T nxn||+L||T n−1xn−T n−1xn−1

+T n−1xn−1− xn−1 + xn−1− xn||
≤ ||xn−T nxn||+L||T n−1xn−T n−1xn−1||
+L||T n−1xn−1− xn−1||+L||xn−1− xn||
≤ ||xn−T nxn||+L2||xn− xn−1||+L||T n−1xn−1

− xn−1||+L||xn−1− xn||
≤ ||xn−T nxn||+L||T nxn−1− xn−1||
+(L2 +L)||xn−1− xn||

By step (2) and (3.8) , we have

||xn−T xn|| → 0 as n→ ∞

Step 4: we claim that

limsup
n→∞

〈(I− f )p, j(p− xn)〉 ≤ 0

Since xn is bounded and C is a reflexive Banach space , there
exists a subsequence of xn which converges weakly to u, we
assume that xnk → u and

lim
u→∞
〈(I− f )p, j(p− xnu)〉= limsup

n→∞

〈(I− f )p, j(p− xn)〉

Since C is a smooth Banach space, it follows from step (3)
that

lim
k→∞
||xnk −T xnk ||= 0
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from lemma (2.6), we have u ∈ F(T ). On the other hand ,
since p ∈ F(T ) satisfies

〈(I− f )p, j(p−u)〉 ≤ 0,∀u ∈ F(T )

by weakly sequential continuous duality mapping , we have

limsup
n→∞

〈(I− f )p, j(p− xn)〉

= lim
k→∞
〈(I− f )p, j(p− xn)〉

= 〈(I− f )p, j(p− xn)〉 ≤ 0

Step 5: Finally, we show that xn converges strongly to p ∈
F(T ).

we set

||xn+1− p||2

= 〈αnxn−αnδnxn +βn f (xn)+ γnT n(snxn

+(1− sn)xn+1)− p, j(xn+1− p)〉
= αn〈xn− p, j(xn+1− p)〉+βn〈 f (xn)− p,

j(xn+1− p)〉−αnδn〈xn− p, j(xn+1− p)〉
+ γn〈T n(snxn +(1− sn)xn+1)− p, j(xn+1− p)〉
≤ αn〈xn− p, j(xn+1− p)〉−αnδn〈xn− p, j(xn+1− p)〉
+βn〈 f (xn)− f (p), j(xn+1− p)〉
+βn〈 f (p)− p, j(xn+1− p)〉+ γn〈T n(snxn

+(1− sn)xn+1)− p, j(xn+1− p)〉
≤ αn||xn− p||||xn+1− p||−αnδn||xn− p||||xn+1− p||
+βnλ ||xn− p||||xn+1− p||+βn〈 f (p)− p, j(xn+1− p)〉
+ γnL||snxn +(1− sn)xn+1− p||||xn+1− p||
≤ αn||xn− p||||xn+1− p||−αnδn||xn− p||
||xn+1− p||+βn〈 f (p)− p, j(xn+1− p)〉+
γnLsn||xn− p||||xn+1− p||+ γnL(1− sn)||xn+1− p||2

= [αn +βnλ −αnδn + γnLsn]||xn− p||||xn+1− p||
+ γnL(1− sn)||xn+1− p||2+
βn〈 f (p)− p, j(xn+1− p)〉

≤ αn +βnλ −αnδn + γnLsn

2
||xn− p||2

+
αn +βnλ −αnδn + γnLsn

2
||xn+1− p||2

+ γnL(1− sn)||xn+1− p||2 +βn〈 f (p)− p, j(xn+1− p)〉

=
αn +βnλ −αnδn + γnLsn

2
||xn− p||2

+
αn +βnλ + γnL(2− sn)

2
||xn+1− p||2

+βn〈 f (p)− p, j(xn+1− p)〉
which implies

[1− αn(1−δn)+βnλ + γnL(2− sn)

2
]||xn− p||2

≤ αn +βnλ −αnδn + γnLsn

2
||xn− p||2

+βn〈 f (p)− p, j(xn+1− p)〉

That is

||xn+1− p||2

≤ αn +βnλ −αnδn + γnLsn

2−αn−βnλ +αnδn− γnL(2− sn)
||xn+1− p||2

+
2βn

2−αn−βnλ +αnδn− γnL(2− sn)

〈 f (p)− p, j(xn+1− p)〉

= [1− 2(1−αn−βnλ +αnδn− γnL)
2−αn−βnλ +αnδn− γnL(2− sn)

]

.||xn+1− p||2 (3.9)

+
2βn

2−αn−βnλ +αnδn− γnL(2− sn)

〈 f (p)− p, j(xn+1− p)〉

Let

αn =
2(1−αn−βnλ −αnδn− γnL)

2−αn−βnλ −αnδn− γnL(2− sn)

We have

an ≥ 1−αn−βnλ −αnδn− γnL

= βn(1−λ )− γn(L−1)
≥ βn(1−λ )

We claim that
Σ

∞
n=0αn = ∞

By step (4), we get

〈(I− f )p, j(p− y)〉 ≤ 0 ∀ y ∈ F(T )

Apply lemma (2.5) to (3.9),
we conclude that

lim
n→∞
||xn− p||= 0.

This finish the proof.

