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1. Introduction

Fractional calculus is the study of integrals and derivatives
of arbitrary order(both real and complex). Although it was
introduced to the end of the seventeenth century, the main
contributions have been made during the last few decades
due to its applications in fluid mechanics, electromagnetics,

biological population models, optics and signals processing.

There are several definitions of fractional derivatives such as
Hadamard derivative, Grunwald Letnikov derivative, Riemann
Liouville fractional derivative, Caputo fractional derivative
etc. For the basics of fractional calculus, one can refer to the
monographs [10, 15, 21, 22] and for recent developments in
this field, we can make references to the papers [2, 6, 11, 20,
32] and references cited therein.

The concept of controllability plays a vital role in the con-
trol theory and engineering. There are two basic concepts of
controllability namely, exact and approximate controllability
which are equivalent in finite-dimensional systems and dif-
ferent in the case of infinite-dimensional systems. Klamka
[16] discussed the controllability of linear systems in finite-
dimensional spaces and controllability of fractional evolution
dynamical systems in a finite-dimensional space are well es-
tablished in [4, 31]. The concept of approximate controllabil-
ity of the several types of nonlinear systems under different
conditions is discussed in [5, 19] and reference therein.

Stochastic differential equations are widely used in physics,
biology, chemistry, probability theory, mathematical finance,
ecology, neuroscience, image processing, signal processing,
information theory, computer science, cryptography and telecom-
munications etc. and these equations can be solved ana-
lytically as well as numerically. Mathematically, it can be
viewed as a generalization of the dynamical systems theory
to models with noise. For fundamentals and recent develop-
ment of stochastic differential equations, follow the articles
[3,7, 13, 19, 23, 25, 29] and the references therein.

In recent years multi-term time-fractional differential equa-
tions have been a fruitful field of research in mathematics and
engineering. For instance, the time-fractional telegraph equa-
tion has been studied in the article [14]. Pardo at al. [2] studied
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the existence of mild solutions of multi-term differential sys-
tems via the method of measure of noncompactness. Singh
et al. [27, 28] investigated the existence and controllability
results for multi-term time-fractional differential equations.

Mahmudov et al. [18] investigated the controllability of
linear stochastic systems in finite-dimensional space. Balasub-
ramaniam et al. [5] established sufficient conditions for the
approximate controllability of neutral stochastic functional
differential systems with infinite delay in Hilbert spaces. Ku-
mar et al. [17] investigated the approximate controllability
of fractional order semilinear systems with bounded delay.
Vijayakumar [30] explored the approximate controllability re-
sults for the inclusion differential systems with infinite delay
in Hilbert spaces. However, to the best of our knowledge, there
are no results on the approximate controllability of multi-term
time-fractional differential stochastic differential inclusions
as treated in the current paper.

So, in this paper, we study the controllability results for
the following class of multi-term time-fractional differential
inclusions

D"Py(r)+ Y a;°DVy(r) € Ay(t) + Bu(t)
=1

+F<¢,y<t))+G(z,y(t))d”:l£t),t c.s (1.1)
y(0) +h(y) =0, y'(0) =1, (1.2)

where y; e RT,Vj=1,2,...,nand 0< B <9 <--- <y <1
and % +B > y;, “D" stands for the Caputo fractional derivative
of order 1) for n > 0, and A is a closed linear operator on a
separable Hilbert space H with norm || - || and inner product
(-,-). Assume that K is another separable Hilbert space with
norm || - ||g and inner product (-,-)g. Let w(¢) be a given
Wiener process or Brownian motion with finite trace nuclear
covariance operator Q > 0 defined on a complete probability
space (Q,.7,{.%: }1>0,P). The control function u(-) belongs
to the space L% (.#,U), U is a Hilbert space and B: U — H
is a bounded linear operator. We denote the space of bounded
and linear operators from K into H, by . (K, H). The random
variable x € H with E||x||*> < . The functions F and G are
multivalued and /% is a nonlinear function.

In section 2, we have presented some basic notations and
preliminaries. Section 3 is devoted to the approximate con-
trollability for multi-term time-fractional stochastic inclusion
systems. In the final section, an example is given to verify the
theoretical result.

2. Preliminaries

Let N and R be the usual notations of natural and real
numbers, respectively. For a linear operator A on H, let
P(A),Z(A) and p(A) be the notations for the domain, range
and resolvent of A, respectively. Let w = {w(r)};>0 repre-
sent a O-Wiener process on a complete probability space
(Q,F ,{F }i>0,P) with the filtration {.% },>( satisfying the
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usual conditions(i.e right continuous and {.%y} containing
all P-null sets) and the linear bounded covariance operator
O such that tr(Q) < e, where tr(Q) denotes the trace of
Q. Further, we assume that there exists an orthonormal sys-
tem {e, },>1 which is complete in K, a sequence {&,},>1
of independent Brownian motions such that (w(r),e)x =
Yo VA (en,e)Cu(t), e € K t > 0 and a sequence of non-
negative real numbers {A,},>1 such that Qe, = A e,,n =
1,2,3,... We assume that .Zzo = fz(Q%K,H) represents the

space of all Hilbert Schmidt operators from Q%K to H with
inner product (¢, @) = tr[@Q@*] < . Let £ (Q,.%r,H) be
the Banach space of all %7 measurable H valued square in-
tegrable random variables. Moreover, let vff (#,H) be the
Hilbert space of all square integrable and .%, adapted pro-
cesses with value in H. We denote the Banach space of all
continuous functions y : [0,7] — %4 (Q,.%#,H), by € which
satisfy sup,c(o 7] E|ly(1)]|* < ce.
Now, let

2 (H) denote the power set of H,

Z.;(H) denote all the closed subsets of H,
P,q(H) denote all the bounded subsets of H,
Z.,(H) denote all the convex subsets of H,
Z.,(H) denote all the compact subsets of H.

A multivalued map f: H — Z2(H) is said to be convex
valued if f(y) is convex for all y € H and is said to be closed if
f(y) is closed for all y € H. Multivalued function f is said to
be bounded on bounded sets if f(C) = Uyec f(y) is bounded

in Hie. supcc{sup{[|x|[: x € f(y)}} <oe.

Definition 2.1. [31] For all bounded subsets C of H, if f(C)
is relatively compact, then the map f is called completely
continuous.

Definition 2.2. [31] A map f is called upper semicontinuous
(u.s.c.) on H if for each yo € H, the set f(yo) is a nonempty
closed subset of H, and if for each open subset C of H con-
taining f(yo), there exists an open neighborhood U of yo such
that f(U) CC.

If the multivalued map f is completely continuous with
non empty compact values, then f is u.s.c. if and only if f
has a closed graph i.e. X" — xo, y" — yo, ¥" € f(x0), implies
Yo € f(xp). We call that f admits a fixed point if there is a
y € H such that y € f(y).

Definition 2.3. [24] A multivalued map f: & xH — Py o100 (H)

is called L*-Caratheodory if
(i) t— f(¢,y) is measurable for each y € H.

(i) y— f(¢,y) is w.s.c. for almostallt € .7



Approximate controllability of multi-term time-fractional stochastic differential inclusions with nonlocal conditions —

(iii) for each r > 0, there exists j, € L' (% ,R") such that
£ 9)? = sup El|* < (1),
hef(t,y)

forall |ly||% < r andfora.e.t € .7.

Lemma 2.4. [24] Let H be a Hilbert space and % be a
compact real interval. Assume that F be a L*>-Caratheodory
multivalued map and for each y € € the set Spy = {f €
L*(L(K,H)) : f(¢) € F(t,y(t)), forallt € F} is nonempty.
Let ® be a continuous mapping from L>(.# ,H) to C(.#  H),
then the operator

PoSp : C(I,H) = Peep(C(F,H)),
y = (PoSk)(y) = ©(Sky),
is a closed graph operator in C( H) x C(# ,H).
For detailed study of multivalued maps and its properties,
see [12].

Definition 2.5. [2] Let A be a closed linear operator on a
Hilbert space H with the domain 2(A) and let B > 0,7;,0; €
N for j=1,2,..,n. If there exists @ > 0 and a strongly
continuous function S . : R* — £ (H) such that {AP+1 4
Y1 A% :Red > o} C p(A) and

n 71
AP (aﬁ“ +Y At —A> y=
j=1

/ e_ltyﬁlyj(t)ydt, Rel > @,y € H. 2.1
0

Then A is called the generator of (B, Y;)—

Theorem 2.6. [2] LetO< B <Y, <--- <y <1landaj>
0, j=1,2,...,n be given and let A be a generator of a bounded
and strongly continuous cosine family {C(t)};cr. Then, A
generates a bounded (B, y;)— resolvent family {7 4.(t) }i>0.

resolvent family.

Now, we recall few basic definitions of fractional calcu-
lus(for detailed study, see [2, 22]). Define gy(t) forn >0
by

1 -
gn(t) = { 5“’)

where I stands for gamma function. The function gy, satisfies
(8a*8b)(t) = gars(t), fora,b>0and gy(A) = ;7 forn >0
and Re A > 0, where (/3 denotes the Laplace transformation
and (- *-)(-) denotes the convolution.

Definition 2.7. For a function f € L}, .([0,),
Liouville fractional integral of order n > 0 is

() = ﬁ [a=omssyas

_ /0 en(t—$)f(s)ds

and I°£(t) == f(¢).

, t>0;
t <0,

R), the Riemann-

t>0,
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The integral defined above satisfies I o I = I+ for b >
0,1 f(t) = (gn = f)(t) and I f(A) = ;5 f(A) for Re A > 0.

Definition 2.8. Caputo fractional derivative of order n > 0
for a function f € €™ (]0,),R), where m = [n] is given by

DNf(t)=1"""D"f( /gm n(t—s)D" f(s)ds

and *D°f(t) := f(t), where D" = dtm In addition, we have

DN f(t) = (gm—n D" )(¢).