Theorem 3.2. Let E be a reflexive smooth Banach space with
a weakly sequentially continuous duality mapping. Let J,C
be a nonempty bounded and closed convex subset of E, and
let T : C→ C be an asymptotically nonexpansive mapping
with a sequence kn such that F(T ) 6= φ and f : C→C be a
contraction with coefficient λ ∈ (0,1). Pick any x0 ∈C, let xn
be a sequence generated by

xn+1 =αn(1−δn)xn+βn f (xn)+γnT n(snxn+(1−sn)xn+1)

(3.10)

where {αn},{βn},{γn},{δn} and {sn} ⊂ (0,1) satisfying the
conditions

1. αn +βn + γn = 1, limn→∞ βn = 0, γn = ηβn,

limn→∞ δn = 0; 0 < η <
(sn+1)−λ

L− (sn+1)
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2. 0 < liminfn→∞ αn ≤ limsupn→∞ αn < 1,
limn→∞ βn = 0, limn→∞ | αn+1−αn |= 0 ,
limn→∞ | βn+1−βn |= 0 , limn→∞ |δn+1−δn|= 0.

3. ∑
∞
n=0 βn = ∞, 0 < sn < sn+1 < 1, ∑

∞
n=0 δn = ∞ ,

γn(1− sn)<
1
L

;

4. limn→∞ ‖T n+1x−T nx‖= 0, x ∈C
′

where C
′

is any bounded subset of C for all n≥ 0.Then {xn}
defined by (3.10) converges strongly to a fixed point p of the
asymptotically pseudocontractive mapping T , which solves
the variational inequality :

〈(I− f )p, j(p− y)〉 ≤ 0, ∀y ∈ F(T )

Theorem 3.3. Let E be a reflexive smooth Banach space with
a weakly sequentially continuous duality mapping. Let J,C
be a nonempty bounded and closed convex subset of E, and
let T : C→ C be an asymptotically nonexpansive mapping
with a sequence kn such that F(T ) 6= φ and f : C→C be a
contraction with coefficient λ ∈ (0,1). Pick any x0 ∈C, let xn
be a sequence generated by

xn+1 =αn(1−δn)xn+βn f (xn)+γnT n(snxn+(1−sn)xn+1)

(3.11)

where {αn},{βn},{γn},{δn} and {sn} ⊂ (0,1) satisfying the
conditions

1. αn +βn + γn = 1, limn→∞ βn = 0, limn→∞ δn = 0,
kn−1 = o(βn);

2. 0 < liminfn→∞ αn ≤ limsupn→∞ αn < 1,
limn→∞ βn = 0, limn→∞ | αn+1−αn |= 0 ,
limn→∞ | βn+1−βn |= 0 , limn→∞ |δn+1−δn|= 0.

3. ∑
∞
n=0 βn = ∞, 0 < sn < sn+1 < 1, ∑

∞
n=0 δn = ∞ ,

γn(1− sn)<
1
L

;

4. limn→∞ ‖T n+1x−T nx‖= 0,x ∈C
′

where C
′

is any bounded subset of C for all n≥ 0.Then {xn}
defined by (3.11) converges strongly to a fixed point p of the
asymptotically pseudocontractive mapping T , which solves
the variational inequality :

〈(I− f )p, j(p− y)〉 ≤ 0, ∀y ∈ F(T )

Theorem 3.4. Let E be a reflexive smooth Banach space with
a weakly sequentially continuous duality mapping. Let J,C be
a nonempty bounded and closed convex subset of E, and let
T : C→C be an asymptotically nonexpansive mapping with
a sequence kn such that F(T ) 6= φ . Pick any x0 ∈C, let xn be
a sequence generated by

xn+1 = αn(1−δn)xn +βnν + γnT n(snxn +(1− sn)xn+1)

(3.12)

where {αn},{βn},{γn},{δn} and {sn} ⊂ (0,1) satisfying the
conditions

1. αn +βn + γn = 1, limn→∞ βn = 0,γn = nβn;

limn→∞ δn = 0;0 < η <
(sn+1)−λ

L− (sn+1)

2. 0 < liminfn→∞ αn ≤ limsupn→∞ αn < 1;
limn→∞ βn = 0; limn→∞ | αn+1−αn |= 0 ;
limn→∞ | βn+1−βn |= 0 , limn→∞ |δn+1−δn|= 0.

3. ∑
∞
n=0 βn = ∞, 0 < sn < sn+1 < 1, ∑

∞
n=0 δn = ∞;

γn(1− sn)<
1
L ;

4. limn→∞ ‖T n+1x−T nx‖= 0,x ∈C
′

where C
′

is any bounded subset of C for all n≥ 0. Then {xn}
defined by (3.12) converges strongly to a fixed point p of the
asymptotically pseudocontractive mapping T . Proof: In this
case, the mapping f : C→C defined by f (x) = ν ,∀x ∈C is
a strict contraction with constant λ = 0. The proof follows
from Theorem 2.1 above.

4. Conclusion
We therefore conclude to say that H(·, ·)−φ−η−accretive

operator are more general to establish the convergence of
explicit iterative algorithm using the resolvent operator tech-
nique in uniformly convex Banach space. Also those could be
the solution of certain variation inequality problem.

Remark 4.1.
1. Since every nonexpansive mapping is asymptotically nonex-
pansive and an asymptotically nonexpansive mapping is both
asymptotically pseudocontractive and uniformly L-Lipschitzian,
in Theorem 2.1 and 2.2, if T is a nonexpansive mapping in
Hilbert spaces, then it is the main results of Yu et. al[19].
Thus, Theorem 2.1 improves and extends the Yu et. al’s
theorem in several aspects and improves some other results
(see[1,5,7,8,11,12,14])

2. We note that in Theorems 2.2 and 2.3, we can choose
condition kn−1= o(βn); replacing the requirement γn =ηβn;

0<η <
(sn+1)−λ

L− (sn+1)
. However, the proof is similar to Theorem

2.1 above.

3. In Theorem 2.4, if sn = 0, then {xn} converges strongly to
a fixed point of T. It is the main results of Yao et.al.[21].
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