Remark 2.9. If f)(0) =0, fori=1,2,3,..

DM f(t) = f(t) and D f (1) = AN ().
Note. In definitions of Riemann-Liouville fractional in-

tegral and Caputo fractional derivative, we have considered
zero as a lower limit of the integral.

n—1, then (I"o

Definition 2.10. [28] Let 0 < B < 1% <--- <y <1 and
o > 0 be given and let A be the generator of a bounded
(B,vj)— resolvent family {7p y.(t)}i>0. Then a stochastic

process y(t) € € is called the mild solution of the system
(1.1) = (1.2) if h, 0, x € L2(Q,%) and there exists f(t) €
F(t,y(t)) and g(t) € G(¢t,y(t)) such that

By, (1) (0 —h(y)) + (81 % Ly ) (D)X
< to(r—s)B

+Y o / myﬁ.y_,@)(ﬁ—h(y))ds

j=1
+ /9 Tp (¢ —5)Bu(s)ds
+ /o 9[;7,1 (t—s)f(s)ds
+f(; %77}. (t—5)g(s)dw(s).
= e (=) T (5)ds

Remark 2.11. 91771. =g *yﬁ#j.

where T (1)

We denote by yr (0o, X, u) the state value of system (1.1) —
(1.2) corresponding to the control « and initial values ¢ and
x at the terminal time 7. The set R(T, 0,%) := {yr(o,x,u):
u(-) € L% (.#,U)} is called the reachable set of the system

(1.1) - (1.2).

Definition 2.12. The system (1.1) — (1.2) is said to be approx-
imately controllable on the time interval . if R(T,0,x) =H
where R(T, 0, x) is the closure of R(T, 0, )) in H.

In order to establish the approximately controllability re-
sults for the system (1.1) — (1.2), first we consider approxi-
mate controllability of its linear part

D"Py(t)+ Y a;°DVy(t) €Ay(r) + Bu(r)
=

y(0)+h(y) = o, Y'(0)=x.
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For this event, we are required to introduce operator asso-
ciated with (2.2) — (2.3) as

T
r’ — /T Tp.yy(T —$)BB* T, (T ~s)ds, 2.4)
where B* and %*y_(t) represent the adjoint of B and
Vi
T y;(t), respectively. It is straight forward that the opera-
tor I'T is a linear operator. Let Z(p,I'L) = (pI +TT)~1,

Lemma 2.13. [19] The linear system (2.2) — (2.3) is ap-
proximately controllable in [t,T],0 < 1 < T if and only if
p(pI+TT)~1 = 0as p — 0T in strongly operator topology.

Now, we introduce the fixed point theorems, which are to
be used in obtaining the main results.

Theorem 2.14. [9] Let H be a Hilbert space containing open
ball B(0,r) and closed ball B0, r| centered at origin and of
radius r. Assume that ® : B[O, r] — Pp cv(H) is an u.s.c. and
completely continuous. Then, either

(i) D has a fixed point, or

(ii) there exists ay € H with ||y|| = r such that 6y € ®(y) for
some 6 > 1.

Theorem 2.15. [1] For a nonempty, open and convex subset
V of Hilbert space Hwith0 € V. If ¥ : V — P, o (H) is an
u.s.c. and completely continuous. Then , either

(i) Y has a fixed point, or

(ii) there existsay € dV and ¥ € (0,1) withy = 9D (y).

3. Main Result

In this section, under the following assumptions (A;) —
(As), we first prove the existence of mild solution for the
system (1.1) — (1.2). Secondly, by assuming the approximate
controllability of linear system (2.2) — (2.3) and boundedness
of nonlinear functions F' and G in their respective domains,
we show the approximate controllability of the system (1.1) —
(1.2). So, In order to obtain our results, we consider the
following assumptions:

(A1) The operators {3 (1) }>0 and { Jg 4, (t) }+>0 are com-
pact, and sup;c 4 [|-75 , (1) || = So, So > 0.

(A2) The nonlinear function 4 : ¥ — H is completely contin-
uous and there exist constants 11,7 > 0 such that

12 < mllyll% +m2, fory €.

(A3) The multivalued map F : & X H — Ppqc10o(H) is a
L?— Caratheodory function satisfies the following con-
ditions

690
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(i) Fory € H the function F(-,y) is measurable, and for
eachr € .7 the function F (¢, ) is u.s.c.. Moreover,
the set Sg,, =

{feL*(Q,H): f(t) EF(t,y), forae.r € .}

is nonempty for each fixed y € ¥

(if) For each ro > 0, there exists a function N¢(rg) >0
depending on ry such that

sup ||F(1,y)||* < Ny(rg), forae.r€.7,
E|y|*<ro

where |[F(t,y)|* = sup E|f]*.
FEF(tYy)

(A4) The multivalued map G : ¥ x H — Py 1 (L (K, H))
is a L>—Caratheodory function satisfies the following
conditions

(i) Fory € H the function G(-,y) is measurable, and for
each r € .# the function f(z,-) is u.s.c.. Moreover,
the set Sg, =

{ge > (L (K,H): g(t) €G(t,y), forae., t€.7}

is nonempty for each fixed y € €.

(if) For each ry > 0, there exists a function N, (79) > 0
depending on rg such that

sup HG(t7y)||2 < Ng(}’o),
E|lyl[2<rg

forae.t € 7,

where [|G(1,y)[[* = sup E|g|>.
g€G(ty)

(As) There exists a real number ko > 0 such that kg >

65453 T1+4p

1
ko= 1Lz{p2[r<1+ﬁn4 (1+4P)

(12E||y~r||2

T 65454 T!+4B
2 E¢(s>”3f&"s)+(”pz[r(lgfﬁ)w(1+4ﬁ>)L1}
3.1

0020
00,
85082072
& w3
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where

Ly = 12S3(E||c|* + 1) + 121

} i ajZS%T1+2B—27j
S (142 =2y)[T(1+ B — )]
x (E||o|]*+m2)
652 1+28
+6TS2E|| x|+ [F(lioﬁ)}z (ITHﬁ)Nf(ko)
6Tr(Q)S3 T'+2P
T B (152 e )

6S4S4 T1+4[3
L, = (1+ o) 50 7 )
p>[I(1+B)1* (1+4P)
X (1253n1+12n

a252T1+2ﬁ72YjTll >

L0725 i B 7P

Lemma 3.1. [19] For any yr € L*(Fr,H) there exists o<
L% (L*([0,T],.2Y)) such that §r = ESr + i @ (s)dw(s).

Now for any p > 0 and yr € L*(Fr
control function

,H), we define the

B*‘Z;J/j(Té){(PIJng)_l(EyT
_yﬁv( )(0 —h(y )) (gl*fﬁ,yj)(T)x

_Z /r1+ﬁ AR
x<o—h(y>>ds)

eI T <s>dw<s>}
_B*‘Z;J’./(T —%)
< JT(PT+TT) Ty (T
B 75, (T-£)
< JT(PT+TT) " Ty (T

—3)f(s)ds

—s)g(s)dw(s).

Theorem 3.2. Assume that the assumptions (A1) — (As) are
satisfied. Then, the multi-term time-fractional stochastic sys-
tem (1.1) — (1.2) has a mild solution on .7 .

Proof. For p > 0, we define a multivalued operator Y : € —
P(€) by

691
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WE%'W()_yﬁy()(G h(y))

+Za’/ rtljrsﬁ AN
(G h(y))ds

Herr Fp) 0

—l—/t%y —5)Buf) (s)ds

+fo«7ﬁy,(f—s) f(s)ds

+ Jo Ty, (1 = 5)g(s)dw(s),
f S SF7y, gc SG7),.

Further, in several steps, we will show that T has a fixed
point.

Step 1 : For each y € ¢ and p > 0, the operator Y(y) is
convex.
In fact, for 7 € . and wy,w; € Y(y), then there exist fi, f> €
Sk and g1,82 € Sg.y such that

(t—s)P1

S 1) = Ay +Za,/ Y=
% . (5)(0 —h())ds + (g1 Ty ) (1)1
+ [ Tolo - 0|8 75, (1 -8)
{tprrp)
X(EyTy&y_,(T)(ch(y))
@Sy (1

wi(t) = j:zla"/o F(1+ﬁ—w)yﬁ”’()

+fy (pI1+TT)~

1§(s)d <>}
B Ty, (T—&) [T (pI+TT)"!
Ty (1) 10)ds

~B" g, (T=&) Jy (pI+T7)!

<o (T = u(5)in() | a
+ 15 Ty, (t =) fi(s)ds
8 Ty 1= )eils)aw(s),

i=1,2.

Let 0 < A <1, then for each t € ., we have
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Awi(t) + (1= A)wa(t) = Sy, (1)(0 = h(y))

+Za/m<¢m( 5)(0 — h(y))ds
1= O+ [ Ty =808

< |55,

{tp1+15)7 (B3~ 73,y 1) -0

—(81*«5”;37)( )X
T —s) ﬁ Y

F1+l3 Yj)

+ /0 (pI-+T1) ()5} - B 75, (- 8)

fﬁ,y,«s)(o—h(y))ds)

T
< o1+ Ty, (T—9)
x [Afi(s) + (1= A4)fa(s)]ds
T
BTy, (T=&) | (p1+17) " 7, (T =)

x [Agi(s)+(1 —l)gz(s)]dw(s)]d.g
+/0’ Tpy (1 =9)[Afi(s) + (1

+ /0 Ty 1= 5) Agi(5) + (5)]dw(s).

By convexity of Sg, and Si, we obtain that A fi +(1—1) > €
Sryand Ag1 + (1 —A)g2 € Sg. Hence Aw; + (1 —A)ws €
X(y)-

—A)fa(s)]ds

(1-24)g2

Step 2 : Y maps bounded sets into bounded sets in €.
For each rg > 0, we define B,, = {y € € : ||[y||Z <ro,t € 7}
Obviously, B,, is bounded, closed and convex subset of €.
Indeed, it is enough to show that for each w € Y(y), y € B,
there exists a constant [y > 0 such that E||y||> < lo.

Letw € Y(y) and y € B,,. Then for each 7 € .7, there exists
f € 8ry and g € Sg such that

yﬁy(

+ZO‘J

j=
tYﬁV,

fo I( 1+ﬁ 7)) yﬁ y/(s)(G—h(y))ds
(81*«7/3,7,)( )X

+ / Tyt —5)BuE (5)ds

+fo%y(t—S) f(s)ds
+Jo Ty (t = 9)g(s)dw(s).

692/699

Fort € ., we have

692

E|uf (§)* <

IA

<(r-

where

S3S5
p2C(1+p)P

X {6 Ey~T—|—/0‘5 O (s)dw(s)

+6E

(T -¢&)%

2

2

By (T) (0 —h())

2

+6E||(g1 *yﬁ,yj)(T)X

_sﬁ Y

F1+B 7j)
2

+6E

]

X S, ()(0 — h(2)ds

& 2
+6EH/O T (T = 5)£(5)ds

—s)g(s)dw(s)

)

:
+6EH/O Tp (T

65352
W(T €) ﬁ{ZEHyTHZ

+2Jy Ell§(s)II%, 2ds

+25%(E||<7||2Jrfg”é’l(1)\\22)J£TS(2)E||%||2
arSFT! B-2y;

*Zl (1+2B —27)T(1+ B — 7))
x (2E||o]? +2E[Ih() %)

i i (T = sPPE| £ (5)]Pds
LTH(Q) ST Ell (g5 * ) (T s>g<s>|2ds}

&N,

65352
p2[C (1+B

427 B s
+232<E||o||2+E||h< Y2+ TSE |2
a S T +2ﬁ72’yj
+”Z T+26 21T B—7)7
2EH0||2+2EIIh( IE)
oS (T — s PPEN s )szs

+Tr(Q) Jy Ell(gp *Sp.y,)(T

<2E|)’T|

|2ds)

a
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Now, we have

6E1 7300~ HO)
t—sﬁ Y
+6E oc,
2
x&ﬂﬁ,yj<s><o—h<y>>dsl

F6E||(81%Lpy,) ()2l

t
V6 / Tp 1yt —5)Bul (s)ds
0
2

E|w(t)|* <

+6E|| [y T, (t

FOE | 5 Tp (1 — 5)g(s)dw(s)

—s)f(s)ds

<2S3(E[|0|* +mro+m)
n 052»S2T1+2ﬁ727/
+12n) L0 .
= (1428 =2y)[C(1 4B — ;)]
< (E||o|* +miro+m2)
+6TSGE x|

SES§ TP
[r(1+l3)]24ﬁ+1N”
SZTZBH
T+ pPREs
S2T2ﬁ+l
C+p)P+1) ¢

+6

+6

+677r(Q) Ne(ro)

<lp.

Thus, Y maps bounded sets into bounded sets in €.

Step 3 : T maps bounded sets into equicontinuous sets of
€.
Foreachy e B,,,we Y(y)andfore >0,0<; <L <T,
we have

E|w(l)—w(h)|* <

693
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L4E||[Sp 5, (12) = Fp 5, (1)) (0 — h(7)) ||

R

J=1

+14E

2
X S, ()(0 — h(y))ds

n | — BV (], — )BT
Lo L[lz )r<1y+ﬁ(ilm) y}

X T (5)(0 — h(y))ds

+ 14E

13 lz—S ﬁ Yi
+14E Z /1 R p ) e )
2
+ 14E 1 Yﬁty/(s)xds
I —¢
+14E /0 [Ty (2 —5) = Ty, (I —)]Bu (s)ds
I 2
+14E /l | Ty lla=5) = Ty (1= )} (5)ds
2
+ 14E l Tp .y, (o —s)Bub) (s)d
lll—E 2
+14E /0 [Ty (2 =) = Ty (1 = )] f(s)ds
I 2
+14E / [Ty (= 5) = Ty (11 — )£ (s5)ds
b 2
+14E / Ty (12 —5)(s)ds
| —¢
1B | [ 1Ty (2= 5) = Ty (=) (s)a(s)

2
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IN

14E||[y,3 (L) =By, (L)](o
(I —S)ﬁy"r

1—€ —SB]
XZ /l {2 y+ﬁ 7)

XE||(o —h(y)||>ds + 14nS} Z aj
j=1

o (i [P =P ’
I —¢ F(]+nyj)

xE||(o —h(y)||>ds + 14nS} Z oF

B-vj 2 =

I [ fes | Elo-noas

+1485(L —LE| x|
HIASENGT Jo € (| Ty, (1 — s)
=By, (L —s)H ds
+IASENE f1 || T, (12 = 5)
_%,yj(ll —s)||ds l
+14S§Nu(12—11)/2 1T 5, (12— 5)|%ds
+H1AN£ (r0)T fo! (| Tp (12 — 5)

(

=gy, (L —s)||%ds

14N (ro)e fy! ¢ | Tp.y, (12— 5)

=By, (L —s)|%ds

+14Nf(r0)(12—11)f12||«7ﬁ yi (b= 9)|Pds

+H1ATr(Q)Ng (r0) fo! (1T (12 — )

=gy, (L —S)szs

+14Tr(Q)Ng (o) [ | Tp.y, (2 — 5)
Ty (11— ) 12ds

+14Tr(Q)N (r0) fi | Tp o (I — 5)||dis

Moreover, compactness of .-p y.(-) and J ;. (-) gives the con-
tinuity in uniform operator topology, by which we conclude
that the right side of above inequality tends to zero as I, — .
Hence Y is equicontinuous.

Step 4 :

The set U(r) = {w(t) : w € Y(B,),r € £} is

relatively compact.
Obviously, the set U(0) is relatively compact. For each y €

B, weX(y

we (1)

) and for 7 € (0,T], € € (0,¢), we define

7By, (1) (0 —h(y)) 5

t—¢€ —s Y
Lo gy el
<(0—h(y))ds
= +(g1:k<7ﬁ7y,-)(t—€)x

Jr/ Ty, (t = s)Buf) (s)ds
0

+ f(§78 %YJ (t—s)f(s)ds
+ 0o Tpy (t —5)8(s)dw(s).
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—h(y))|* + 14nS5

that the set Ug (1) = {we(t) : we € Y(B
in H. On the other hand, we have

E[lw(e) — we(r) > <
n t (t_s)ﬁ,yj
SE a./ (=g
,-; T Ji—e T+ B —7)) B.y;(5)
2 t
x (0 —h(y))ds|| +5E / S5.,(5)xds
t—¢ ’
! 2
+SE|| | Tyt —5)Bu (s)ds
t—¢€
" s
+5E ‘%,y; (t—s)f(s)ds
t—¢€ !
! 2
+3E TB.y, (t —5)g(s)dw(s)
t—¢€
n a]Zs(Z)glJrZﬁnyj

i YN T v e g R
% 2|+ nuro-+ ma) + 5eS3E| x|
5S2SZN,e!+4B

(1+4B)T(1+B)°

L SSNs(ro)e*?P
(1+2B)T(1 5 B)F
STr(Q)S3N,(ro)e' +2P
(1+2B)[C(1+ B)°
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We observe by the compactness of . . () and Jp . (t — )
ro)} is relative compact

(3.2)

Now, letting € — 0 we observe that there exist relatively com-
pact set arbitrary close to U(¢) for each 7 € (0,T]. Thus, for
all t € (0,T], U(r) is relatively compact in H. Hence, the set

U(z) is relatively compact for all t € .7.

Step 5 : T has a closed graph.

Let y" — y and w" — w® as n — oo. Now we will show that
w® € Y(30). In fact, for w" € Y(y") and ¢ € .#, there exists

8%
aet“@ﬂ”ﬂ,
(S
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Sf" € Spyn and g" € Sy such that

n

By () +Za,

<y e Ty s ><o h("))ds

+(g1% Byt x+/0t%.yj(z—§)3
X[B*%’iyj(T—i){(PHFg)’
X(Eir—«%y( )(o—h("))

—(g 1*§ﬂﬁy ZO‘/

< I g T ><oh<y">>ds)

I B0k |
BTy, (T—&) [T (pI+TT) !
< oy () (s)ds

BTy, (T—&) [ (pI+TT)"
< (T =) 5)in(s)|
Ty (-9 ()ds
18 T (1 — 5)8" ()b (s).

Next, we must show that there exists f© € § Fy0 and g" €585,0
such that

n

By (1) +Za,
<y e Ty s ><o h(°))ds
Her = T O1+ [ Tpy (=)
TR (e
< (E51 = 7y ()0 16
g1+ T )(T) x_ila,
S S MR

I 4TT) G (s)d w<s>}
BTy, (T-8)

><f0 (pI—I—FT) lyﬁ},(T s)f{)(s)ds
B 7y, (T-&) f{ (p1+TI)"

< (T = 9)(5)in(s)|
+f(;%77j(t_s)f0 S)
TR Ty (1~ 5)8°)

By w” € Y(»°) and continuity of / , we obtain

ds
dw(s).
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j=
(81*5’3,%)()

[ Zoo- 208|575, - )] o141

x (EyT — (TN —h(y™))

*(gl*yﬁy)( )X
(T - sﬁ Yi

r1+B )
+/() p[+1"ST)’ d)(s)dw(s)Hdé’)
- (wo(t) ~ Iy ()0 —h("))

oy 5)(0 () )

_(gl*yﬁ,yj)(t)x
[ Zoto- 008|575, -0

x {<p1+r$ )l (Ef’r ()0 —h(Y))

*(gl*yﬁy,)( )X
(T - sﬁ Vi

]1 F1+B Yi)

" /0 (pr-+T1) 65} 2

Consider the linear operator

poy5)(0 ") )

@ L2(QH) x L2(Z(K,H)) — C(7,H),

(.8 ®(128) = [ (8571 —3)x
[fo(s) ~BB' I, (T —s5)x
[ o115 Ty (7= )10 s
eI

T
—BB*%’iyj(T—s)/() (pI+TI)!

%,y,(Té)gO(é)dw(é)]dw(s).
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It follows from Lemma 2.4, that ® OS(F,G) is a closed
graph operator, where

Sre) ={f €F(t,y(1)} x {g € G(t,y(t) }-

Moreover, by the definition of &, we have

- (gl *yﬁ,yj)(t)%
—/0’%,y,a—é)B[B*%i,,(T—é)

x {<p1+r$ )l (Eyf — oy (T)( —h(y"))
- (gl xS, yf)( )X

Since y" — y°, It conclude by Lemma 2.4, that

(w%) — gy (00— h())

(r—s) B=v;
o 1+ﬁ ) ﬁy,( 5)(o —h(y"))ds
—<gl*%,y,-><z>x

~ [ Fpy-o8
{B*ﬁﬁy (T-§&) {pI+F0) (EyT
0

=SBy (T)(0 =h(y"))

— (g1 Sy NT)2
_Sﬁ Y

Z /F1+ﬁ )
+/0 (p1+T1) 1 66)aw () |2 ) € Si5.0,

yﬁ,y,(s)(ch(y%)ds)

This implies that w® € Y(y°). Hence Y has closed
graph. Now, by Arzela-Ascoli theorem and by steps 1 — 5,
the multivalued map Y is compact, u.s.c. with convex closed
values.

Step 6 : The operator Y has a mild solution.
For ko > 0 given by (3.1), define a open ball By, C €. We
know by steps 1 —5 that Y satisfies all the conditions of
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Lemma 2.14. Let y be a possible solution for 8y € Y(y) for
some for some 8 > 1 satisfying E||y||> = ko. Then, we obtain

0~ Ty, (1) (0 —h(y))

—Sﬁ Yi
+012a1/ t1+[3 ”
X«%YU( h(y))d

yt) =9 +6- (gl*yﬁy>()

+6 /%Y(Z—S)BM (s)ds
0 ) Ty (1) (s)ds
+071 5 Ty (1 —5)g(s)dw(s).

Then, parallel to the step 2, we have

ElyO)]2 < 1253(Ello|2+ mElyI +n2)
a2S2T1+2ﬁ72yj
+12n
Z (5262 T F-7)F
C(Elol + mEIE £ )+ 7SR 2

4 o4
e e N (T

12 [ E1§(6) s

+12S5(Elo | + mE||y|* +m)
n OCJZS%THZI#ZYJ'

+12n
L0736 2t B P
< (EI IR+ mE|y|P+ 1) + 6TS3E

6532 T
g h @

—s)PN(E|ly|*)ds

- 2
SO " 1 op 1y
0 t
st [ PN B s
r 2 it
# SO 1 el s

Taking supremum over ¢, we get E|y||> = ko, then

ko < 12S3(E|| 6|+ miko +12)
n o2S2T1+2B-2;
+12ny L2 5
S (1+28=2y)[C(1+B—7)]
x (E||o|* +mko + n2) + 6T SGE| x|>

65458 T'+4p ( o
12E
o0+ B (1 ap) 2T
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T ~
12 [ E§(5) pds

+ 1283 (E||o|* + ko + 12)
n ang%T1+2ﬁ—2y,~

M T R v (R
x (E||o|* + niko + m2)

2 1428
TSP+ g 1 g )
6Tr(Q)S3 T'+?B
NETET +2B>Ng<"°)>
65(2) T1+2B
T PR ar2p )
6Tr(Q)S3 T'+2B Ny (ko).

[C(1+p)1* (1+2B)

Calculating the value of kg, we get

1 6S4S4 T1+4ﬁ
k() S B*~0
1—Ly | p?[[(1+B)]* (1+4B)

T
w12 E|g5(s)||§%2ds)

6S4S4 T1+4ﬁ
+ (1 + e >Ll
P2 C(1+B)J* (1+4B)
which is a contradiction to (3.1). Thus, in view of Lemma

2.14, the inclusion operator Y admits a fixed point that turns
out as a mild solution of (1.1) —(1.2) on .#. O

(12E||)7T||2

Theorem 3.3. Let the multivalued functions F and G be
uniformly bounded and the assumptions (A|) — (As) are ful-
filled. Moreover, if the linear fractional stochastic system

(2.2) — (2.3) is approximately controllable, then the fractional
stochastic system (1.1) — (1.2) is approximately controllable
on g,

Proof. Let yP be a mild solution of the system (1.1) — (1.2)
i.e. fixed point of Y. Using the stochastic Fubini theorem, we
conclude that yP satisfies

Sr—p(pl+T3)! (Ey&
=SBy (T) (0 —h(Py))
(gl * Sy ) (T)X

72 /r i

(I+B-7)
xyﬁ,y,.<s><o—h<yp>>ds)

—p fo (PI+TT)"'¢(s)dw(s)
+pfo (PI+T{) " Tp (T
+p Jo (PI+TT) 1 T, (T

—5)fP(s)ds
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—5)gP (s)dw(s),
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where

fPE€Spyp ={fP €L*(QH): fP(t) €F(t,)"), forae.1 € .7}
and g € S ,», where
Sgy ={gf €L*(L(K,H)): P (t) €F(t,)P), forae.t € 7}
By the uniformly boundedness of F' and G, there exists
a constant A > 0 such that || P (s)||* + ||gP (s)||* < A. Then,
there is a subsequence still denoted by {f*(s),g" (s)} weakly

converging to, say, {f(s),g(s)}. Now, it follows by the com-
pactness of 7, (r) that

‘%,’Y](T - S)fp (S) %%,YI(T 7S)f(s)7
Ty (T —5)P(5) > Tp (T = 5)8(5).

Now,
Ely?(T) -7 =6EHp<p1+r5>1

G ML)

—(gl*«% y-)(T)X
T —s)B~ , 2
N8y o —h0?)as)
2
+6E< A p(pl+TT)"16(s) ds>
%0

+6E</OT

p(pI+17) "' Tp, (T —5)

P(PI+T]) " Tp . (T —5)gP(s)

T 2
+6F < / ds) .
0 %0
Further, by Lemma 2.13, the operator p(pl +T7)~!
0 strongly as p — 0T, and moreover ||p(pI +TT)~1|| < 1.
Now, using Lebesgue dominated convergence theorem, we
deduce that E||y? (T) — jr||> — 0 as p — 0F. This proves the
approximate controllability of the system (1.1) —(1.2). O
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4. Example

Let B,y; >0, j=1,2,3,...,nbe given such that 0 < B <
Y <+ <1 < 1. We consider the following system

n 2
D" Pr(t,x) + Z a;°DVz(t,x) = %z(t,x) + u(t,x)
j=1
+0(t,z(s,x)) +Q2(t,z(s,x))dv;7§t), te s =\0,1],
7(¢,0) = z(t,m) = 0,

z(0,x) + Zciz(ti,x) =&)(x),0<x <,
i=1
dz(t,
%h:a = 20,

“4.1

where w(t) represents a standard cylindrical Wiener process

on (Q,.7 {7 }1>0,P) and &y, 20 € L*(0, 7). p:[0,1] x (0,7) —

(0,7) is continuous in 7 and ¢; > 0 for all i = 1,2, ..,m. The
functions Q1,0 : R — Z(R) are continuous. We consider
the space H = U = L?(]0, z]) equipped with norm || - ||,» and
define Aby Z(A) =

{weX:w, w are absolutely continuous,
w” € X,w(0) = w(r) =0},

and Aw =w"

Then the operator A is given by

Aw = Z —n? (W, W)W,
n=1

where w, (1) = \/%sinnt, n=1,2,...,is orthonormal set

of eigenfunctions corresponding to the eigenvalues A, = —n?

of A. Then A will be a generator of cosine family such that

oo

Cltyw= Z cosnt {w, wy,ywy,

n=1

Now by Theorem 2.6, A generates a bounded (f8,7;)—
resolvent family {73 . (t)}:>0. Let z(t)x = z(t,x) and de-
fine the bounded linear operator B : U — H by Bu()x =
u(t,x). Further, we assume F(7,z(1))(x) = Q1(z,z(t,x)) =

r
Tie=r sin(z(t,x)),

G(1,2(1))(x) = Oa(t,2(t,%)) = 755 sin(z(z,%)) and h(z) (x) =
Y7 | ciz(ti,x). Then the assumptions (Az) — (A4) are satisfied.
Moreover, the system can be written in the abstract form
(1.1)-(1.2) and the corresponding linear fractional stochastic
system (4.1) is approximately controllable, so by theorem
3.3, the fractional stochastic system (4.1) is approximately
controllable on [0, 1].
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5. Conclusion

This paper has investigated the approximate controllability
results for the multi-term time-fractional stochastic differen-
tial systems with non-local conditions. The results obtained
are quite useful for studying physical problems which are
characterized by fractional systems. The authors are inter-
ested to study the approximate controllability of multi-term
time-fractional differential systems fractional order Sobolev-
type stochastic integrodifferential systems via measure of non-
compactness in order to drop the compactness condition on
the operator {73 () }1>0.
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